In Defense of Structural Symbolic Representation for Video Event-Relation Prediction

Andrew Lu, Xudong Lin, Yulei Niu, Shih-Fu Chang
Columbia University
{ayl2148, xudong.lin, yn2338, sc250}@columbia.edu

Abstract

Understanding event relationships in videos requires a model to understand the underlying structures of events (i.e., the event type, the associated argument roles, and corresponding entities) and factual knowledge for reasoning. Structural symbolic representation (SSR) based methods directly take event types and associated argument roles/entities as inputs to perform reasoning. However, the state-of-the-art video event-relation prediction system shows the necessity of using continuous feature vectors from input videos; existing methods based solely on SSR inputs fail completely, even when given oracle event types and argument roles. In this paper, we conduct an extensive empirical analysis to answer the following questions: 1) why SSR-based method failed; 2) how to understand the evaluation setting of video event relation prediction properly; 3) how to uncover the potential of SSR-based methods. We first identify suboptimal training settings as causing the failure of previous SSR-based video event prediction models. Then through qualitative and quantitative analysis, we show how evaluation that takes only video as inputs is currently unfeasible, as well as the reliance on oracle event information to obtain an accurate evaluation. Based on these findings, we propose to further contextualize the SSR-based model to an Event-Sequence Model and equip it with more factual knowledge through a simple yet effective way of reformulating external visual commonsense knowledge bases into an event-relation prediction pretraining dataset. The resultant new state-of-the-art model eventually establishes a 25% Macro-accuracy performance boost.

1. Introduction

Event understanding has been thoroughly explored in the past decade [1, 6, 23, 27, 28, 31, 34, 38, 40, 46, 48, 49]. An event is typically represented as a verb (indicating the event type) and several arguments, each of which has a role name and associated entity. Researchers have been devoted to extracting events and labeling the argument roles [6, 23, 34, 38, 41, 42, 48] in vision, language, and multimodal domains. These event extraction and argument role labeling models build the foundation for higher level understanding of event-relations. Relations between events [2, 3, 10, 32, 39, 47] have been thoroughly studied in the language domain. A specific relation and event coreference have also been explored in the multimodal setting [6, 23]. However, video event-relation prediction is still a new and challenging task [38] requiring both good representations of video events and commonsense knowledge to reason between events.

Structural symbolic representation (SSR) [14, 16, 23, 25, 26, 43, 45, 50] has been widely adopted on various downstream tasks such as visual question answering [50], image captioning [45], and action recognition [16] for its high interpretability and generalization ability [25, 26, 43, 50]. In this work, we refer to SSR as representations consisting of discrete tokens organized with certain structures. When applied to event-relation prediction, it is usually formulated as an event type (verb) with associated argument role names and corresponding entities. This event-argument SSR has been very effective in predicting event relations in the language domain [8]. However, SSR-based models for video events are easily biased by the dominant relations in the VidSitu dataset [38] and predict the dominant class for all classes, which contradicts the success of existing SSR-based methods on various tasks including event-relation prediction using text.

To answer why SSR-based models fail on video event-relation prediction, we first analyze if there are any possible patterns that the model could have leveraged to avoid being misled (Sec. 4.2). We discover that even if the model only memorizes the dominant relation for pairs of event types, the model is clearly not supposed to predict only Enables (the most frequent relation in the VidSitu dataset [38]). Based on this finding, we bootstrap the failed SSR-based model and the state-of-the-art model [38] with two simple processes: utilizing a balanced training data/objective and...
2. Related Work

Visual Event Understanding aims to recognize, extract, and structure the actions or activities happening in images or videos. Previous studies simply represent visual events as verbs or subject-verb-object triplets [5, 7, 11, 17, 24, 38]. Recent research studies structural and semantic representations of visual events from image-text and video-text pairs such as M2E2 [23] and VideoM2E2 [6]. Importantly, the visual situation recognition task aims to identify not only the activity in an image [34, 48] or video [38], but also the entities including persons and objects (i.e., semantic roles) associated with the activity. Another benchmark, VisualCOMET [33], proposes to depict person-centric images as a graph of commonsense descriptions, including before-event, intent of people, and next-event. Our work focuses on the video event-relation prediction task and investigates the roles of event type, argument roles, and video features in relation prediction. We also explore using VisualCOMET as an external visual knowledge base for pretraining.

