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Abstract

We introduce S2VS, a video similarity learning approach
with self-supervision. Self-Supervised Learning (SSL) is
typically used to train deep models on a proxy task so as to
have strong transferability on target tasks after fine-tuning.
Here, in contrast to prior work, SSL is used to perform video
similarity learning and address multiple retrieval and de-
tection tasks at once with no use of labeled data. This is
achieved by learning via instance-discrimination with task-
tailored augmentations and the widely used InfoNCE loss
together with an additional loss operating jointly on self-
similarity and hard-negative similarity. We benchmark our
method on tasks where video relevance is defined with vary-
ing granularity, ranging from video copies to videos depict-
ing the same incident or event. We learn a single univer-
sal model that achieves state-of-the-art performance on all
tasks, surpassing previously proposed methods that use la-
beled data. The code and pretrained models are publicly
available at: https://github.com/gkordo/s2vs

1. Introduction

Self-supervised learning is a popular approach, espe-
cially for learning representations that are amenable to
transfer to different tasks [9, 10, 24, 27, 61]. SSL allows to
scale-up the dataset size by not relying on manual labeling
and is known to obtain representations with high transfer-
ability. The commonly studied setup is to consider SSL for
pre-training on a proxy task and then perform supervised
fine-tuning on different target tasks [9,10,27]. In this work,
we rather perform SSL and directly use the model on video
similarity-related tasks.

∗Research partially conducted at ITI-CERTH.

Figure 1. A video similarity network is trained with SSL to com-
pare two videos. The resulting model is used, without any further
training, for retrieval and detection of relevant videos in different
tasks, where the definition of relevance ranges from video copies
to videos capturing the same incidents and events.

Computing similarity between videos is a common ob-
jective across a number of video retrieval [43, 63, 78] and
video detection [38,46] problems. The definition of what is
a relevant video to retrieve or detect may differ according to
the task at hand. In this work, three cases are considered: i)
video copies [38,78], i.e., edited versions of the same source
video, ii) videos of the same incident [43], i.e., videos cap-
turing the same spatio-temporal span, and iii) videos of the
same event [63], i.e., videos capturing the same spatial or
temporal span. In this work, we target both retrieval and
detection. In the former, only ranking per query matters;
therefore, the distribution of similarities can vary among
queries. While in the latter, the ability to apply a similar-
ity threshold and detect relevant videos matters.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Supervised learning of specialised models per task is
very demanding in terms of training data collection, es-
pecially in the video domain. Instead, in the proposed
method, we are learning a single model via SSL to per-
form all retrieval and detection tasks (see Figure 1) without
further fine-tuning. We inject self-supervision into video
similarity learning by adopting the concept of instance-
discrimination [10], where each video forms its own class,
and any transformation of it preserves the class label.

In this work, we adopt the ViSiL [44] architecture for
video similarity, which needs labeled video datasets for its
development in prior works [44, 45], but we train it in a
self-supervised way and argue that instance-discrimination
through augmentations is well suited for all the aforemen-
tioned tasks. To pronounce the synergy, we develop an ap-
propriate composition of video augmentations and propose
a model-tailored loss combined with a standard SSL loss.
By eliminating the need for video annotations, we are able
to train on large video datasets and achieve state-of-the-art
results on all target retrieval and detection tasks. Evalua-
tion is performed on three standard benchmarks, namely,
VCDB [38], FIVR [43], and EVVE [63].

In summary, our contributions include the following:
• We perform SSL via instance-discrimination for video

similarity estimation and surpass existing results, ob-
tained with fully supervised training, on three different
retrieval and detection tasks.

• The performance of the InfoNCE loss [57] is improved
by a proposed loss that acts jointly on self-similarity
and hard-negative similarity of each video in the batch.

• We are the first to jointly benchmark retrieval and
detection performance on a range of video-relevance
granularities. Additionally, we repurpose the FIVR
dataset, whose performance has almost reached satu-
ration, and evaluate only on hard examples.

2. Related Work
Video similarity and self-supervised learning are the two

research fields that are most relevant to our work.

2.1. Video similarity

Video similarity methods can be roughly classified into
two general categories, i.e., global representation and
matching approaches.

