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Abstract

Most computer vision research focuses on datasets con-
taining thousands of images of commonplace objects. How-
ever, many high-impact datasets, such as those in medicine
and the geosciences, contain fine-grain objects that re-
quire domain-expert knowledge to recognize and are time-
consuming to collect and annotate. As a result, these
datasets contain few labeled images, and current machine
vision models cannot train intensively on them. Originally
introduced to correct large-language models, model-editing
techniques in machine learning have been shown to improve
model performance using only small amounts of data and
additional training. Using a Mask R-CNN to segment an-
cient reef fossils in rock sample images, we present a two-
part paradigm to improve fossil segmentation with few la-
beled images: we first identify model weaknesses using im-
age perturbations and then mitigate those weaknesses using
model editing.

Specifically, we apply domain-informed image perturba-
tions to expose the Mask R-CNN’s inability to distinguish
between different classes of fossils and its inconsistency in
segmenting fossils with different textures. To address these
shortcomings, we extend an existing model-editing method
for correcting systematic mistakes in image classification to
image segmentation with no additional labeled data needed
and show its effectiveness in decreasing confusion between
different kinds of fossils. We also highlight the best set-
tings for model editing in our situation: making a single
edit using all relevant pixels in one image (vs. using mul-
tiple images, multiple edits, or fewer pixels). Though we
focus on fossil segmentation, our approach may be useful in
other similar fine-grain segmentation problems where data
is limited.

1. Introduction
Today, most computer vision models are trained on

large-scale datasets (e.g. ImageNet [30] and Microsoft
COCO [16]) that contain thousands of annotated images
of commonplace scenes and objects. This trend exists in

Figure 1. Overview of rock sample. Sample annotated image
from our rock sample dataset with magnified examples of archaeo-
cyathids, a patch of calcimicrobe, and red mud. There also exist
other classes that are omitted from this paper for simplicity. We
denote two primary textures of archaeocyathids by (a) and (b); (a)
has a discernible porous texture, while (b) is filled with red mud
and consequently blends in with the surrounding mud. Archaeo-
cyathid pixels in the full image are colored in purple with 80%
transparency; magnified examples show the original coloring.

part because deep neural networks, the current state-of-the-
art in machine learning, require large amounts of data in
order to learn complex, highly predictive patterns that en-
able them to outperform classical machine learning meth-
ods. However, many high-impact domains, such as those
in the natural and life sciences, involve fine-grain objects
that require domain-expert knowledge to recognize and are
time-consuming to collect and annotate [3, 31, 36]. As a
result, these datasets contain few labeled images. However,
deep neural networks often cannot be sufficiently trained on
small datasets to segment objects in images well (Tab. 1).

Model-editing methods have recently emerged in natu-
ral language processing (NLP) [23, 24, 44] and now com-
puter vision [12, 32, 34] as a way to correct for systematic
mistakes in deep learning models. These techniques dif-
fer from related work in domain adaptation and continual
learning because of their focus on correcting mistakes in
models (as opposed to adapting to a domain shift in inputs
and/or retaining memory of the original distribution) by us-
ing limited data and additional training. This combination
of limited data and focus on correcting errors makes model
editing particularly promising in domains like geosciences,
where data is hard to come by, yet a small amount of domain
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expertise can be accessed to correct and improve a model.
In this paper, we present a two-part framework for im-

proving a fossil segmentation model. First, we use domain-
informed image perturbations to identify model weak-
nesses. Second, we adapt a model-editing method to miti-
gate those weaknesses. We focus our work on improving a
Mask R-CNN [11] trained on a small set of annotated rock
sample images to segment ancient reef fossils (Fig. 1).

We are interested in segmenting archaeocyathids
(Fig. 1), an extinct reef-building sponge [29]. Studying
these ancient reef fossils would allow us to understand their
influence on past oceanic biodiversity [19] and inform our
understanding of the impact that dwindling coral reefs to-
day will have on Earth’s future climate and biosphere [28].
In many cases, as with our rock sample, embedded spec-
imens are too delicate to be physically isolated from the
surrounding material. One solution is to generate 3D mod-
els of the specimens from serial sectioning and imaging of
samples [22]. To build such models, we need to segment
the pixels of archaeocyathids in each image and then stack
the resulting masks (Fig. 2).