Structural Symbolic Representation (SSR) denotes the representation consisting of discrete tokens with certain structures. SSR has been applied in various tasks in computer vision and natural language processing (NLP). For instance, the visual scene in visual question answering can be modeled as the structural representations of objects with their associated attributes and locations [50]. For event representation, spatio-temporal scene graphs [16, 37] decompose each event as a temporal sequence of spatial scene graphs. Recent NLP studies show the potential of SSR in event-relation prediction in text, e.g., part-of-speech (POS) and XML tags [8]. In this work, we follow VidSitu [38] to represent each video event as event type/verb and its associated argument roles and entities.

Event-relation Prediction in both Text and Video. Events in texts are often ordered by temporal relation [4], causal relation [30], or narrative order [15]. Hong et al. [12] define event-relations in text as 5 main types, along with 21 sub-types, covering inheritance, expansion, contingency, comparison, and temporality. As the only available video event-relation dataset in cross-document event-relations, VidSitu [38] defines four types of relations: no relation, causality, enabled, and reaction-to. Here, we follow the same definition for video event-relation prediction.

3. Technical Approach

3.1. Preliminaries

Structural Symbolic Representation (SSR). SSR generally refers to a representation where elements are discrete tokens and have certain structures, e.g., scene graphs [16]. To effectively represent an event, the event type (usually a verb), its associated argument roles, and the actual entities for each argument role are required. Therefore, we consider the sequence of text tokens with the following structure as the SSR of an event: $x = \{v, a_1, e_1, a_2, e_2, \ldots, a_M, e_M\}$, where $v \in \mathbb{W}$ is the event type/verb, $a_m \in \mathbb{W}$, $e_m \in \mathbb{W}$ are the mth argument role and associated entity, and M is the number of argument roles for this event. Such a sequence is essentially a traverse of the graph with v as the root node and a_m, e_m as the mth edge and leaf node.

Event-Relation Prediction. Currently VidSitu [38] is the only dataset available for video event-relation pre-
Figure 1. The pipeline of the Event-Sequenm model for event-relation prediction. Special characters * and ** denote the target events the model is required to predict relation between. Detailed description is in Sec. 3.2

3.2. Contextualized Event-Sequenm Model

Rich contextual information (e.g. neighboring events, location of the events, manner of the events, etc.) plays an important role in understanding the relationship between events. We extensively analyze event sequences in the VidSitu dataset and indeed find patterns, as presented in Sec. 4.2. We propose a novel contextualized Event-Sequenm model for event-relation prediction and explore various ways of utilizing context.

Event-Sequenm Model + Video Features. The state-of-the-art model [38] claims that video features are more effective than directly using symbolic representations. It takes both video features and text tokens as inputs \(G : \mathbb{W}^L \times \mathbb{D}^F \rightarrow \mathbb{R}^C \) to predict the distribution over the \(C \) classes of relations. An off-the-shelf video feature extractor \(H \) is used to extract continuous feature vectors from the video segment \(y_i \) when the event happens. The feature vector is concatenated with the output embedding from the text tokens before being fed into the final classifier \(G \). We denote it as Event-Sequenm Model + Video Features in the following discussion. When not specified, the video feature extractor is SlowFast [9, 38].
Sequence-to-Sequence Model. Inspired by recent advances of sequence-to-sequence modeling [21, 25, 36] on both language and video domains, we explore a variant of directly generating the sequence of relationships given the sequence of events as input,

\[p_{1,3}, p_{2,3}, p_{4,3}, p_{5,3} = S(x_1, x_2, x_3, x_4, x_5), \]

(3)

where \(p_{i,3} \) is the predicted distribution for the relationship between the \(i^{th} \) event and the middle event \(x_3 \). The common strategy of teacher-forcing [44] is employed to handle the conditional generation problem, which means during training

\[p_{k,3} = S(x_1, x_2, x_3, x_4, x_5, l_1, ..., l_{k-1}), \]

(4)

the ground-truth (GT) “historical” event-relations \(l_1, ..., l_{k-1} \) are used for predicting the next relation. During testing, we apply beam search to decode the actual event relation sentence. This variant does not directly use additional contextual information. Instead, it is leveraging conditional generation as a constraint to prevent the model from only predicting the dominant class as reported in [38].

