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Abstract

This paper proposes a scalable technique for de-
veloping lightweight yet powerful models for object
detection in videos using self-training with knowl-
edge distillation. This approach involves training
a compact student model using pseudo-labels gen-
erated by a computationally complex but generic
teacher model, which can help to reduce the need for
massive amounts of data and computational power.
However, model-based annotations in large-scale
applications may propagate errors or biases. To
address these issues, our paper introduces Stream-
Based Active Distillation (SBAD) to endow pre-
trained students with effective and efficient fine-
tuning methods that are robust to teacher imper-
fections. The proposed pipeline: (i) adapts a pre-
trained student model to a specific use case, based
on a set of frames whose pseudo-labels are predicted
by the teacher, and (ii) selects on-the-fly, along a
streamed video, the images that should be consid-
ered to fine-tune the student model. Various selection
strategies are compared, demonstrating: 1) the ef-
fectiveness of implementing distillation with pseudo-
labels, and 2) the importance of selecting images
for which the pre-trained student detects with a high
confidence.

1. Introduction
Deep Neural Networks (DNNs) are effective for ob-
ject detection in images, but their predictive power
comes at a high cost. The training of highly per-
formant DNNs is based on high-performance cloud
servers with a large-scale data set. This requires (i)

a large workforce to prepare the data set or imple-
mentation of training (ii) as well as a significant in-
vestment in time and money. These data, time, and
hardware costs create a barrier for most practition-
ers in terms of transition from theory to practice [5].
Furthermore, a single investment in resources to cre-
ate large general-purpose models, regardless of their
size, is no longer sufficient. Without retraining, these
models cannot be robust with respect to the stochas-
tic and ever-evolving environments. In the exam-
ple of Closed-Circuit Television (CCTV) monitoring
traffic on the city scale, there is no data set large
enough to cover all aspects of every urban land-
scape [35]. Therefore, a scalable, efficient, and re-
current retraining is necessary to reduce costs and
avoid under-performing systems.

Knowledge Distillation (KD) is a promising tech-
nique that enables the creation of lightweight but
powerful models. The process assumes that for the
same data set, large models (that is, teachers) have
higher knowledge capacity than smaller models (that
is, students). The teacher, typically a pre-trained
or very large generic model (e.g., YOLOv8x61),
can transfer its knowledge (i.e., pattern recognition
mechanisms) to students without significant model
degradation. However, recourse to other models
for labeling could lead to confirmation bias, a phe-
nomenon that refers to noise accumulation when the
model is trained using incorrect predictions for semi-
supervised or unsupervised learning [2]. Further-
more, an immediate rebound effect of the scheme is

1There is no official paper available for this deep learn-
ing model. For the latest information, please visit the offi-
cial repository: https://github.com/ultralytics/
ultralytics.
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the multiplication, on scale, of the number of mod-
els to be trained. The inference costs could become
significant. Additionally, if the teacher model runs
on a cloud-based platform, there may be additional
costs associated with its usage, such as hourly us-
age fees or data transfer costs. This could be miti-
gated by using Active Learning (AL), which aims to
identify the most informative examples for labeling.
The importance of sampling has been first formu-
lated in [4] as the problem of developing KD meth-
ods that are query-efficient and robust to labeling in-
accuracies due to teacher imperfection (i.e., confir-
mation bias). The method developed in [4] was de-
signed for a pool-based setting, which represents an
offline scenario where a pool of unlabeled data points
is made available to the learner. We claim that, in
many real-world applications, a large number of un-
labeled samples arrive in a streaming manner, mak-
ing it impossible to maintain all of the data in a
candidate pool. To the best of our knowledge, there
is no framework supporting the development of AL
methods that are query-efficient and robust to label-
ing inaccuracies in stream-based settings. The con-
tributions of this paper are the following:

1. Formulate Stream-Based Active Distillation
(SBAD) as the problem of developing AL meth-
ods that are both query-efficient and robust to
labeling inaccuracies in stream-based settings.

2. Demonstrate the benefits of the proposed
scheme for large-scale video-based object de-
tections on a public dataset [26].

