
Improving Cross-Domain Detection with Self-Supervised Learning

Kai Li1, Curtis Wigington2, Chris Tensmeyer2, Vlad I. Morariu2,
Handong Zhao2, Varun Manjunatha2, Nikolaos Barmpalios2, Yun Fu3

1NEC Labs, America, 2Adobe Inc., 3Northeastern University
kaili@nec-labs.com,yunfu@ece.neu.edu

{wigingto,tensmeye,hazhao,barmpali,morariu,vmanjuna}@adobe.com

Abstract

Cross-Domain Detection (XDD) aims to train a domain-
adaptive object detector using unlabeled images from a tar-
get domain and labeled images from a source domain. Ex-
isting approaches achieve this either by transferring the
style of source images to that of target images, or by align-
ing the features of images from the two domains. In this pa-
per, rather than proposing another method following the ex-
isting lines, we introduce a new framework complementary
to existing methods. Our framework unifies some popular
Self-Supervised Learning (SSL) techniques (e.g., rotation
angle prediction, strong/weak data augmentation, mean
teacher modeling) and adapts them to the XDD task. Our
basic idea is to leverage the unsupervised nature of these
SSL techniques and apply them simultaneously across do-
mains (source and target) and models (student and teacher).
These SSL techniques can thus serve as shared bridges that
facilitate knowledge transfer between domains. More im-
portantly, as these techniques are independently applied in
each domain, they are complementary to existing domain
alignment techniques that relies on interactions between
domains (e.g., adversarial alignment). We perform exten-
sive analyses on these SSL techniques and show that they
significantly improve the performance of existing methods.
In addition, we reach comparable or even better perfor-
mance than the state-of-the-art methods when integrating
our framework with an old well-established method.

1. Introduction
Powered by deep learning, the task of recognizing and

localizing objects of interest in a scene, i.e., object de-
tection, has been tremendously advanced in recent years
[14, 15, 17, 36, 40–43]. While a deep learning based object
detector may have impressive performance on data within
the same distribution as the data the detector was trained
on, its performance often drops significantly when tested
on data drawn from a different distribution. This is the so-

called domain shift problem.
Cross-Domain Detection (XDD) addresses the domain

shift problem by jointly training a detector with unlabeled
data from the domain of interest (target domain) and labeled
data from an auxiliary domain (source domain) [6]. By
aligning the distributions of the two domains during train-
ing, the label supervision from the source domain becomes
more shareable to the target domain and hence a detector of
enhanced generalizability can be obtained.

Various approaches have been proposed to align do-
main distributions. The first category of approaches fo-
cus on feature alignment where images from both domains
are fed to a detection network and are aligned with fea-
ture maps at different levels or extracted region propos-
als [6, 19, 22, 23, 33, 35, 47, 53, 58, 61]. Adversarial learn-
ing is often used for the alignment. The second category
of approaches are based on pseudo-labeling where the step
of pseudo-label prediction and the step of model calibration
are executed iteratively [24,26,27,45]. The third category of
approaches transforms the source images to the style of the
target images via generative models [24,28]. Then, domain
alignment turns easier with image of similar style.

In this paper, rather than proposing another method that
falls into the existing categories, we propose to address
XDD in an orthogonal way by proposing a new frame-
work complementary to existing methods. Our framework,
dubbed ATMT1, adapts and unifies some popular Self-
Supervised Learning (SSL) techniques. ATMT takes advan-
tage of the favorable property of these SSL techniques that
requires no ground truth labels, and applies the SSL tasks si-
multaneously across domains and models. The shared SSL
tasks thus push data from both domains towards common
spaces, which mitigates domain shifts.

Specifically, ATMT learns two auxiliary tasks, the Ro-
tation Prediction (RP) task and the Consistency Learning
(CL) task, in parallel with the XDD learning task. The RP
task trains the model to predict the rotation angle correctly

1Short for Auxiliary Tasks and Mean Teacher modeling, which feature
the key techniques.
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for images, based on the extracted region proposals. This
encourages the model to focus on foreground regions for
extracting region proposals as background regions usually
lack semantics sufficient to predict the rotation angles. The
CL task optimizes the model to make consistent class pre-
dictions for the region proposal under various image per-
turbations, and thus encourage the model to be robust to
changes in the image space. As the image perturbations
simulate factors that account for domain shifts, training the
detector to overcome them and make consistent predictions
enhances cross-domain generalizability. As both auxiliary
tasks do not require detection labels and can be applied on
images from both domains indiscriminately, learning the
two tasks in both domains hence helps push images from
different domains to shared spaces, and thus mitigates do-
main shifts. In some sense, these tasks serve as the shared
bridges between domains, helping the detector overcome
the domain gap.