Due to the fine-grain appearance of archaeocyathids and
the domain knowledge needed to recognize them, manu-
ally segmenting each image is time-consuming, with one
image taking around 2 hours to annotate (Tab. 1). Given
that a single, full image stack contains over 3,000 images,
manually segmenting all images is labor intensive. Further-
more, there exist many rock samples archived in museums
and universities, and the image stacks generated for each
can vary significantly in terms of visual appearance. Thus,
we seek to automate the segmentation process by utilizing
the Mask R-CNN model [11] to segment an image stack
from a limited amount of labeled data (≈ 10 images). Be-
cause of this data constraint, simply fine-tuning our model
did not produce high-quality segmentation masks that are
needed when forming 3D models for such specimens.

MS COCO Ours

Number of labeled images > 200K 10
Time to annotate an image (hrs) 0.66 [1] 2
Domain expert knowledge needed ✗ ✓

Table 1. Comparison between COCO dataset [16] and ours.

Rather than annotating more images, we focused on
leveraging a model-editing technique [32] to improve our
baseline model. This technique requires no additional la-
belled data, making it particularly well-suited for special-
ized datasets like ours that require domain knowledge ex-
pertise and significant time to annotate.

In this work, we present a two-part, data-efficient
paradigm that combines domain-informed image perturba-
tions with a model-editing method to first identify and then

Figure 2. Fossil modeling process. From top to bottom: The
archaeocyathids in each image in the stack are segmented, and the
segmented portions are stacked to form a 3D model.

mitigate weaknesses in our model. Our main contributions
are summarized as follows:

• We first identify model weaknesses via image pertur-
bations and texture synthesis. From these experiments,
we found two main weaknesses. First, our model often
confuses archaeocyathids with other visually-similar
types of fossils (e.g. interclass confusion). Second,
our model is not robust to the visual diversity that ar-
chaeocyathids can have (e.g. intraclass variation).

• We then mitigate the identified model weaknesses by
extending and evaluating an existing, model-editing
technique [32] for correcting systematic mistakes in
image classification to image segmentation. In particu-
lar, we find that certain edits improve the model’s abil-
ity to distinguish between archaeocyathids and other
types of fossils.

• Lastly, we gain several insights on how to effectively
use the editing method. We show that performing a
single edit using one image (vs. using multiple images
or multiple, sequential edits) is sufficient and, further,
that editing by using all relevant pixels (vs. a smaller
subset of pixels) yields the best results.
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2. Related Work
In this section, we first discuss related work in the field of

connectomics, which tackles a similar problem of building a
3D structure from 2D data. Then, we discuss relevant liter-
ature for the two core parts of our work: identifying model
weaknesses via image perturbations (e.g. image occlusion
and texture synthesis) and mitigating weaknesses via model
editing.
Connectomics. Connectomics tackles a similar problem
to ours when learning the 3D structure of neurons from
2D brain scan images. The reconstruction process involves
delineating boundaries around regions in the scans just as
we segment archaeocyathids [41]. However, most work in
connectomics has been directed towards creating novel net-
work architectures [8,17,20] rather than using interpretabil-
ity or model-editing techniques to understand and mitigate
model failures. Similar to approaches in connectomics, we
modified our Mask R-CNN to leverage similarities between
neighboring images in the stack; however, we found that
our model performed poorly despite this modification.
Image occlusion. Image occlusion involves occluding
part of an input image and observing the resulting effect
on a model’s output decision. Several works utilize im-
age occlusions to generate attribution heatmaps that visu-
alize the most important image regions for a model’s de-
cision [6, 26, 27, 40, 43]. Others partially occlude images
during training as a data augmentation technique to im-
prove model robustness [5, 7, 33] and/or localization per-
formance [38]. Our work is more similar to those using oc-
clusions to generate attribution heatmaps, as we selectively
occlude all pixels from certain classes and observe the ef-
fect on the model to identify its shortcomings. However, we
further use the perturbed images to edit our model.
Texture synthesis. Texture synthesis refers to methods that
generate a synthetic, often realistic-looking texture [9, 13].
It can be used in a variety of ways: from inpainting a cor-
rupted image [14], to visualizing what kind of visual fea-
tures most activates a channel in a network (i.e. feature visu-
alization) [25], to studying a network’s relative bias towards
texture vs. shape [10]. More similar to feature visualization,
we generate certain textures in order to study how our model
responds to the visual appearance of archaeocyathids.
Model editing. There have been a number of methods pro-
posed for editing a model after a pretraining period in com-
puter vision and NLP. From the machine learning fairness
literature, several works have proposed to debias a model so
that sensitive demographic information (e.g. race and gen-
der) does not inform model predictions [2, 18, 35, 37, 42].
However, not all model errors relate to a societal bias.