Auxiliary Arguments. The model in [38] only uses base arguments (arguments tied to the verb through direct semantic relations) such as the agent and the target. However, additional contextual information could be clearly provided by extra argument roles like AMnr, ADir, and AScn (manner, scene and direction). We append them after the base arguments as additional inputs to the model.

3.3. Training

The standard training objective states to use cross-entropy loss to train the model for event-relation prediction,

\[\min_{\theta} - \log p_l, \]

(5)

where \(\theta \) is the parameter to be updated in the model, \(l \) is the GT relation, and \(p \) is the predicted relation type.

Balancing Data/Loss. In [38], the poor performance of the SSR model is attributed to the possible imbalanced relation class distribution, which leads the model to only predict the dominant relation type. To tackle this issue, we explore two solutions: re-constructing a balanced dataset or using a balanced loss.

For the balanced dataset, we aim at keeping the same number of event pairs in each class by removing videos containing multiple samples of dominant relations. After this process, about 70% of the dataset is kept.

For the balanced loss, we adopt the commonly used weighted cross entropy loss for optimization,

\[\min_{\theta} - \beta_i \log p_l, \]

(6)

where we set \(\beta_i \) as the inverse of the proportion of this relation \(l \) in the training set.
VisualCOMET Pretraining. VisualCOMET [33] contains 1.4 million commonsense inferences for current visual events under three types of event relations: Before, Intent and After, which correspond to inferring the past, reason, or future event. We reformulate VisualCOMET for event relation prediction pretraining. The main challenge is the different annotation formats between VisualCOMET [33] and VidSitu [38]. As illustrated in Figure 2, VisualCOMET provides natural sentence annotations while VidSitu relies on SSR with verbs and argument roles. We employ AMR-Lib [13] to convert VisualCOMET annotations into Abstract Meaning Representation (AMR) [18] graphs where the necessary verbs and arguments are restructured to match native VidSitu annotations. Note that the AMR parsing step is crucial in improving performance on VidSitu. We take the current event as \(x_3 \) and then randomly sample from the three types of annotated events to construct an event sequence \(\{ x_1, x_2, x_3, x_4, x_5 \} \). The relation label is then automatically generated from the type of annotations. Note that during random sampling, to simulate a real event sequence, we restrict \(x_1, x_2 \) to be either Before or Intent events and restrict \(x_4, x_5 \) to be Intent or After events.

![Figure 3. Histograms of the event relations for two event type pairs.](image)

4. Experiment Results and Discussions

4.1. Dataset and Evaluation Metric

Our main experiments are conducted on VidSitu [38], a large-scale dataset containing 29,000 10-second video clips where each video clip is divided into five 2-second segments and the most salient verbs and arguments are annotated along with the most dominant event relation. We evaluate event-relation prediction by computing Top-1 accuracy on predicted relations as well as Top-1 accuracy macro-averaged across the four different relation classes: Causes, Enables, Reaction To, and No Relation [38].

We adopt VLEP [20] to evaluate the generalization of our model on future event prediction, which is formulated as a multiple-choice problem. We follow the official setting and report accuracy on the validation set.

4.2. Why SSR-Based Methods Fail

Preliminary Analysis. To understand why SSR baselines [38] fail on the VidSitu dataset, we check whether there are event-pairs that have a dominant relation other than Enables, which is the overall dominant relation in the dataset. As the two examples in Figure 3 demonstrate, we found that 66% of event type pairs satisfy this constraint, which indicates that if the model simply memorizes the dominant event relation for each event type pair, it should achieve a macro-accuracy higher than 25% [38]. This evidence motivates us to further explore different hyperparameters to investigate if the failure comes from the optimization side.