With the enhanced detector learned with the auxiliary
tasks, we further boost the performance with a novel mean
teacher technique which includes a student and a teacher
model with identical architecture [10, 51]. To train the
student, we let the teacher and student take different aug-
mented views of the same target image, but requiring their
detection outputs to be consistent. The teacher is updated
as the Exponential Moving Average (EMA) weights of the
student, and therefore can be viewed as an ensemble of the
student in different time steps, and ensemble models have
shown have better generalization [25].

Our contributions can be summarized as follows:

• We propose the ATMT framework which addresses
XDD from a new perspective orthogonal to existing
methods. Though each part of ATMT is not fundamen-
tally new, we are the first to introduce and unify them
to address the XDD problem in a complementary way
that results in a highly effective and flexible frame-
work. So, our major technical contribution is rather
than any individual part, but the whole framework.

• We conduct extensive analyses on ATMT, providing
insights on each component and discuss the design
choices to the XDD task. We believe this can inspire
future researches. In addition, we reach comparable
or even better results than the state-of-the-art meth-
ods by integrating ATMT with an old well-established
method.

• We make unique modifications on existing techniques
to adapt them for XDD. Most techniques incorporated
in ATMT are originally applied on whole images; we
apply them on region proposals, which fits the detec-
tion task. We further propose to address the hetero-
geneity of the different tasks by sharing the same set
of region proposals across different tasks.

2. Related Work
Cross-domain detection. Previous work in Cross-Domain
Detection (XDD) addresses the domain shift problem by
aligning the features or region proposals from the source
and target domains [4, 6, 18, 19, 22, 23, 32, 34, 35, 47, 53,
58, 59, 61]. The alignment is often achieved by adversarial
training where domain classifiers predict the domains of the
pixels/images/proposals, while the detection model aims to
deceive the classifiers. Another line of approaches trains
the models iteratively by alternatively executing a pseudo
label generation step from target images and a model updat-
ing step using the generated pseudo-labels [24, 26, 27, 45].
Different methods vary in the techniques for generating the
pseudo-labels or updating the model. Some methods en-
hance the adaptation performance by improving the input
images. They usually use images from both domains to
train a style-transfer model, e.g., CycleGAN [60], which
is then used to translate source images to the style of tar-
get images [24, 28]. As the image style difference narrows,
adapting label supervision from the source domain to the
target domain becomes easier. We address XDD in a per-
spective orthogonal to the existing methods by learning aux-
iliary tasks simultaneously in both domains and by the mean
teacher model.
Self-supervised learning. Self-Supervised Learning (SSL)
aims to use the data itself as supervision in a pretext task
where the model can learn to extract informative represen-
tations from unlabeled data. Early efforts focus on de-
signing various pretext tasks including image colorization
[31, 56, 57], image rotation prediction [13], spatial context
prediction [11], solving jigsaw puzzles [38], image inpaint-
ing [39], and contrastive learning [5, 16]. A comparison of
some of these approaches can be found in [29]. It shows that
the simple image rotation prediction task has shown promis-
ing results. SSL has also been introduced to address the
domain adaptive classification problem [46, 50, 54] where
SSL is used as an auxiliary task jointly trained along with
the main alignment tasks. We follow this idea but focus on
the detection problem instead. Thus, rather than performing
SSL tasks with entire images, we apply it on region propos-
als. To our best knowledge, this is the first use of SSL to
address the XDD problem.
Consistency learning Consistency learning regularizes
model predictions to be invariant to moderate changes ap-
plied to input examples. It has been a popular technique
in recent semi-supervised learning literature [1, 2, 48, 52].
Different consistency training methods vary the techniques
of performing data perturbations or the consistency losses.
Some methods perturb images by compositing various im-
age transformation techniques, including translation, flip-
ping, shearing, adding noise, rotation, stretching, etc. [1,
9, 12]. [2] proposes to use MixUp [55] by performing lin-
ear interpolation between the samples to generate virtual
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Figure 1. Illustration of the proposed framework. Our framework augments an existing XDD detector at training time with two additional
tasks for rotation prediction (Lrp) and consistency learning (Lcl) which improve performance on the target domain. The domain alignment
module (e.g., adversarial alignment) of the XDD detector is omitted for clarity.

samples. Learning based augmentation approaches were
also proposed, e.g., AutoAugment [8] and population based
augmentation [21] which employ reinforcement learning to
search for the most effective combinations of transforma-
tions. We adopt consistency learning from semi-supervised
learning to address the domain shift problem for object de-
tection. While existing methods apply the consistency con-
straint in image level, we enforce it on the region proposals.