In addition to correcting for model biases, model-editing
techniques have been used to update the knowledge en-
coded in large language models to remove outdated infor-
mation and/or to introduce new information [23, 24, 44].

Figure 3. Overview of model-editing method [32]. Layer L
is the targeted convolutional layer, k∗ is the input representation
(keys) of the snow-covered road, and v∗ is the output activation
(values) of the paved road. The method maps k∗ to v∗ by editing
the weights w of the convolutional layer L. A mask m can be used
to restrict the edit to affect the road pixels only; we do not use a
mask for any of our edits. Figure adapted from [32].

Similarly, in computer vision, model-editing techniques
have been introduced for correcting mistakes in image clas-
sification [12, 32, 34]. However, little work has been done
towards editing image segmentation models.

One recent work by Santurkar et al. [32] proposes editing
an object classifier to correct for systematic mistakes, like
misclassifying vehicles on snow. In this example, they map
a synthesized snow texture underneath vehicles to a more
typical asphalt road pattern such that the edited model clas-
sifies vehicles on snow as accurately as it classifies vehicles
on asphalt. Their method can edit a model using a single
image and a corresponding perturbed version, so it can be
adapted to models trained on small datasets.

Specifically, for a selected convolutional layer, they refer
to its input as keys and its output as values (Fig. 3). Then,
they use an L1 loss function to edit the weights of the layer
such that the keys for the image with the snow-covered road
map to the values for the image with the paved road after the
snow-covered road passes through the layer. Using a rock
sample dataset, we extend this method to image segmen-
tation by first applying domain-informed image perturba-
tions to identify systematic mistakes that the Mask R-CNN
makes and then editing the model to correct those mistakes.

3. Experimental Setup
Dataset. We use images of an archaeocyathid-bearing rock
sample from [19] which were shared by their authors. The
dataset was collected by alternately grinding and imaging
cross sections of the sample [21]. Each image depicts a
cross section of the rock sample and contains pixels that
represent red mud and the embedded remains of different
types of fossils (Fig. 1). In this paper, we focus on archaeo-
cyathid and calcimicrobe fossils (Fig. 1).
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We annotate a total of 10 images by tracing an individual
instance (polygon) for each archaeocyathid [4]. We split our
10 annotated images into the following subsets: 6 training,
2 validation, 2 test.
Model. We fine-tune a Mask R-CNN pretrained on Ima-
geNet and COCO [39] on our 6 training images to perform
instance segmentation for individual archaeocyathids. Sim-
ilar to approaches in connectomics [17], we modified our
model to leverage the fact that the archaeocyathids remain
in similar locations between close layers in the stack by in-
fluencing the ranking of the proposal boxes generated by
the Region Proposal Network in the Mask R-CNN. How-
ever, we found that the model still classified several non-
archaeocyathid fossils as archaeocyathids and generally did
not produce precise masks for archaeocyathids.