Global representation approaches first design or learn
a mapping of input examples to a vector space and then
use standard distance metrics or similarity measures to
compare pairs of examples. These methods reduce down
to representation learning, typically called global repre-
sentation or descriptor, in the sense that the input exam-
ple is represented by a single vector. Early methods ex-
tract hand-crafted features [34, 56] from all video frames
and use aggregation schemes, e.g., mean pooling [35, 78],

Bag-of-Words [6, 65, 67], to generate global video vec-
tors. More recent approaches use deep features combined
with learnable aggregation methods, i.e., using unsuper-
vised schemes [22,41,54] or training deep supervised mod-
els with metric learning [42, 47, 48]. In addition, several
methods extract hash codes for the entire video and measure
similarity in the Hamming space [68]. The latter typically
train deep networks, such as LSTMs [33, 69, 80] or Trans-
formers [49,50,74], with self-supervised schemes that opti-
mize for the preservation of the video adjacencies from the
initial feature space to the Hamming one.

Matching approaches represent videos with more than
a single vector and involve elaborate similarity estimation
schemes, leverage spatio-temporal representations, and ex-
ploit video alignment or fine-grained similarity functions.
Early methods propose handcrafted solutions to assess
similarity through video alignment using Temporal Net-
works [70,76], temporal Hough Voting [18,39], or Dynamic
Programming [12]. Other methods build on the founda-
tions of representation learning to generate spatio-temporal
representations with transformer-based networks for tem-
poral aggregation [31, 66], multi-attention networks [75],
attention-based RNN architectures [5, 20] or Fourier-based
representations [4, 60]. Recent work focuses on video sim-
ilarity networks that design and learn matching functions
to estimate the video-to-video similarity [25, 30, 37, 44, 45].
The matching function is parametric and learnable in this
case. ViSiL [44] is among the first methods in this direc-
tion; it performs fully-supervised training of a video sim-
ilarity network to capture fine-grained spatial and tempo-
ral structures. Also, Distill-and-Select (DnS) [45] leverages
knowledge distillation to train students using ViSiL as the
teacher network. In our work, we adopt the DnS variant of
ViSiL and train it with self-supervised learning.

2.2. Self-supervised learning

SSL recently witnessed rapid growth and is leveraged in
several vision-related problems. Many examples exist in
the image domain for the training of representation models
via solving explicit proxy tasks [16,17,55,58,82], discrimi-
nating instances through contrastive learning [10,27,32,71],
optimizing clustering and representation [2,7,8], bootstrap-
ping knowledge with self-distillation [9,11,23] or image re-
construction with masked autoencoders [3, 26].

The video domain offers additional avenues for self-
supervision, e.g., by exploiting spatio-temporal informa-
tion, such as frame ordering [21, 53], motion [1, 36], multi-
modal co-training [24], temporal field of view [62] or, more
recently, video masking autoencoders [73,77].The roadmap
of augmentations designed for videos has been adopted by
some approaches [24, 40, 61] that train a video representa-
tions network on a proxy task. Qian et al. [61] use tempo-
rally consistent spatial augmentation and contrastive learn-
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Figure 2. Overview of the proposed approach. Each video in a random batch is augmented twice, and all video pairs are processed by the
video similarity network (includes feature representation, spatial matching, and a learnable temporal matching component) to estimate the
video-to-video similarity values. Two losses are applied per row of the within-batch similarity matrix: the widely known InfoNCE loss
(Lnce) and the newly proposed Lsshn that maximizes self-similarity and minimizes the hardest negative similarity.

ing. These methods learn a mapping of videos to a vector
space, and, most of the time, the goal is to perform fine-
tuning on other tasks with good generalization.

In another line of research, when video-to-video similar-
ity estimation is the objective, mapping to a vector space is
not the most suitable choice; instead, a matching function
for a video pair is typically the preferred choice. In con-
trast to this work, where we learn a parametric matching
function, prior work uses hand-crafted matching and only
learns the representation [4, 31]. This is the case for near-
duplicate video retrieval [31] and video matching through
alignment [4], where self-supervision comes in the form
of pre-generated static training datasets through spatio-
temporal augmentations. In the same way, He et al. [25]
target video copy localization and, through self-supervision,
generate ground truth masks at the level of frame-to-frame
correspondences. In contrast to them, we optimize a more
general video similarity model and effectively employ it to
tackle multiple retrieval and detection tasks.