3. Algorithm

Given a labeled dataset {Xs,Ys} from the source domain
and an unlabeled target datasetXt, Cross Domain Detection
(XDD) learns an object detector under the following learn-
ing framework:

L = Ldet(Xs,Ys) + αLuda(Xs,Xt), (1)

where Xs and Xt are the images, Ys denotes the labels
which specify the locations and categories of the objects,
and α is a hyper-parameter. The first term Ldet(Xs,Ys)
is the standard supervised learning objective for object de-
tection. It includes the classification objective and bound-
ing box regression objective using labeled images from the
source domain. The second term Luda(Xs,Xt) is the unsu-
pervised domain alignment objective that aims to align the
distributions of the source and target domains. It is unsuper-
vised in the sense that it works without the need of ground
truth detection labels. The main effort of existing methods
is to devise an effective Luda(Xs,Xt) (as well as the sup-
porting model architectures).

Rather than replacing Luda(Xs,Xt) in Eq. (1) with an-
other more effective one, we inherit it but boost it from two
orthogonal perspectives. First, we append the learning ob-
jective with two more terms which correspond to two dif-
ferent auxiliary tasks (Sec. 3.1). Second, after learning the
detection model with the enhanced learning objective, we
further boost it with a mean teacher model (Sec. 3.3).

3.1. Domain Alignment with Auxiliary Tasks

We propose to train two auxiliary tasks that are applica-
ble to both the source and target domains to bridge the do-
main gap. The first one is the region proposal based image
rotation prediction task which rotates an image and predicts
the image rotation angle from the region proposals extracted
from the unrotated image. The second task is the consis-
tency learning task where the model is trained to make con-
sistent classification predictions for the same set of region
proposals within an image and its strongly augmented ver-
sion. Figure 1 illustrates the framework.

3.1.1 Proposal-Based Rotation Angle Prediction

Training a model to predict the rotation angle of a given im-
age was proposed in [13] for self-supervised learning. It is
based on the intuition that a model can predict the rotation
angle correctly if it has a deep understanding of the given
image, including localization of salient objects, their ori-
entation, the object type, etc. This inspires us to leverage
this task to address the XDD problem because it does not
require manually annotated labels, which suits the unsuper-
vised domain adaptation setting well, and it helps localize
salient objects and identify the object type, which is exactly
the goal of object detection.

A straightforward way of exploiting this task is to learn
the rotation prediction task jointly with the detection task
by rotating the input image and training the model to pre-
dict the rotation angle from the feature representation of
the given image. This is how this task is utilized for the
classification problem [30, 49, 50, 54]. However, this prac-
tice is suboptimal for the detection problem because images
used for detection are often much more complex, containing
more salient objects in backgrounds with richer contexts.
It may be too difficult for the model to learn a global rep-
resentation for the whole image that encodes the essential
information for all the salient objects.

Our insight is that classification and detection can be uni-
fied in the region proposal level: a region proposal, once
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Figure 2. Predicting image rotation angle based on region propos-
als can help localize foreground regions.

extracted from a large scene, can be viewed as a single-
object image typically used for classification. Based on this
insight, we propose to predict the rotation angle from the
region proposals. This practice has two merits. First, it
encourages the detection model to extract region proposals
from the foreground since the foreground contains semantic
information that is essential to predict the rotation angle. As
shown in Figure 2, it is easy to tell the rotation angle from
the car region, while hardly possible from the road region.
Training the model to predict the rotation angle correctly
encourages it to extract region proposals from foreground,
which benefits the detection task. Second, this enhances the
feature alignment of foreground regions as the model will
activate more on the foreground regions and thus contribute
more when aligning features from the two domains.

Formally, given a source image s ∈ Xs, we obtain
sr = Rot(xs) by rotating s with an random angle θs from
[0◦, 90◦, 180◦, 270◦]. From sr, we extract a set of region
proposals Rs with the same rotation angle θs. Similarly,
we can get a set of region proposals Rt with the same ro-
tation angle θt for every target image t ∈ Xt. We align the
domains by applying the rotation prediction task simultane-
ously on the two domains. Thus, our learning objective for
this task is as follows:

Lrp(Xs,Xt) = 1
|Xs||Rs|

∑
s∼Xs

∑
rs∼Rs

L(rs, θs)+
1

|Xt||Rt|
∑

t∼Xt

∑
rt∼Rt

L(rt, θt),
(2)

where L(rs, θs) and L(rt, θt) are the cross-entropy losses
for the source and target proposals, respectively.