3. Establish simple but effective baselines to train
a YOLOv8n student from a YOLOv8x6 teacher.

4. A code to reproduce the experiences and the
framework available at https://github.
com/manjahdani/SBAD/.

2. Related Work
2.1. Knowledge Distillation

KD is a method that involves training a smaller
model to imitate the performance of a larger model.
The main objectives of this technique are to prevent
a decrease in the model’s performance when it oper-
ates on a data set that is distributed differently than
the source domain, referred to as Unsupervised Do-
main Adaptation (UDA), and to produce lightweight
models suitable for the storage and computational ca-
pacities of miniaturized devices, referred to as Model

Compression (MC) applications. In this study, we
use a technique called Self-training with knowledge
distillation, which was introduced by [6]. This tech-
nique trains a student model using pseudo-labels
generated by a teacher model, which is beneficial
when the labeled data is limited but we have access
to a large sample of unlabeled data. Furthermore, the
aforementioned distillation scheme does not need a
direct access to the teacher. Yet, it may also propa-
gate errors or biases.

In addition, we will discuss two additional tech-
niques of interest in the following paragraphs: online
distillation and context-aware distillation.

Online Distillation. This approach involves train-
ing a smaller student model to mimic the output of a
larger teacher model on a per-example basis. In [13],
the authors designed an online knowledge distillation
scheme to perform real-time human segmentation in
sports videos. Experiments show the ability of the
model to adapt to contextual variations. Online dis-
tillation is also employed in [24] to adapt a low-cost
semantic segmentation model to a target video where
the data distribution is not necessarily stationary.

Context-aware Distillation. The works in [19,28]
attempt to exploit the contextual characteristics of the
scene to develop effective KD. They directly worked
on the distillation scheme to develop more special-
ized students. For example, [19] added a temporal
dimension such that the student learns the variations
in the intermediate features of the teacher over time,
taking into account the redundancies of the frames
within a CCTV stream.

2.2. Active Learning

AL is a sampling approach that selects the most
informative data points to minimize the number of
labels required for model training [33]. AL can be di-
vided into three macro scenarios: synthesis of mem-
bership queries, pooled AL, and streamed AL [7].
The majority of approaches in deep AL have focused
on the pool-based scenario, where the learner selects
the most useful data points from a closed set of un-
labeled observations. The stream-based AL scenario
for object detectors has not been investigated. More-
over, AL assumes the availability of a perfect oracle,
where the true label of a data point is revealed when
queried. However, this assumption does not hold in
a KD framework, where the pseudo-labels provided
by the teacher may be incorrect.
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Active Learning for Image Classification. AL
strategies for pool-based classification can be cate-
gorized into uncertainty-based or diversity-based ap-
proaches [36]. Uncertainty-based strategies estimate
model uncertainty using techniques such as Monte
Carlo dropout [18] or ensemble networks [23], while
entropy and margin-based sampling strategies are
also widely employed [29]. Task-agnostic methods,
such as Learn loss [38], use a loss prediction module
to estimate data points that are likely to be wrongly
predicted. Among diversity-based strategies, Core-
set [32] is one of the most popular, using a K-center
Greedy algorithm to locate a set of representative
data points. Cluster-Margin [14] combines uncer-
tainty and diversity, while DRMRS [16] takes into
account the margin and diversity. BADGE [3] bal-
ances uncertainty and diversity using a k−MEANS++
seeding algorithm on gradients obtained from the last
layer of the network. CDAL [1] replaces the Eu-
clidean distance with the pairwise contextual diver-
sity in the greedy K-center algorithm used in the
Core-set. CLUE [25] performs uncertainty-weighted
clustering to identify target instances that are uncer-
tain according to the model and diverse in feature
space. VAAL [34] uses a Variational Autoencoder
(VAE) to map instances into a latent space, which is
then fed into a discriminator that learns to differenti-
ate between labeled data and unlabeled samples.

Active Learning for Object Detection. AL ap-
proaches to object detection can be classified into
black-box and white-box methods [30]. Black-box
methods do not depend on the underlying network
architecture and use informativeness scores, such
as the confidence obtained from the softmax layer,
while white-box methods are dependent on the ar-
chitecture of the underlying network. The Minmax
approach, which selects the least confident images
among the unlabeled pool, is a popular black-box
method [30]. Ensemble methods have also been used
for object detection-oriented AL [17, 31]. Query
strategies based on localization tightness and stabil-
ity [21], mixture density networks [12], and a uni-
fied box regression and classification metric [39]
have also been proposed. MIAL [40] is a multiin-
stance framework that filters out noisy instances to
bridge the gap between instance-level and image-
level uncertainty. PPAL [37] is a two-stage algo-
rithm that includes difficulty-calibrated uncertainty
sampling and category-conditioned matching simi-
larity. [20] proposed to cluster the unlabeled obser-
vations into groups based on the frequency domain

values and to use different sampling rates for each
group.