Lastly, a related work [59] in the image domain pro-
poses a self-supervised method reflecting the objectives
of the target task based on task-specific augmentations.
Their method relies on contrastive image representation
learning using advanced augmentations, e.g., text and emoji
overlays, strong blurring, and CutMix [81], and an adopted
InfoNCE loss [57]. We use similar task-specific augmenta-
tions and losses in our work for videos, instead of images.

3. SSL for Video Similarity

Our aim is to learn a video similarity function s : V ×
V → R, where V is the space of all videos. The goal
is for two videos to have high similarity if they are rele-

vant, and low otherwise. The definition of relevance is task-
dependent. In our experiments, we consider several eval-
uation tasks, where relevance ranges from video copies to
videos of the same physical event. Nevertheless, we per-
form training in a single universal way without video labels
for supervision. We perform training with self-supervision
in the spirit of instance-discrimination, i.e., two augmented
videos originating from the same original video are con-
sidered as positive to each other, or negative otherwise. In
some parts, we follow the work of Pizzi et al. [59], who
perform SSL for image copy detection. The overview of
the proposed approach is illustrated in Figure 2.

3.1. Similarity network

We adopt the ViSiL variant proposed in DnS [45],
namely the fine-grained attention student, as our similar-
ity network architecture. It consists of a representation net-
work, a hand-crafted spatial matching function, a learnable
temporal matching function, and a final hand-crafted match-
ing function that estimates the final video-level similarity.

The representation network fθ,ϕ : V → RT×R×D maps
an input video to a D-dimensional vector per region, for
R regions per frame, for T frames, where R and T vary
according to the frames’ size and video length, respectively.
This network consists of a pre-trained backbone network
and has a parameter set θ that is fixed in this work, similar
to the prior ones [4, 37, 43]. The learnable part corresponds
to the parameter set ϕ, a dot-attention scheme [79] that is
applied to weigh region vectors based on their saliency.

Given two input videos v and u and their corresponding
representations, the hand-crafted spatial matching is per-
formed by the function g : RTv×Rv×D × RTu×Ru×D →
RTv×Tu , that takes as input two video representations and
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Figure 3. Temporal similarity matrices formed between the original video and its strongly augmented counterpart. Sampled frames (top),
similarity matrices that are the input to (middle), and output of (bottom) the temporal matching function of the proposed S2VS are shown.
Only one type of augmentation is applied in each case. All matrices are scaled in [0,1] with blue (red), indicating similarity close to 0 (1).

estimates the temporal similarity matrix. It computes the
Rv × Ru spatial similarity matrix for all frame pairs and
then applies Chamfer similarity on each of them to estimate
the frame-to-frame similarity.

The temporal matching is performed by function hψ :

RTv×Tu → RT ′
v×T

′
u . This is a four-layer CNN that learns

to capture temporal patterns in the input similarity matrices.
It outputs a filtered temporal similarity matrix. It holds that
Tv = 4T ′

v , and similarly for u, due to the CNN design that
contains strided max pooling operations. The parameters of
the CNN, denoted by ψ, are learnable.

Chamfer similarity is applied and denoted by the func-
tion m : RT ′

v×T
′
u → R, taking as input the filtered temporal

similarity matrix and estimating the final video-level simi-
larity, i.e., the scalar similarity between the two videos.

To summarize, similarity s(v, u), for the video pair
consisting of videos v and u, is equivalent to s(v, u) =
m (hψ (g(fθ,ϕ(v), fθ,ϕ(u)))), and the goal in this work is
to learn ϕ and ψ with self-supervision on videos, while θ
remains fixed and is obtained from supervised pre-training
on ImageNet. The reader is referred to the original ViSiL
work [44] for additional details.