3.1.2 Proposal-Based Consistency Learning

Consistency learning regularizes model predictions to be
invariant to moderate changes applied to input examples.
It has shown impressive performance for semi-supervised
learning [7, 37, 48, 52] recently. Based on the insight that

unsupervised domain adaptation is a special case of semi-
supervised learning where the unlabeled data is drawn from
a different data distribution due to the domain shift, we pro-
pose to use consistency learning to address the XDD prob-
lem. Same as the rotation prediction task, we apply consis-
tency learning on region proposals.

For each source image s ∈ Xs, we apply data augmenta-
tion Φ and generate

ŝ = Φ(s). (3)

Following the previous methods [1, 48], we use RandAug-
ment [9] as the data augmentation Φ, which produces highly
perturbed images by uniformly sampling from the image
processing transformations in Python Image Library, in-
cluding polarization, solarization, brightness change, color
change, etc. For ease of implementation, we exclude
the transformations that change the positions of pixels
(e.g., flipping, rotation, etc.). This ensures s and ŝ have
pixel-to-pixel correspondence for every position. However,
our framework could also work with transformations that
change the position of pixels as long as the region propos-
als in the original image can be converted to the coordinates
of the transformed image.

We map region proposals Rs (shared with the rotation
prediction task) extracted from s to ŝ, obtaining R̂s. This
ensures that every region proposal rs ∼ Rs from s can find
the corresponding r̂s ∼ R̂s from ŝ that localizes the same
region in the scene. So, the pair of corresponding region
proposals should be classified consistently by the classifica-
tion branch of the detection model.

We enforce this consistency by optimizing the following
objective function:

Lscl =
1

|Rs|
∑

rs∼Rs,r̂s∼R̂s

[
1(max(ps) ≥ σ)H(p′s, p̂s)

]
,

(4)
where ps and p̂s are the classification probabilities of pro-
posals rs and r̂s, respectively. H(., .) calculates the cross-
entropy and p′s = arg max(ps) returns a one-hot vector
for the prediction probability; max(ps) indicates the high-
est possibility score.

In essence, we enforce consistency of the class predic-
tions for a pair of corresponding region proposals (rs, r̂s)
by computing a pseudo label from rs and apply the pseudo
label on ŝ with the standard cross-entropy loss. To alleviate
the negative effect of incorrect pseudo labels, we only select
the confident samples that the highest probability scores are
above a threshold.

We apply the same consistency learning task for every
target image t ∈ Xt as well. So, the learning objective for
the consistency learning task is as follows:

Lcl(Xs,Xt) =
1

|Xs|
∑

s∼Xs

Lscl +
1

|Xt|
∑
t∼Xt

Ltcl. (5)
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Algorithm 1. Domain alignment with auxiliary tasks.
Input: Source set {Xs,Ys} and target set Xu.
Output: Domain adaptive detector.
while not done do

1. Randomly sample (s, ys) ∼ {Xs,Ys} and t ∼ Xu.
2. Rotate s and get (sr, θs) = Rot(s); rotate t and get

(tr, θt) = Rot(t); augment s and get ŝ = Φ(s);
augment t and get t̂ = Φ(t).

3. Feed-forward (s, sr, ŝ, t, tr, t̂) to the model.
3. Calculate the detection loss and unsupervised domain

alignment loss in Eq. (1) using (s, ys) and t.
4. Calculate the rotation prediction loss in Eq. (2)

using (s, θs) and (t, θt).
5. Calculate the consistency learning loss in Eq. (5)

using (s, ŝ) and (t, t′).
6. Back-propagate the loss in Eq. (6).

end while

There are several merits of learning the above consis-
tency learning task for the XDD problem. First, it intro-
duces a form of consistency regularization that enforces the
model to be insensitive to change in the image space, and
thus encourages the model to be stronger for detecting ob-
jects on target images. Second, we generate pseudo labels
for unlabeled target images and the pseudo labels share the
same label space as the labeled source images. This ben-
efits for label propagation from the labeled source domain
to the unlabeled target domain. Third, we augment images
with RandAugment [9], which applies various image pro-
cessing transformations. These transformations and their
combinations can model a wide range of factors that cause
domain shifts. By training the detection model to be resis-
tant to these factors, the generalizability of the model is thus
enhanced.
Integrated learning objective Adding the learning objec-
tives for the two tasks upon Eq. (1), we get our final learning
objective as:

L = Ldet(Xs,Ys) + αLuda(Xs,Xt)+
λ1Lrp(Xs,Xt) + λ2Lcl(Xs,Xt)

(6)

where λ1 and λ2 are the hyper-parameters. Algorithm 1
outlines the main steps for this learning stage.