![Figure 4. Distribution over the relative distance for No Relation and Causes.](image)
<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>Data</th>
<th>Val Macro Top 1 Acc(%)</th>
<th>Val Top 1 Acc(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [38]</td>
<td>1e-4</td>
<td>Original</td>
<td>25.00</td>
<td>39.43</td>
</tr>
<tr>
<td>Baseline</td>
<td>1e-4</td>
<td>Balanced</td>
<td>25.00</td>
<td>39.43</td>
</tr>
<tr>
<td>Baseline + Video Features</td>
<td>1e-4</td>
<td>Original</td>
<td>33.73</td>
<td>43.71</td>
</tr>
<tr>
<td>Baseline</td>
<td>1e-5</td>
<td>Original</td>
<td>53.61</td>
<td>58.92</td>
</tr>
<tr>
<td>Baseline + Video Features</td>
<td>1e-5</td>
<td>Original + balanced loss</td>
<td>53.98</td>
<td>60.47</td>
</tr>
<tr>
<td>Event-Sequence</td>
<td>1e-5</td>
<td>Original + balanced loss</td>
<td>44.08</td>
<td>49.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Comparison between baseline model trained with original unbalanced data, baseline model trained with data balanced on event relation class frequency through undersampling, and baseline model with adjusted learning rate trained on original data.

study verifies that feeding the full sequence of events as inputs is beneficial to the SSR-based models that only predict Enables.

Optimizing Baseline Training Configurations. This study exploits the potential training configuration issues of the baseline models that reportedly failed to predict meaningful event relations [38]. Since a moderate imbalance is observed in the distribution of event relation classes, we reevaluate the baseline model after training on the same dataset class-balanced through undersampling. This does not improve baseline model performance, which still always predicts one relation class for all events scoring 25% validation accuracy.

We then discover the reason behind the poor performance on the state-of-the-art baseline models to be a suboptimally adjusted learning rate rather than lack of patterns in the data. As shown in Table 1, by simply adjusting the learning rate from 1e-4 to 1e-5, performance dramatically improves. Similar adjustments on state-of-the-art multimodal models using text annotations and video features also yield a significant performance improvement. But it is noteworthy that the improvement is much less significant compared to our baseline model, which is built upon SSRs of events.

4.3. Evaluation Challenges

Simultaneous Events in Videos. Despite being rich in context, the noisy nature of video features may actually degrade performance. In complex and busy events, multiple salient verbs may emerge to dominate a scene. In such a scenario, the specific verb chosen drastically influence argument labeling of entity co-references and subsequent event relationships. Figure 5 depicts such a scene where multiple relevant verbs and their corresponding arguments emerge. Since event relation annotations are directly tied to annotated event types and argument roles, many instances occur where predicted event relations are accurate to the scene, but evaluated as incorrect since they differ from the annotated events. We explore this further in Section 4.4.

Quantifying the Effect of Simultaneous Events. We evaluate two state-of-the-art video-language models, HERO [22] and ClipBERT [19], on video event-relation prediction. We leverage pretrained CLIP-VIT-32 [35] to perform frame selection and region selection given event and argument role as the textual input, respectively. In both models, as shown in Table 2, we observe a performance increase when frame selection and region selection are utilized, which indicates a significant presence of irrelevant frames in one video segment and also shows the negative effect cause by simultaneous events.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frame-level</th>
<th>Region-level</th>
<th>Val Macro Acc(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERO [22]</td>
<td>✗</td>
<td>✗</td>
<td>42.15</td>
</tr>
<tr>
<td>HERO</td>
<td>✓</td>
<td>✗</td>
<td>48.03</td>
</tr>
<tr>
<td>HERO</td>
<td>✓</td>
<td>✓</td>
<td>48.48</td>
</tr>
<tr>
<td>ClipBERT [19]</td>
<td>✗</td>
<td>✗</td>
<td>47.62</td>
</tr>
<tr>
<td>ClipBERT</td>
<td>✓</td>
<td>✗</td>
<td>49.76</td>
</tr>
<tr>
<td>ClipBERT</td>
<td>✓</td>
<td>✓</td>
<td>50.52</td>
</tr>
</tbody>
</table>

Table 2. Performance of HERO and ClipBERT when with and without Frame Selection or Region Selection based on CLIP.