3.2. Weak/strong video augmentations

We apply two sets of augmentations to generate two cor-
responding versions of a training video, i.e., one weakly and
one strongly augmented version. Formally, given an origi-
nal video v, the output of an augmentation function A is a
video tensor ṽ = A(v) ∈ RTB×HB×WB×3, where TB , HB ,
and WB correspond to the number of frames, height, and
width of the video in the batch, respectively.

Weak augmentations consist of conventional geomet-
ric transformations (i.e., resized crop and horizontal flip),

applied globally on the entire video, and temporal cropping
to select TB consecutive frames.

Strong augmentations consist of the weak augmenta-
tions and several other transformations grouped into the fol-
lowing four categories:

Global transformations are frame transformations ap-
plied to all frames in a consistent way. We use Ran-
dAugment [14], an automatic augmentation strategy that in-
cludes different geometric and photometric image transfor-
mations and requires two hyperparameters, namely NRAug
and MRAug . These correspond to the number of randomly-
applied consecutive transformations and their magnitude
value that determines their severity, respectively.

Frame transformations are applied independently per
frame. We use overlay and blurring transformation1. Fol-
lowing advanced augmentations from prior work [59], we
add random emojis and text, each with probability poverlay ,
and blur frames with probability pblur. We opt for these
operations to emulate common video copy transformations.

Temporal transformations act only on the temporal di-
mension and include five operations, with one applied per
video. Following [44], we use fast forward, slow motion,
reverse play, and frame pause, where a single frame is du-
plicated several times consecutively. In addition, we pro-
pose Temporal Shuffle-Dropout (TSD) to alter the global
temporal structure but preserve the local one. The video
is first split into short clips, each of them with length ran-
domly chosen in [4, . . . , TB/2]. In the shuffling phase, ap-
plied with probability pshuf , the clip order is shuffled. In
the dropout phase, a clip is dropped with probability pdrop,
where it is either discarded or filled with empty frames or
Gaussian noise with probability pcont.

1The RandAugment implementation we use does not contain blurring
operations. Hence, global transformations do not blur videos.
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Video-in-video randomly mixes two strongly augmented
videos, the host and the donor, in the same batch. The
donor video is randomly spatially down-sampled with a
factor λviv and is overlaid in a random location within
the host video. Each strongly augmented video is cho-
sen as donor with probability pviv . Then, a host video
is randomly chosen, while the mixed output replaces the
donor video. This process requires properly adjusting the
instance-discrimination labels since the generated video is
the outcome of two others. Video-in-video transformation
is very common in real-life video cases.

Figure 3 presents the impact of each type of augmen-
tation on the temporal similarity matrices. Self-similarity,
i.e., identity augmentation, is shown as a reference and
hints about the temporal structure of the video. Weak
augmentation only slightly affects, while global and frame
augmentations noticeably affect the strength on the block
diagonal structures. Such a structure is preserved with
global transformations but not so much with the frame
ones; observe some blue vertical lines indicating a signifi-
cant impact on the frame representation. Nevertheless, the
trained network handles both cases robustly, assigning large
similarity values on the diagonal part, as seen on the filtered
matrices. The temporal transformations significantly alter
the global structure but partly preserve the local one, while
the video-in-video transformation has a substantial impact
on the intensity of the main diagonal, highlighting its
challenging aspect; yet, the trained network effectively
learns to handle such cases.

3.3. Loss on video similarity

A random set of N videos, where each video is aug-
mented once with the weak and once with the strong aug-
mentations, forms a training batch of size B = 2N denoted
by B = [v1, · · · , v2N ]. We compute the similarity matrix
S ∈ [0, 1]B×B , with elements Si,j = s(vi, vj), compris-
ing all pairwise video similarities within the batch. Each
row of S consists of the self-similarity on the diagonal, one
positive-pair similarity, and B − 2 negative-pair similari-
ties2. Note that S is not symmetric and that the diagonal
elements are not equal to 1 because of hψ . For the i-th row
of the similarity matrix, let p(i) be the set of column indices
of the positive pairs. Additionally for the i-th row, let n(i)
be the set of column indices of the negative pairs.