3.2. Discussions

Why do the auxiliary tasks help? The auxiliary tasks
and detection task share the same image/proposal represen-
tations; by aligning the representations close in the auxil-
iary task spaces shared by both domains, we can get well-
aligned representations and thus the decision boundaries
learned from the source domain can generalize better to the
target domain. As will be shown in the experiments (Table
2), applying the auxiliary tasks in both domains simultane-
ously reaches much better performance than that applying
these tasks in the source domain alone.

What’s unique of applying the auxiliary tasks? Both
tasks are originally applied for entire images, here we ap-
ply them on region proposals, which suits better for detec-
tion. As will be shown in the experiments (Table 3), the
proposal-based strategy leads to better performance than the
naive image-based strategy. Besides, we address the hetero-
geneity of different tasks (the main detection task, and the
two auxiliary tasks) by sharing the same set of proposals
extracted in the original images. Moreover, we apply on
images from both domains with RandAugment which in-
cludes various image transformations. The combinations
of these transformations model a wide range of factors that
cause domain shifts. Training the model to be resistant with
these factors thus encourages it to extract domain-invariant
features across domains. As will be shown in the experi-
ments (Table 4), the strong augmentation technique makes
the CL task more effective.
Why not other auxiliary tasks? Rotation prediction and
contrastive learning2 are the two most popular SSL tasks.
Other SSL tasks might help as long as they are executed
simultaneously in both domains. However, some auxiliary
tasks, e.g., Jigsaw Puzzles [38], that change the structure
of images shall not fit because objects might be fragmented
and unable to be detected.

3.3. Domain Alignment with Mean Teacher

Let h be the cross-domain model (the rotation prediction
head was dropped off) learned with Eq. (6). We further pro-
pose to enhance h with a mean teacher model. We first use
h to initialize the teacher model ht and the student model hs
that have identical architecture with h. For each unlabeled
target image t ∈ Xt, we generate a strongly augmented view
t̂ = Φ(t). We feed t to the teacher model and generate a set
of region proposals Rt, and get the corresponding classifi-
cation probabilities Pt and bounding box regression offsets
Ot after feeding Rt to the ROIhead. Similarly, we feed t̂
to the student model, but instead of generating region pro-
posals again, we reuse Rt and produce the classification
probabilities P̂t and bounding box offsets Ôt in the context
of t̂. Then, we back-propagate the following loss to train
the student model,

Lmtm = Ldet(Xs,Ys) + λ3Lmt(Xt), (7)

where the first term is the standard object detection loss us-
ing label source images. The second term is defined as

Lmt(Xt) =
1

|Xt||Rt|
∑
t∼Xt

∑
rt∼Rt

DKL(p̂‖p) + ‖ô− o‖2,

(8)
where p ∈ Pt and p̂ ∈ P̂t are the classification probabilities
produced by the teacher and student, respectively, with the

2Our consistent learning based technique can be viewed as a special
case of contrastive learning that without using negative pairs [44].
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Algorithm 2. Domain alignment with mean teacher.
Input: Pretrained object detector h, source set {Xs,Ys}

and target set {Xu}.
Output: Teacher model ht and student model hs.
1. Initialize student model hs = h and teacher model ht = h.
while not done do

while not done do
2. Randomly sample (s, ys) ∼ {Xs,Ys} and t ∼ Xu.
3. Apply strong augmentation Φ and get ŝ = Φ(s)

and t̂ = Φ(t).
4. Produce region proposalsRt on t using ht, and get

the corresponding classification probability Pt

and the bounding box regression offset Ot.
5. Get the classification probability P̂t and the bounding

box regression offset Ôt of proposalsRt using
hs on t̂.

6. Train hs by back-propagating the loss in Eq. (7).
end while
7. Update ht using Eq. (9).

end while

proposal rt ∈ Rt; Similarly, o ∈ Ot and ô ∈ Ôt are the
regression offsets produced by the teacher and the student.
DKL calculates the KL divergence.

Following the standard practice of mean teacher model-
ing, the teacher ht is updated by the student hs with expo-
nential moving average (EMA) [51].

ht = ηht + (1− η)hs, (9)

where η is the coefficient we set as η = 0.999.
Algorithm 2 outlines the steps for training the mean

teacher model.