4.4. Improving SSR-Based Methods

Adding Additional Contextual Information. When predicting the relationship between two events within a five event sequence from VidSitu, baseline models only take the two target events as inputs. Richer context can be provided directly by increasing the temporal duration of the inputs. As shown in Table 3, by giving the model all five events within a sequence rather than just the two target events, we are able to leverage patterns seen in distances between events as well as events preceding and succeeding the target events, resulting in an accuracy improvement (53.85% → 55.38%).

Previous state-of-the-art baselines also receive inputs containing only verbs and base arguments (arguments tied to the verb through direct semantic relations). Providing specific context in the form of auxiliary arguments describing the scene of the event, mannerisms and goals of entities performing actions, etc., yields further performance increases (55.38% → 58.60%). When evaluating event-sequence models given only verbs and only base arguments,
Figure 5. Example scene containing multiple salient events. A large explosion dominates the background while a man is running away from the explosion in the foreground. The verb and argument labels are highly dependent on which event is selected.

<table>
<thead>
<tr>
<th>Description 1</th>
<th>Description 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>Verb</td>
</tr>
<tr>
<td>run (walk quickly)</td>
<td>explode (go boom)</td>
</tr>
<tr>
<td>Arg0 (runner)</td>
<td>Arg1 (thing exploding)</td>
</tr>
<tr>
<td>man in grey outfit</td>
<td>castle gate</td>
</tr>
<tr>
<td>ArgM (direction)</td>
<td>ArgM (location)</td>
</tr>
<tr>
<td>away from explosion</td>
<td>castle</td>
</tr>
</tbody>
</table>

Table 3. Comparison of models given inputs with various forms of context.

<table>
<thead>
<tr>
<th>Model</th>
<th>Verbs</th>
<th>BaseArgs</th>
<th>AuxArgs</th>
<th>Val Macro Acc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (1e-5 lr)</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>53.85</td>
</tr>
<tr>
<td>Baseline + Video Features (1e-5 lr)</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>44.08</td>
</tr>
<tr>
<td>Event-Sequence Only Verb</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>42.53</td>
</tr>
<tr>
<td>Event-Sequence Only Args</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>34.73</td>
</tr>
<tr>
<td>Event-Sequence Baseline</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>55.38</td>
</tr>
<tr>
<td>Event-Sequence All Args</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>55.64</td>
</tr>
<tr>
<td>Event-Sequence + vid features (SlowFast)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>45.98</td>
</tr>
<tr>
<td>Event-Sequence + vid features (CLIP)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>42.15</td>
</tr>
<tr>
<td>HERO [22]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>47.62</td>
</tr>
<tr>
<td>ClipBERT [19]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Comparison of models given inputs with various forms of context.

<table>
<thead>
<tr>
<th>Model</th>
<th>Val Macro Top 1 Acc</th>
<th>Val Top 1 Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-Sequence</td>
<td>55.38%</td>
<td>61.59%</td>
</tr>
<tr>
<td>Seq-to-Seq</td>
<td>52.91%</td>
<td>57.43%</td>
</tr>
<tr>
<td>Event-Sequence + All Args</td>
<td>58.60%</td>
<td>62.05%</td>
</tr>
<tr>
<td>+ VisCom pretraining</td>
<td>59.21%</td>
<td>62.65%</td>
</tr>
</tbody>
</table>

Table 4. Comparison between Event-Sequence model, Sequence-to-Sequence (Seq-to-Seq) model, and Event-Sequence model pretrained on VisualCOMET data.