The total loss is a combination of two losses that opti-
mize different parts of S: (i) the widely used InfoNCE [57]
loss estimated per row excluding the self-similarity value,
and (ii) a loss that maximizes the self-similarity, i.e., main
diagonal, and minimizes the similarity with the hardest
negative, i.e., the negative with the highest similarity, for
each video in the batch.

2This is the case where video-in-video augmentation is not used; oth-
erwise, there can be more (less) positives (negatives).

InfoNCE loss is estimated for each positive pair by

Lnce(i, j) = − log
exp(Si,j/τ)

exp(Si,j/τ) +
∑
k/∈p(i)∪i exp(Si,k/τ)

,

(1)
where τ is a temperature hyper-parameter and (i, j) is a pos-
itive pair. The final InfoNCE loss is given by the average
over all positive pairs as

Lnce = 1/P
∑
i

∑
j∈p(i)

Lnce(i, j), (2)

where P is the total number of positive pairs in the batch.
Self-similarity – hardest negative loss: Since the self-

similarity is not equal to 1 by design, we add a loss term
that is trying to push it to high values. Together with that, an
additional term pushes the hardest negative of each row to
have small similarity. For the i-th row, this loss is given by

Lsshn(i) = − log (Si,i)︸ ︷︷ ︸
self−sim

− log max
j /∈p(i)∪i

(1− Si,j)︸ ︷︷ ︸
hard−negative sim

, (3)

and the total loss is given by the average over rows as
Lsshn = 1/B

∑
i Lsshn(i). Note that the hard-negative term

resembles entropy maximization through the Kozachenko-
Leononenko estimator and a consequent spreading of
elements in the representation space [64]. Differently to
them, we perform this directly on pairwise similarities and
not on distances over a vector space.

To this end, we optimize a weighted sum of the losses
presented above, as follows

L = Lnce + λLsshn, (4)

where λ is a hyperparameter that tunes the impact of Lsshn.

4. Evaluation setup
Here, we present the training/evaluation datasets, the

evaluation metrics, and some implementation details.

4.1. Datasets

DnS-100K [45] consists of 115,792 unlabeled videos. It
is used for knowledge distillation in the original work, but
we use it as a training set.

VCSL [29] is originally created for video copy localiza-
tion. It contains 9,207 videos with more than 281K copied
segments split into training, validation, and test set. Due to
the unavailability of several videos, we managed to collect
only 8,384 videos. We use this dataset to train our model in
a supervised way, only to provide an indicative comparison
with the proposed SSL approach.

VCDB [38] is created for partial video copy detection.
The core dataset (C) contains 528 videos from 28 discrete
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sets with over 9,000 copied segments. It also contains a
set D of 100,000 distractor videos. We use this dataset for
evaluation for detection and retrieval of video copies, con-
sidering as related the videos that share at least one copied
segment. Moreover, we use the distractor set as an alterna-
tive unlabeled training set. We use VCDB, VCDB (D), or
VCDB (C+D) to indicate that only set C, only set D, or both
sets are used, respectively.

FIVR-200K [43] is used as a benchmark for fine-grained
incident video retrieval. It consists of 225,960 videos and
100 queries. FIVR-200K includes three different subtasks:
a) Duplicate Scene Video Retrieval (DSVR), b) Comple-
mentary Scene Video Retrieval (CSVR), and c) Incident
Scene Video Retrieval (ISVR). In this work, we use the
same subsets to evaluate for the corresponding detection
tasks, denoted by DSVD, CSVD, and ISVD. For quick com-
parisons, we also use FIVR-5K [44], a subset of FIVR-
200K. We use it in our ablations, denoted by FIVR, where
the average performance of the three subtasks is reported.

EVVE [63] is a dataset for video retrieval. It consists of
620 queries and 2,375 database videos. Due to the unavail-
ability of several videos, we use only 504 queries and 1906
database videos [44], which is roughly ≈80% of the initial
dataset. All reported methods are evaluated on this subset.

In summary, we train on DnS-100K, or VCDB(D), and
evaluate on VCDB for video copies, on FIVR for video
copies, and incidents, and on EVVE for video copies, in-
cidents, and events.