The precisions of the archaeocyathid masks are particu-
larly important because the identification of spurious non-
archaeocyathid pixels interferes with measurements on the
rendered 3D model and consequently provides misleading
information about the reef’s structure. We would prefer that
a few archaeocyathids are missed rather than being fully
segmented in an instance containing non-archaeocyathid
pixels. In other words, we prioritize precision over recall.
Thus, in this work, we focus on leveraging model-editing,
with a specific goal of improving the precision of segmen-
tation masks.

4. Addressing Interclass Confusion
4.1. Identify model weakness

Archaeocyathid vs. non-archaeocyathid fossil confusion.
For our dataset, the Mask R-CNN sometimes labels in-
stances of another fossil called calcimicrobe (Fig. 1) along
with a few other non-archaeocyathid fossils as archaeocy-
athids. To analyze this trend, we occlude all archaeocy-
athids from an image by inpainting them with a shade of
red mud that we extract from a manually-selected red mud
pixel. While the Mask R-CNN ideally should identify no
archaeocyathids in the perturbed image, it instead classifies
large portions of calcimicrobe as archaeocyathids (Fig. 4).
Thus, the Mask R-CNN cannot clearly distinguish between
archaeocyathids and calcimicrobes.

Archaeocyathid vs. red mud separability. As a comple-
mentary occlusion, we inpaint all non-archaeocyathid pix-
els with a shade of red mud (Fig. 7b) in our 6 training im-
ages and run inference. The quality of the instance masks
drastically improves (mean instance-level IoU across all
443 archaeocyathids from training images increases from
0.63±0.29 to 0.78±0.24, mean instance-level precision in-
creases from 0.78±0.22 to 0.89±0.17, mean instance-level
recall increases from 0.78 ± 0.25 to 0.86 ± 0.20) (Fig. 5).
Thus, the model generally can distinguish between archaeo-
cyathids and a simplified version of red mud.

Since we only need to isolate the archaeocyathid pixels,
we have a binary segmentation task with archaeocyathids as
positive pixels and non-archaeocyathids as negative ones.
Thus, it would be ideal if the model associated all negative
pixels with a concept it already recognizes, namely red mud.

4.2. Mitigate model weakness

Mapping non-archaeocyathids to red mud to reduce in-
terclass confusion. To enforce this binary supercatego-
rization, we apply the model-editing method [32] to one
training image such that the model is encouraged to asso-
ciate all non-archaeocyathid pixels with red mud (Fig. 6).
Specifically, our k∗ (Fig. 3) is the input representation of
the original image (Fig. 7a), and our v∗ is the output rep-
resentation of the same image with all non-archaeocyathid
pixels inpainted with red mud (Fig. 7b). We perform 20k
rewriting steps at a learning rate of 10−4. Furthermore, we
try editing with each of the 6 training images individually.

Figure 4. Example of interclass confusion. Resulting segmenta-
tion when archaeocyathids are inpainted with a shade of red mud.
The Mask R-CNN misclassifies several instances of calcimicrobe
(boxed and filled with various colors) as archaeocyathids.

Figure 5. Example of improved masks from inpainted image.
The mask of this archaeocyathid improves when the original image
(left) is inpainted with red mud (right).

The model-editing method applies to feature maps, so we
edit the weights of each of the 5, 3x3 output convolutional
layers in the ResNet-101 FPN backbone [15] that produce
the feature maps for the Mask R-CNN. Doing so means that
we perform the edits at different resolutions and can conse-
quently target objects of various sizes in the image.
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Figure 6. Mapping non-archaeocyathids to red mud. We ap-
ply the model-editing method to map the input representation of
the unperturbed image (left) to the output representation of the in-
painted image (right) to enforce a binary supercategorization of
archaeocyathids and non-archaeocyathids.

(a) Original image.

(b) Inpaint all non-archaeocyathids with a shade of red mud.

(c) Substitute porous texture for all archaeocyathids.

(d) Inpaint (b) and (c) simultaneously.