2.3. Challenges of Stream-based Active Distil-
lation

The importance of sampling has been first formu-
lated in [4] as the problem of developing KD meth-
ods that are both query-efficient and robust to la-
beling inaccuracies due to the imperfection of the
teacher (i.e., confirmation bias). Their methods pro-
vide a theoretical guarantee that the scheme leads
to queries where the teacher provides the correct la-
bels. However, this approach has been developed in
a pool-based setting where the student has access to
the entire information pool. In contrast, in stream-
based scenarios, techniques such as diversity-based
strategies, clustering, or pairwise distance matrices
may not be feasible, especially in contexts where the
spatio-temporal correlation among the data is signif-
icant. Another aspect is that, due to the complexity
of the student model, uncertainty techniques relying
on Monte Carlo dropout or Learn loss modules may
not be viable options.

3. Problem Statement

Let θgeneralstudent define a compact general pre-trained
model learning the distribution D of a data stream
X . We assume a spatio-temporal correlation among
the data. The student is equipped with SELECT
(It), a rule that determines whether an image It
should be selected to fine-tune the student model, us-
ing the pseudo-label predicted by a universal but im-
perfect model θgeneralteacher . The objective is to train a
high-performing student by querying the minimum
number of teacher pseudo-labels. In this work, the
pseudo-labels consist of bounding boxes generated
by θgeneralteacher for each selected image. We assume
a large-scale setting (e.g., city-scale deployment of
CCTV, monitoring of large construction sites) and
affordable hardware. Therefore, the selected frames
and their associated pseudo-labels, which constitute
the training set L, must not exceed a maximum train-
ing frame budget per student B, i.e., |L| ≤ B. Fur-
thermore, efficient SELECT strategies are necessary
to ensure the scalability of our stream-based active
distillation (SBAD). Indeed, if a selection rule takes
longer than the frame rate to make a decision, a
temporary buffer will be required to store recently
seen images until the decision is made. This would
increase the system resource requirements for data
storage and processing, which is not scalable.
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Algorithm 1 SBAD Framework

Require: a pre-trained student model θgeneralstudent , a
general purpose teacher model θgeneralteacher , a training
frame budget B and a SELECT strategy.

Ensure: B ≥ 1
L ← ∅ ▷ Selected frames and their pseudo-labels
t← 0 ▷ Timestamp
while |L| ≤ B do

Observe current frame It
if SELECT(It) is TRUE then
{bpli }t ← θteacher(It) ▷ Pseudo-labels
L ← L ∪ (It, {bpli }t)

end if
t← t+ 1

end while
return update(θgeneralstudent , L)

Figure 1 provides a visual illustration of the
SBAD framework. During the sampling phase, the
SELECT rule is used to identify the most informa-
tive samples. The selected frames are then pseudo-
labeled by the teacher model and used to fine-tune
the student models. Once the fine-tuning is complete,
specialized models could be optionally evaluate us-
ing a test-set with ground truth T := {Itest,bgt}.
Note that this step is not necessary for SBAD, but in
real-life scenarios, it could be seen as a sanity check
if you have access to a test-set.

4. Methodology

In the context of stream-based active learning,
single-pass evaluation of data points is often ad-
dressed by applying a threshold to certain informa-
tiveness scores [8–11, 15, 27]. However, this ap-
proach has not been tested in online active distilla-
tion tasks for object detection. In this paper, we in-
vestigate the effectiveness of thresholding algorithms
based on the confidence of the base student model
θgeneralstudent for the SBAD framework. At round t, when
the student model θgeneralstudent observes an image It,
n ≥ 0 objects are detected, which are defined by the
bounding boxes bit and confidence scores cit. Ac-
cording to [30], a unique confidence score C(It) can
be obtained for It using:

C(It) := max
i

cit

This means that the confidence of each image is
approximated by the highest confidence score among

the objects detected in that image. Using this confi-
dence metric, we can then apply a threshold ∆ to the
confidence scores of the incoming frames. The gen-
eral structure of the top confidence threshold sam-
pling scheme is presented in Algorithm 1. To esti-
mate the threshold ∆ for selecting the most informa-
tive frames, we introduce a warm-up phase where the
student model θgeneralstudent observes the incoming frames
for a period of length w without querying any im-
age and without storing anything other than a sin-
gle scalar representing the confidence scores C(It)
at the image level, where t = 1, ..., w. At the end of
the warm-up phase, the student model estimates an
(1 − α)-upper percentile on the distribution of con-
fidence scores, where α represents the desired sam-
pling rate. In other words, the threshold ∆ is chosen
so that:

IP(C(It) ≥ ∆) = α,

and the frames to pseudo-label and fine-tune θgeneralstudent

correspond to a ratio of α frames out of the total num-
ber of frames.

While in traditional AL, the focus is on query-
ing images that the student model is least confident
about, this approach may not be optimal for stream-
based object-detection KD scenarios. The least con-
fident images often correspond to very hard exam-
ples that may not be informative enough for the stu-
dent model in the early rounds of AL when it has not
been fine-tuned for the specific scene. Additionally,
selecting images with high uncertainty for pseudo-
labeling may lead to confirmation bias as the pseudo-
labels may not align with the ground truth due to the
imperfection of the teacher model θgeneralteacher as an or-
acle. This is why, in our work, we propose to let
the student model θgeneralstudent query the most confident
frames. Ideally, by doing so, the student will sam-
ple informative examples that the teacher model can
accurately pseudo-label. These examples will con-
tribute best to the student’s fine-tuning while avoid-
ing frames that are too uncertain to be used in the
initial stages AL.

5. Experiments
5.1. Experimental Settings

Dataset. We evaluated the effectiveness of the
SBAD approach using the Watch and Learn Time-
lapse (WALT) data set [26], which comprises 122

2We tested two out of twelve cameras and produced extra an-
notations to evaluate our techniques. Detailed information about
this process and the dataset are available in our GitHub repository.
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Figure 1. SBAD pipeline: sampling, fine-tuning and evaluation.

cameras that capture an urban environment. This
data set offers a diverse range of spatial and temporal
settings, with varying viewpoints and lighting condi-
tions, including both day and night settings. By test-
ing our approach on this realistic data set, we assess
its performance in real-world scenarios.

Distillation implementation. In line with the prin-
ciples of data distillation proposed by [6], we em-
ploy a large and complex teacher model, YOLOv8x6
(261.1 GFLOPs), to generate pseudo-labels. These
labels are then used to train several smaller student
models, YOLOv8n (8.7 GFLOPs), with less archi-
tectural complexity. Both networks are initially pre-
trained on the COCO dataset [22]. The student mod-
els are re-trained for 100 epochs with a batch size of
16 and a learning rate (LR) of 0.01. The learning rate
is adjusted for each epoch with a change factor (LF)
of 0.01 using Equation 1. The budget of the SBAD
framework is determined by the number of pseudo-
labels used for fine-tuning, which ranges from 25 to
250 in our experiments.

LR =

(
1 − LR

epochs

)
× ( 1 − LF ) + LF (1)

Methods. Due to the lack of prior research on the
SBAD problem in object detection, there are no base-
lines to compare with. To explore the effective-
ness of the confidence-based thresholding algorithm,
we used different baselines. First, a naive N -First
approach has been implemented, where the student
models are fine-tuned by simply taking the first N
images observed from each camera. A second base-
line is given by a random sampling approach, where
a number s ∼ U(0, 1) is generated for each incom-
ing frame, which is queried only if s ≥ 1 − α. A
third baseline is given by a more active learning-
oriented least confidence approach, where similarly
to the case of the highest confidence, we impose a
threshold on the confidence score at the image level.
The main difference is that the threshold ∆ is es-
timated by taking the α-lower percentile from the
warm-up setW .

In our experiments, both α-lower and α-higher
methods used α = 10%. However, it is important
to note that this choice was influenced by the frame
rate and the length of the data stream recorded for
each week. Although smaller values of α may yield
better performance, they would need to span a longer
data stream as we become more selective in terms
of selecting only the most confident frames. There-
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Figure 2. Learning curves obtained on the first two cam-
eras of WALT. Results show that increasing the number of
frames used for fine-tuning improves the student model’s
performance, approaching that of the teacher model with
250 frames. However, using only a small number of frames
may lead to overfitting and poor performance on balanced
evaluation sets. Top confidence thresholding is more effec-
tive than least confidence-based methods for stream-based
active learning, highlighting the importance of avoiding
highly uncertain images during fine-tuning.

fore, the choice of α should be based on a balance be-
tween performance and the length of the data stream
required to select the desired number of frames.