4.2. Evaluation metrics

To evaluate methods for retrieval, we use mean Average
Precision (mAP). AP is equivalent to the area under the
precision-recall curve for a particular query, and mAP is
obtained by simply averaging over all queries. To evaluate
for detection, we use micro Average Precision (µAP) as
a good indicator of detection performance also used in
prior work [19, 46, 59]. This is equivalent to the area
under the precision-recall curve for all queries jointly.
The lists of similarities from all queries are merged, and
the labels defining relevant/non-relevant videos (despite
being defined with respect to different queries) are used to
estimate precision and recall. All the metrics are re-scaled
to the [0, 100] range. For retrieval and mAP, only the
ranking per query matters; therefore, the distribution of
similarities can vary a lot among queries. This is not the
case for detection and µAP, where the ranking among all
queries jointly matters, reflecting the ability to apply a
threshold and detect the relevant items.

4.3. Implementation details

Pre-trained backbone networks (θ): To implement
our representation network fθ,ϕ, we follow the litera-
ture [44, 45, 66] and employ a ResNet50 [28] network pre-

trained on ImageNet [15]. We also extract region vec-
tors applying regional max activation pooling [72] on in-
termediate layers [41], whitened through a PCA-whitening
layer [13] learned from 1M region vectors sampled from the
VCDB [38] dataset.

Training process: We train our network for 30K iter-
ations with a batch size of 64. We employ AdamW [52]
optimization with learning rate 5 · 10−5 and weight decay
0.01. We use cosine learning rate decay with 1K itera-
tions warm-up [51]. Other parameters are set to TB = 32,
τ = 0.03, and λ = 3. Also, following the original ViSiL
work [44], the similarity regularization is employed with a
factor r = 1. The similarity network generates scores in
[−1, 1], and we rescale them to [0, 1] for the loss calcula-
tion. For further implementation details and the complete
list of hyperparameter values, we point readers to the sup-
plementary material.

5. Experiments
We evaluate the performance of the proposed approach

on different retrieval and detection tasks related to video
similarity, compare its performance to the state-of-the-art
methods, and conduct an ablation study.

5.1. Comparison with the state-of-the-art

We compare the proposed S2VS method with the fol-
lowing approaches. DML [42] extracts a video embedding
based on a network trained with supervised deep metric
learning. LAMV [4] trains a video representation using a
generated dataset while relying on kernel-based temporal
alignment. TCAf [66] is a transformer-based architecture
trained with supervised contrastive learning. VRL [31] is
a CNN and transformer-based network trained end-to-end
with no labeled data. ViSiLf [44] is a baseline without any
training on videos that corresponds to the frame-to-frame
similarity part of ViSiL combined with Chamfer similarity.
ViSiLv is the full similarity model trained with supervision.
DnS [45] is a ViSiL-based student network trained with dis-
tillation from a teacher trained with supervision; we com-
pare with the best-performing fine-grained attention student
SfA. For TCA and VRL, the reported results are taken from
the original papers. For the remaining approaches, we run
the provided pretrained networks, and following DnS [45],
we implement LAMV and DML with the same features pro-
vided in the official repository3.

Table 1 presents the performance comparison on video
retrieval and detection. S2VS is among the top two per-
forming methods in all cases despite not requiring labels.
This holds for both training sets used for our method. The
best-performing competitor is DnS, which requires a man-

3https://github.com/mever- team/distill- and-
select
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Retrieval Detection

VCDB
(C+D)

FIVR-200K EVVE VCDB
(C+D)

FIVR-200K EVVE
Approach Lab. Trainset DSVR CSVR ISVR DSVD CSVD ISVD

DML [42] ✓ VCDB (C+D) - 52.8 51.4 44.0 61.1 - 39.0 36.5 30.0 75.5
LAMV [4] ✗ YFCC100M 78.6 61.9 58.7 47.9 62.0 62.0 55.4 50.0 38.8 80.6
TCAf [66] ✓ VCDB (C+D) - 87.7 83.0 70.3 - - - - - -
VRLf [31] ✗ internal - 90.0 85.8 70.9 - - - - - -
ViSiLf [44] ✗ - 82.0 89.0 84.8 72.1 62.7 40.9 66.9 59.5 45.9 74.6
ViSiLv [44] ✓ VCDB (C+D) - 89.9 85.4 72.3 65.8 - 75.8 69.0 53.0 79.1
DnS [45] ✓ DnS-100K 87.9 92.1 87.5 74.1 65.1 74.0 79.7 69.5 54.2 74.3