4. Experiments
Datasets. Following the previous methods [6, 47], we con-
duct experiments on the following three common bench-
marks: (1) adaptation from PASCAL VOC to Clipart,
(2) adaptation from PASCAL VOC to Watercolor, and (3)
Cityscape to Foggy Cityscape. We use ResNet-101 for the
first two benchmarks and VGG-16 for the last benchmark
as the backbones and pretrain the backbones on ImageNet.
Implementation details. Our ATMT framework can serve
as a plug-and-play component to existing XDD methods.
To make fair comparison, we keep the architecture and
experimental settings unchanged when integrating ATMT
with existing methods. Here we only introduce the designs
specific to ATMT. When using VGG-16 as the backbone,
the rotation prediction branch is structurally identical to the
last three FC layers in the standard VGG-16 network, ex-
cept the output dimension of the last FC layer is 4. When
ResNet-101 is used as the backbone, we use a lighter archi-
tecture for the rotation prediction branch to save GPU mem-
ory. The structure is “Conv3→ ReLU→ Conv1→ ReLU”.

We use mean pooling over the output feature map to get a
vector representation for each proposal, which is then used
for rotation prediction. To train the mean teacher model, we
adopt the same setting as that of the stage of training with
auxiliary tasks. We set the hyper-parameters λ1 = 0.1 and
λ2 = 0.1 in Eq. (6)3, and λ3 = 10 in Eq. (7) for all our
experiments. For the threshold σ in Eq. (4), we set it as
σ = 0.8 for all our experiments.

4.1. Integrating ATMT with existing XDD methods

ATMT is orthogonal to various existing domain align-
ment techniques and is expected to further enhance the
performance when it is integrated with existing XDD
methods. To verify this, we implement ATMT on top
of two most well-established XDD models, DAF [6] and
SWDA [47]. Note other more recent XDD methods could
also potentially benefit from our ATMT framework; we
leave this as a future work and only verify the effective-
ness on the well established methods. In addition, as will
be shown later, ATMT is able to achieve state-of-the-art
performance even with these “old and less-advanced”
methods. As a baseline, we also report the result of in-
tegrating ATMT on the source-only model which does not
include any domain alignment technique, i.e., without using
the second term in Eq. (6).

Table 1 shows the experimental results for the adaptation
from Cityscape to Foggy Cityscape. We can see that ATMT
significantly improves performance of existing XDD meth-
ods: It raises the Source-only model from 18.8 to 32.7, DAF
from 31.9 to 36.6, and SWDA from 34.3 to 38.8, for the
mAP, respectively. The ablation study also substantiates the
effectiveness of both auxiliary tasks and the mean teacher
technique.

It is noted that classes response differently to the pro-
posed techniques, i.e, the AP scores of some classes in-
crease while others decrease after adding the proposed tech-
niques. We analyze the reason could be that due to the ap-
plication of the Non-Maximum Suppression (NMS) oper-
ator, which reduces overlapped proposals, object detection
results are often a trade-off among all classes. The pro-
posed technique recalibrate the feature space and decision
boundaries for all classes as a whole. Classes that benefit
more from them may warp the feature space to the detri-
ment of other classes. Additionally, pseudo-labels may ben-
efit classes unequally if the per-class pseudo-label accuracy
varies greatly.

4.2. Analysis

We conduct experiments to analyze ATMT with the
adaptation from Cityscape to Foggy Cityscape, unless oth-
erwise specified.

3The hyper-parameter α is not introduced by our framework. It varies
in different XDD methods. We keep it unchanged.
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RP CL MT person rider car truck bus train mbike bicycle mAP

Source-only

17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
X 35.1 30.2 41.9 21.6 28.9 35.8 16.1 20.2 28.7

X 32.2 34.7 43.0 28.3 30.9 39.6 10.4 17.3 29.6
X X 35.8 33.9 44.1 24.2 31.6 40.1 19.8 20.0 31.2
X X X 34.7 36.9 44.2 24.4 29.6 40.0 30.7 20.7 32.7

DAF [6]

31.5 40.9 43.9 21.4 34.2 20.2 27.8 35.4 31.9
X 32.7 41.3 44.5 20.6 39.5 28.0 27.8 35.3 33.7

X 33.8 43.0 44.7 24.3 38.3 10.9 30.5 39.4 33.1
X X 34.2 47.1 49.0 25.1 37.7 13.4 33.9 38.9 34.9
X X X 36.1 46.6 51.9 27.5 41.9 15.6 32.7 40.2 36.6

SWDA [47]

29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
X 39.8 37.8 48.1 32.0 32.9 41.6 31.8 25.3 36.2

X 41.8 34.3 47.7 30.8 33.2 43.1 34.5 28.3 36.7
X X 47.6 35.0 49.4 33.8 33.6 44.5 31.8 28.3 38.0
X X X 44.7 37.6 51.1 34.0 34.0 46.7 35.1 27.1 38.8

Table 1. Integrating ATMT with existing XDD methods. “RP”, “CL”, and “MT” stand for the proposed rotation prediction task, the
consistency learning task and the mean teacher technique, respectively.