5.2. Experimental Results

Figures 2. and 3. shows the learning curves
obtained using stream-based active learning tech-
niques on the WALT dataset. Our analysis can be
approached from two perspectives. Firstly, from a
knowledge distillation standpoint, we observe how
the student model’s performance improves as we
use more frames for fine-tuning. In particular, we
found that the mAP50-95 score approaches that of
the teacher model when 250 pseudo-labeled frames
are used. However, we also noticed that the stu-
dent’s performance deteriorates significantly when
only a small number of frames are used for fine-
tuning, which could be attributed to overfitting due
to the limited number of images presented to the net-
work. In addition, if the model is fine-tuned on im-
ages biased towards a specific time of day, such as
only night or day, it may perform poorly on the bal-
anced test set used for evaluation. Furthermore, as
depicted in Figure 4, choosing highly uncertain im-
ages for pseudo-labeling may lead to incorrect labels
due to the teacher’s own bad prediction.

From an active learning perspective, the perfor-
mance achieved with the top confidence threshold al-
gorithm is significantly better than that obtained us-
ing the least confidence-based method. This high-
lights the importance of fine-tuning the model with
highly certain images, especially when the model has
not yet been specialized for the scene.

5.3. Limitations

The present work has three limitations. Firstly, the
maximum budget is limited to 250 due to the frame
rate and length of the data stream. Second, our ap-
proach was only evaluated on the WALT data set, and
its generalizability to other data sets remains to be
investigated. Third, the reduced number of heuris-
tics may limit the effectiveness of the approach, and
further exploration of different methods or combina-
tions of methods could be a fruitful research direc-
tion. Additionally, exploring other deep neural net-
work architectures, such as Transformers or Mask-
RCNN, could also enhance the approach.

6. Conclusion
This paper proposes SBAD to bridge the gap be-

tween large-scale and affordable deep learning mod-
els while adapting to changing environments. This
framework enables the scalable deployment of deep
learning models under tight budget constraints.

The framework evaluates the informativeness of
each frame, accounting for teacher imperfections in
a KD scheme. Experiments demonstrate that tra-
ditional AL strategies may not be optimal for KD.
Future research could explore alternative sampling
strategies and distillation mechanisms to improve
performance.
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Figure 3. Weekly analysis on the first two cameras of WALT.
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Figure 4. Two difficult examples (one for each camera) that lead to confirmation bias: when the student requests highly
uncertain images based on its predictions (in yellow), wrong pseudo labels are revealed (in red).

References
[1] Sharat Agarwal, Himanshu Arora, Saket Anand, and

Chetan Arora. Contextual diversity for active learn-
ing. In European Conference on Computer Vision
(ECCV) 2020, 8 2020. 3

[2] Eric Arazo, Diego Ortego, Paul Albert, Noel E
O’Connor, and Kevin McGuinness. Pseudo-labeling
and confirmation bias in deep semi-supervised learn-
ing. In 2020 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1–8. IEEE, 2020. 1

[3] Jordan T. Ash, Chicheng Zhang, Akshay Krishna-
murthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient
lower bounds. In 2020 International Conference on
Learning Representations, 6 2019. 3

[4] Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav
Menghani, and Erik Vee. Robust active distillation.
arXiv preprint arXiv:2210.01213, 2022. 2, 3

[5] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa
Markeeva, Rohan Anil, and Alexander Kolesnikov.
Knowledge distillation: A good teacher is patient and
consistent. CoRR, abs/2106.05237, 2021. 1

[6] Cristian Buciluundefined, Rich Caruana, and Alexan-
dru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’06, page 535–541, New York, NY, USA,
2006. Association for Computing Machinery. 2, 5

[7] Davide Cacciarelli and Murat Kulahci. A sur-
vey on online active learning. arXiv preprint
arXiv:2302.08893, 2023. 2