S2VS (Ours) ✗ VCDB (D) - 92.7 87.9 74.6 67.2 - 85.7 76.9 62.8 80.7
S2VS (Ours) ✗ DnS-100K 87.9 92.5 87.8 73.9 65.9 73.0 89.3 80.2 64.9 78.9

Table 1. State-of-the-art comparison via retrieval mAP (%) and detection µAP (%) on three evaluation datasets. Bold and underline
indicate the best and second best approach, respectively. Missing values are either due to unavailability or unfair comparison due to leak
of evaluation data during training.

Figure 4. Similarity distribution of S2VS and ViSiLf and DnS
competitors on the DSVD set of FIVR-200K. For S2VS and DnS
the similarities are rescaled to [0, 1].

ually labeled dataset of several thousand copied video seg-
ments to train a teacher network. Compared to the baseline
ViSiLf , S2VS consistently improves performance across all
cases by a noticeable margin. The performance improve-
ment is larger for detection due to better similarity cali-
bration across queries, which is demonstrated in Figure 4.
S2VS achieves the best separation between relevant and
non-relevant samples, compared with ViSiLf and DnS, with
the two distributions not significantly overlapping.

In addition, we evaluate our proposed approach on the
CC WEB VIDEO [78] dataset, but we do not provide de-
tailed results since the achieved performance is saturated.
The mAP performance is 98.6% / 97.5% / 99.6% / 99.5%
when trained with DnS-100K for the different versions as
listed in DnS paper [45]. They are on par or slightly better
than the competing methods.

Making FIVR harder: FIVR-200K contains a large
number of easy examples that dominate the estimation of
average performance, giving the impression that the task is
nearly solved due to the very high and almost saturated per-
formance. To mitigate this, we discard such easy examples
from the dataset to make it more challenging. In particular,
we remove all database videos that, as duplicate to a query,

Retrieval Detection

Appr. DSVR CSVR ISVR DSVD CSVD ISVD

ViSiLf [44] 52.3-36.6 49.4-35.4 43.3-28.9 16.0-50.9 14.0-45.5 11.1-34.8

DnS [45] 63.1-29.0 58.8-28.7 48.4-25.7 34.5-45.2 25.3-44.2 19.6-34.6

S2VS (Ours) 64.4-28.1 60.0-27.8 47.1-26.8 52.5-36.7 42.6-37.7 35.0-29.9

Table 2. Retrieval mAP (%) and detection µAP (%) comparison on
FIVR-200KH, which is harder than the original FIVR-200K due
to easy video removal. Bold indicates the best approach. Red sub-
scripts indicate the performance drop in comparison to the original
FIVR-200K.

are ranked in a position of perfect precision, i.e., before all
negatives, by ViSiLf , DNS, and S2VS. This process results
in 4,828 videos identified as easy database examples, which
is almost 40% of the total videos labeled as relevant to any
query. We denote the harder version as FIVR-200KH.

Table 2 presents results for the harder version and the dif-
ferences compared to the original version in Table 1. Com-
pared with the initial results, the performance significantly
drops, with the difference ranging from ≈25% up to 36%
of mAP for retrieval and ≈30% up to 50% of µAP for de-
tection. Our approach achieves very similar performance to
DnS in the three retrieval tasks with a difference of about
1.3-1.8%, but with a substantial difference of up to 12%
from the baseline. The performance gap is much larger in
the case of detection. The proposed method surpasses the
other two by a clear margin of more than 15% from the sec-
ond best for all tasks, highlighting its effectiveness even in
challenging settings.