Cross entropy RP CL RP + CL
Source domain 18.8 20.3 25.0 25.8
Both domains - 28.7 29.6 31.2

Table 2. Effect of applying the auxiliary tasks on both domains.

SWDA SWDA + ImgRot SWDA + PropRot
mAP 34.3 34.6 36.2

Table 3. Rotation prediction based on entire images (ImgRot) ver-
sus that based on region proposals (PropRot).

mAP
Without CL 34.3

CL with flipped images 34.9
CL with strongly-augmented images 36.7

Table 4. Effect of strong augmentation for CL.

VOC→Clipart VOC→Watercolor Cityscape→Foggy Cityscape
Without MT 43.7 59.0 38.0
MT (normal) 44.0 59.5 38.1

MT (augmented) 45.2 60.2 38.8

Table 5. Effect of strong augmentation for MT.

Auxiliary tasks in one domain vs. both domains. Ta-
ble 2 shows that applying the auxiliary tasks only in the
source domain indeed helps improve the generalization per-
formance in the target domain. But the improvement is
much less significant than applying the auxiliary tasks in
both domains simultaneously. This is because the auxiliary
tasks push images from the two domains along the same
direction, which alleviates domain shifts.
RP with images vs. with proposals. One of the unique as-
pects of ATMT for the RP task is that it predicts rotation
angles based on region proposals, rather than entire images.
The merit is that this can encourage the model to extract re-
gion proposals from foreground regions and thus enhance
detection performance. To validate this, we implement
the image-based rotation prediction task and train SWDA
jointly with this task. Table 3 shows that the image-based
rotation prediction task (ImgRot) produces only a marginal
improvement, which is far lower than our proposal-based
rotation prediction task.
Mean Teacher (MT) without Strong Augmentation (SA).

0.001 0.01 0.1 1
Value

0

10

20

30

40

m
AP 1, when 2=0.1

2, when 1=0.1

Figure 3. Parameter analysis for
λ1 and λ2.

λ3 mAP
0.1 39.4
1.0 39.3
10 38.8
20 38.4
50 37.5

Table 6. Parameter analysis
for λ3.

In MT, we feed the student with images applied with SA.
Table 5 shows that if we feed the student with normal (un-
perturbed) images instead, the mAP scores drop, but are still
better than the baseline that without using MT. This sub-
stantiates the efficacy of MT as well as SA.
Consistency Learning (CL) without SA. The core idea of
CL is to enforce the consistency of the different views of
the same image. We use the original image as one view and
the strong augmentation to generate the other view. Table 4
shows that if we use the standard augmentation technique,
i.e., image flipping, to generate the other view instead, the
mAP drops and is only slightly better than the baseline re-
sult that without CL. This shows that CL is more effective
when the two views of an image are more different.
Parameter analysis. In the phase of alignment with the
auxiliary tasks, we have two hyper-parameters, λ1 and λ2
that balance the two task losses. Fig. 3 shows the results
ATMT-SWDA (ATMT on top of SWDA) is quite robust
with λ2, but is more sensitive to λ1 and the performance
drops to 0 when λ1 equals 1. This is because the model fails
to converge when the rotation prediction loss is weighted
too much. In the phase of alignment with the mean teacher
model, we have λ3 that balances the detection loss and the
mean teacher loss. Table 6 shows that ATMT-SWDA is not
sensitive to this hyper-parameter.
Visualized results. Figure 4 shows some detection sam-
ples from the Clipart dataset using the ATMT-SWDA. As
a comparison, we also show the detection results of SWDA
on the same images. We can see from the figure that ATMT-
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aero bike bird boat bot bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
Source-only 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8
DAF [6] 26.0 58.3 24.0 23.0 28.1 44.5 29.4 10.4 32.0 39.0 17.5 15.9 31.1 58.2 49.3 44.0 19.1 19.0 30.6 43.0 32.1
SWDA [47] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
HTCN [4] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
DDMRL [28] 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8
ATF [20] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1
DBGL [3] 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6
UMT [10] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
ATMT-SWDA 37.5 63.4 37.9 29.8 45.1 62.7 41.2 19.5 43.7 57.4 22.9 25.3 39.6 87.1 70.9 50.6 29.1 32.2 58.4 50.5 45.2