[8] Davide Cacciarelli, Murat Kulahci, and John
Tyssedal. Online active learning for soft sensor de-
velopment using semi-supervised autoencoders. In
ICML 2022 Workshop on Adaptive Experimental De-
sign and Active Learning in the Real World, 2022. 4

[9] Davide Cacciarelli, Murat Kulahci, and John Sølve
Tyssedal. Stream-based active learning with linear
models. Knowledge-Based Systems, 254:109664, 10
2022. 4

[10] Davide Cacciarelli, Murat Kulahci, and John Sølve
Tyssedal. Robust online active learning. arXiv
preprint arXiv:2302.00422, 2023. 4

[11] Andrea Castellani, Sebastian Schmitt, and Barbara
Hammer. Stream-based active learning with verifica-
tion latency in non-stationary environments. In Arti-
ficial Neural Networks and Machine Learning 2022,
4 2022. 4

[12] Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clément
Farabet, and Jose M. Alvarez. Active learning
for deep object detection via probabilistic modeling.
CoRR, abs/2103.16130, 2021. 3

[13] Anthony Cioppa, Adrien Deliege, Maxime Is-
tasse, Christophe De Vleeschouwer, and Marc
Van Droogenbroeck. Arthus: Adaptive real-time hu-
man segmentation in sports through online distilla-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019. 2

[14] Gui Citovsky, Giulia DeSalvo, Claudio Gentile,
Lazaros Karydas, Anand Rajagopalan, Afshin Ros-
tamizadeh, and Sanjiv Kumar. Batch active learning
at scale. In Conference on Neural Information Pro-
cessing Systems, 7 2021. 3

[15] Sanjoy Dasgupta, Adam Kalai, and Claire Mon-
teleoni. Analysis of perceptron-based active learning.
In Lecture Notes in Computer Science, volume 10, 12
2005. 4

[16] Ehsan Elhamifar, Guillermo Sapiro, Allen Yang, and
S. Shankar Sasrty. A convex optimization framework
for active learning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 209–

5006



216. Institute of Electrical and Electronics Engineers
Inc., 2013. 3

[17] Di Feng, Xiao Wei, Lars Rosenbaum, Atsuto Maki,
and Klaus Dietmayer. Deep active learning for effi-
cient training of a lidar 3d object detector. In 30th
IEEE Intelligent Vehicles Symposium, 2019. 3

[18] Yarin Gal, Riashat Islam, and Zoubin Ghahramani.
Deep bayesian active learning with image data. In
Proceedings of the 34th International Conference on
Machine Learning, 2017. 3

[19] Amirhossein Habibian, Haitam Ben Yahia, Davide
Abati, Efstratios Gavves, and Fatih Porikli. Delta dis-
tillation for efficient video processing, 2022. 2

[20] Wei Huang, Shuzhou Sun, Xiao Lin, Dawei Zhang,
and Lizhuang Ma. Deep active learning with weight-
ing filter for object detection. Displays, page 102282,
1 2022. 3

[21] Chieh-Chi Kao, Teng-Yok Lee, Pradeep Sen, and
Ming-Yu Liu. Localization-aware active learning for
object detection. In Asian Conference on Computer
Vision (ACCV) 2018, 1 2018. 3

[22] Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common ob-
jects in context. CoRR, abs/1405.0312, 2014. 5

[23] Salman Mohamadi, Gianfranco Doretto, and Don-
ald A Adjeroh. Deep active ensemble sampling for
image classification. In 16th Asian Conference on
Computer Vision (ACCV 2022), 2022. 3

[24] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang,
Deva Ramanan, and Kayvon Fatahalian. Online
model distillation for efficient video inference. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3573–3582, 2019.
2

[25] Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko,
and Judy Hoffman. Active domain adaptation via
clustering uncertainty-weighted embeddings. In In-
ternational Conference on Computer Vision (ICCV)
2021, 2020. 3

[26] N. Dinesh Reddy, Robert Tamburo, and Srinivasa G.
Narasimhan. Walt: Watch and learn 2d amodal repre-
sentation from time-lapse imagery. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9356–9366, June
2022. 2, 4

[27] Carlos Riquelme, Ramesh Johari, and Baosen Zhang.
Online active linear regression via thresholding. In
31st AAAI Conference on Artificial Intelligence,
2017. 4

[28] Daniel Rivas, Francesc Guim, Jordà Polo, Pubudu M
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