Similarity normalization: To delve further into the
detection performance comparison, we apply similarity
normalization [59], initially proposed for image copy detec-
tion, on top of all approaches. For each query video, the top-
k neighbors in a background set are estimated. Then, their
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Figure 5. Detection performance measured via µAP with similar-
ity normalization for varying values of k for top-k neighbors. The
average performance over the three subtasks is reported on FIVR-
200K. Dashed lines indicate performance without normalization.

similarity to the query is averaged to form the query’s bias
term, which is subtracted from the initial similarities. This
impacts the global ranking of video pairs, as each query in
the dataset has a different bias term. In this experiment, we
use the DnS-100K as the background set and calculate the
bias term based on the average similarity of the top-k neigh-
bors. Figure 5 presents the results with and without similar-
ity normalization. All methods benefit from a wide range of
k on VCDB and FIVR-200K, but only for very large values
on EVVE, while the baseline benefits the most as there is
more space for improvements. Our method achieves the
best performance after normalization too. Nevertheless, k
needs to be tuned independently per test set, which is a ma-
jor drawback. Therefore, the good detection performance
of our approach, even without normalization, is important.

5.2. Ablation study

We perform ablations for different augmentation types
and loss functions. For further ablations, we point readers
to the supplementary material.
Impact of augmentations: Table 3 presents the perfor-
mance of the proposed approach for different training
augmentation strategies. Each newly added augmentation
gives a performance boost, while performance improves by
a large margin compared to no use of strong augmentations.
We conclude that the variety and diversity of the augmen-
tations are the key ingredients for high performance.
Impact of Lsshn loss: Table 4 reports the mAP and µAP of
our method trained with and without the proposed Lsshn
loss. It is evident that without the use of the proposed
loss, the network does not work effectively. In all evalu-
ation cases, the performance difference is a least 3%, with
the most notable discrepancies on detection runs where it
reaches almost 10% on VCDB. This highlights that the pro-
posed loss is necessary for the effective training of such a
video similarity network.
Label supervision vs self-supervision: Table 5 presents
the results of our approach while positives and negatives are
drawn from VCSL, which is an annotated dataset. For this
supervised variant, the same losses and augmentations are
used except for the video-in-video because we found several

Retrieval Detection

Augmentations VCDB FIVR EVVE VCDB FIVR EVVE

no strong aug. 88.8 78.5 50.6 79.8 66.9 65.5
+ global trans. 94.3 83.4 59.5 89.5 74.7 76.3
+ frame trans. 95.1 86.2 64.1 90.0 79.8 76.1
+ temporal trans. 95.2 86.5 64.8 89.9 80.8 76.8
+ video-in-video 95.2 87.0 65.9 90.1 81.7 78.9

Table 3. Retrieval mAP (%) and detection µAP (%) of S2VS with
different augmentation strategies.

Retrieval Detection

Lsshn VCDB FIVR EVVE VCDB FIVR EVVE

✗ 89.2 81.6 62.6 80.3 72.3 75.4
✓ 95.2 87.0 65.9 90.1 81.7 78.9

Table 4. Retrieval mAP (%) and detection µAP (%) of S2VS with
and without Lsshn loss.

Retrieval Detection

Train Dataset VCDB FIVR EVVE VCDB FIVR EVVE

Sup. VCSL 92.4 83.8 64.0 85.6 72.7 73.5
SSL DnS-100K 95.2 87.0 65.9 90.1 81.7 78.9
SSL VCDB (D) - 87.3 67.2 - 78.1 80.7

Table 5. Retrieval mAP (%) and detection µAP (%) for the pro-
posed method with self-supervision on two different datasets and
a variant that uses labeled positives and negatives.

such cases in the annotated pairs of VCSL. During batch
construction, we make sure that the selected video segments
for the positive videos overlap with the dataset ground truth.
With our SSL training scheme, the model achieves signifi-
cantly better results, especially for detection, where it out-
performs the supervised counterpart by a margin of up to
9%. This highlights the need for a large and diverse dataset
to effectively train these video similarity learning models.

6. Conclusions
In this paper, we propose a self-supervised learning ap-

proach for training video similarity networks. Eliminating
the need for labels allows us to train on large-scale video
corpora, which, together with a diverse set of video aug-
mentations, form the key ingredient for achieving top per-
formance. The obtained single model is evaluated on sev-
eral target retrieval and detection tasks. It manages to per-
form on par or outperform existing models that exploit la-
beled datasets, especially for detection due to better simi-
larity calibration across queries.
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