Table 7. Results on adaptation from PASCAL VOC to Clipart.

bike bird car cat dog person mAP
Source-only 68.8 46.8 37.2 32.7 21.3 60.7 44.6
DAF [6] 89.6 45.3 37.5 25.5 24.4 47.9 45.0
SWDA [47] 82.3 55.9 46.5 32.7 35.5 66.7 53.3
WST-BSR [27] 75.6 45.8 49.3 34.1 30.3 64.1 49.9
MAF [19] 73.4 55.7 46.4 36.8 28.9 60.8 50.3
ATF [20] 78.8 59.9 47.9 41.0 34.8 66.9 54.9
DBGL [3] 83.1 49.3 50.6 39.8 38.7 61.3 53.8
UMT [10] 88.2 55.3 51.7 39.8 43.6 69.9 58.1
ATMT-SWDA 88.8 57.7 49.5 44.2 48.4 72.2 60.2

Table 8. Results on adpatation from PASCAL VOC to Watercolor.

person rider car truck bus train mbike bicycle mAP
Source-only 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
DAF [6] 31.5 40.9 43.9 21.4 34.2 20.2 27.8 35.4 31.9
DAF∗ [6] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SWDA [47] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
SC-DA [61] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
MAF [19] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
DAM [28] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
GA-CA [22] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
ECR-DAF [53] 29.7 37.3 43.6 20.8 37.3 12.8 25.7 31.7 29.9
ECR-SWDA [53] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
PDA [23] 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9
RPN-PA [58] 43.6 36.8 50.5 29.7 33.3 45.6 42.0 30.4 39.0
HTCN [4] 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
UMT [10] 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
ATMT-SWDA 44.7 37.6 51.1 34.0 34.0 46.7 35.1 27.1 38.8

Table 9. Results of adapting Cityscapes to Foggy Cityscapes.
“DAF∗” indicates the results reported in the paper, while “DAF”
represents the reimplemented results.

SWDA produces fewer false negatives (real objects but not
detected) and false positives (objects detected but not real).

4.3. Comparison with the State-of-the-Art

To compare with state-of-the-art performance, we im-
plement ATMT on top SWDA [47] and get a method we
call ATMT-SWDA. It is worth noting that SWDA is an old
but well-established method in this field; its performance is
far behind the current state-of-the-art. While we integrate
ATMT with SWDA for ease of implementation, ATMT is
not limited it (as verified in Table 1). ATMT has the poten-
tial of integrating with more recent XDD methods and gets
performance better than integrating with SWDA.

Table 7, 8 and 9 show the results for the adaptation from
PASCAL VOC to Clipart, from PASCAL VOC to Watercolor
and from Cityscape to Foggy Cityscape, respectively. We
can see that ATMT-SWDA reaches comparable or even bet-
ter performance than most recent state-of-the-art methods,
even though SWDA is far behind the state-of-the-art. Re-

Figure 4. Detection results on Clipart (Left), Watercolor (Middle),
and Foggy Cityscape (Right) of SWDA [47] (Top) and ATMT-
SWDA (Bottom).

markably, the results show ATMT-SWDA is worse than the
state-of-the-art methods for the adaptation from Cityscape
to Foggy Cityscape, but better for the adaptation from PAS-
CAL VOC to Clipart, and from PASCAL VOC to Water-
color. We speculate the reason is that the adaptation from
Cityscape to Foggy Cityscape is easier than the other two
adaptation experiments, since the two domains are similar.
The existing state-of-the-art methods seem more competi-
tive to handle light domain shift, while the proposed ATMT-
SWDA is more capable of handling severe domain shift.

5. Conclusions
We introduce in this paper the ATMT framework which

augments existing XDD methods with self-supervised
learning techniques. The two auxiliary tasks, proposal
based rotation prediction and proposal based consistency
learning, are learned simultaneously with images from both
domains and thus push the domains towards shared spaces.
The enhanced model learned with the auxiliary tasks is fur-
ther boosted by the proposed mean teacher model, which
enhances generalizability by enforcing the consistency of
the outputs by the teacher model and the student models for
different views of the same unlabeled target images. Exper-
iments show that ATMT significantly improves the perfor-
mance of existing XDD methods and is able to boost perfor-
mance of an old well-established method to the level com-
parable or even better than the state-of-the-art.
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