Performance Analyses Between Predicted and Human Annotations. To demonstrate an end-to-end approach, we train and evaluate our event-sequence model using predicted verb and argument roles generated by employing a joint feature extractor and text encoder on the video frames [38]. Results comparing the models with oracle information, predicted events, and previous state-of-the-art video only baselines [38] are summarized in Table 5.
Figure 6. Example where predicted events differ from ground truth human annotations, but predicted verbs and arguments are salient since they describe different events within the same scene. The resulting event-relation prediction using predicted events is also “accurate” but different from the ground truth relation since they are relating different, equally salient event descriptions.

<table>
<thead>
<tr>
<th>Input</th>
<th>Val Macro-Acc</th>
<th>Test Macro-Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotated verb + args</td>
<td>55.38%</td>
<td>54.47%</td>
</tr>
<tr>
<td>Annotated verb + Predicted args</td>
<td>43.30%</td>
<td>42.75%</td>
</tr>
<tr>
<td>Predicted verb + args</td>
<td>35.46%</td>
<td>34.94%</td>
</tr>
<tr>
<td>Vid features (SlowFast)</td>
<td>33.78%</td>
<td>30.54%</td>
</tr>
</tbody>
</table>

Table 5. Comparison between Event-Sequence models trained and evaluated on human annotations versus predicted events.

Notably, our event-sequence model using predicted events outperforms previous video encoder baselines showing the promise of SSRs even when they are generated. We observe a significant improvement when annotated verbs are used to generate argument roles, which verifies the effectiveness of SSR and indicates the “noisy” nature of the task and dataset.

Specifically, many scenes occur where predicted verbs and arguments describe different events than ground-truth (GT) human annotations. In the example shown in Figure 6, both GT and predicted events accurately describe the same scene in Event 3: the two men fighting. In Event 5, the predicted verb and arguments describe the background battle and subsequently classifies Event 3 as Enabling Event 5 since the battle is a continuation of the previous fighting. However, human annotations describe the man in the foreground watching the battle in the background, and thus the GT label is a Reaction To the fighting in Event 3. In this case, Enables is an accurate relationship descriptor but considered incorrect. Such discrepancies between annotations likely explain some of the performance degradation when using predicted events.

4.5. Applications in Downstream Tasks

We adopt the RoBERTa-based model from [20] as the baseline, which achieves 65.8% accuracy on the VLEP validation. It is a challenging task, as pretrained RoBERTa on ATOMIC [39] only improves accuracy by 0.5%. However, when using our event-sequence model as the pretrained weights for the RoBERTa model, we observe a 0.9% improvement of accuracy, which makes video event-relation prediction a better knowledge source of pretraining than the comprehensive textual knowledge base, ATOMIC. This again verifies the effectiveness and the generalization capabilities of our proposed contextualized sequence model.

5. Conclusion

In this paper, we defend the effectiveness of SSRs for video event-relation prediction and identify sub-optimal training configurations as the key reason previous models fail. We further provide in-depth analyses and find that video features are noisy because of simultaneous events and irrelevant backgrounds. Oracle event information is important to ensure proper evaluation. We propose a contextualized sequence model with a pretraining technique on VisualCOMET to demonstrate the effectiveness of SSR, which significantly outperforms the state-of-the-art models. Our model trained on video event-relation prediction can be generalized to downstream tasks such as future video event prediction.

Acknowledgement

This paper is based upon work supported by U.S. DARPA KAIROS Program No. FA8750-19-2-1004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied, of DARPA, or the U.S. Government.
References

[18] Shu Cai Madalina Georgescu Kira Griffitt Ulf Hermjakob Kevin King Phillip Koehn Martha Palmer Laura Banerescu, Claire Bonial and Nathan Schneider. Abstract meaning representation for sembankin. 2013. 5

[40] Lei Sha, Feng Qian, Baobao Pang, and Zhifang Sui. Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18)*, the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5916–5923. AAAI Press, 2018. 1