Figure 7. Image perturbations. (a) shows the original train-
ing image with magnified archaeocyathids, (b) shows the version
of the image with all non-archaeocyathid pixels inpainted with a
manually-extracted solid shade of red mud, (c) shows the version
with only the archaeocyathids replaced with a porous texture, and
(d) shows the version with (b) and (c) simultaneously.

Evaluation details. Since the validation set was not used
when applying the model-editing method, we combine our

Figure 8. Example of overlapping instance masks. The original
model predicts two instance masks (one colored in purple and an-
other colored in red) for this archaeocyathid.

validation and test sets to evaluate the mapping on more
archaeocyathids. Specifically, we obtain the mean instance-
level precision, recall, and IoU across all 215 archaeocy-
athids in the 4 images using a confidence threshold of 0.
We use this threshold because we wish to evaluate whether
or not the Mask R-CNN classifies a pixel as an archaeocy-
athid at all. Since an archaeocyathid sometimes has sev-
eral, overlapping predicted masks (Fig. 8), we match each
ground truth instance to the predicted instance mask with
the highest IoU and take the mean across the matched pre-
dicted masks (i.e. the identified archaeocyathids) rather
than across all predicted masks to avoid inflating our results.

Precision of archaeocyathid masks improves. We find
that the precisions of archaeocyathid masks improve signif-
icantly, while the IoU and recall scores decrease (Tab. 2).
We also separately evaluate the mapping on each edit im-
age and observe a similar trend except that the mean IoU
improves for some images. For our application, precision
is the most important metric because the false identifica-
tion of extraneous fossils as archaeocyathids interferes with
measurements on the rendered 3D model. Thus, the map-
ping does reduce interclass confusion, even if it decreases
the coverage of archaeocyathid pixels.

The choice of training image does seem to impact the
performance; for example, editing with C improves the pre-
cision more than editing with E (Tab. 2). Additionally,
we try mapping different amounts of non-archaeocyathid
pixels to red mud, using image C because it produces
the best edited model. We find that mapping more non-
archaeocyathid pixels to red mud produces more precise
masks (Tab. 3). This trend suggests that mapping all the
non-archaeocyathid pixels at once is more effective than
mapping a small portion.

4.3. Editing with Multiple Images

In addition to editing with different images individually,
we test the effect of editing with more than one image.

Experimental details. We experiment with five addi-
tional mappings, each of which incorporates a new edit im-
age. We again use a learning rate of 10−4 and perform 20k
rewriting steps for each image. For example, A,B edits

4833



Image Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

A 0.90± 0.13 0.59± 0.26 0.52± 0.27
B 0.88± 0.17 0.59± 0.25 0.52± 0.27
C 0.91± 0.12 0.63± 0.26 0.56± 0.27
D 0.89± 0.15 0.64± 0.25 0.56± 0.27
E 0.87± 0.17 0.64± 0.26 0.56± 0.28
F 0.90± 0.15 0.65± 0.26 0.57± 0.27

Table 2. Mapping non-archaeocyathids to red mud. Metrics
computed on 215 archaeocyathids from 4 images (mean and stan-
dard deviation reported) when editing with each of the training
images. The “Image” column denotes the training image that was
used for editing. The top row indicates the original model’s per-
formance on the test images (no edits). Precision improves when
editing with any training image, while recall and IoU decrease.

with image A for 20k steps with lr = 10−4 followed by
image B for an additional 20k steps at the same learning
rate. We add images in order of increasing percentage of ar-
chaeocyathid pixels, so image A contains the lowest percent
of archaeocyathid pixels, and image E contains the high-
est percent of archaeocyathid pixels. Furthermore, we test
sequences in increasing and decreasing order of precision,
recall, and IoU (without incrementally adding images).

Editing with one image is sufficient. The performance
of the model edited with a combination loosely corresponds
to the performance of the model edited with the last image
in the combination. For example, the performance of the
model edited with A,B,C is identical to that of the model
edited just with C (Tabs. 2 and 4). More generally, the mean
instance-level metrics are similar to those under the model
edited with the last image in the combination. One excep-
tion is the model edited with A,B which performs worse
overall. Thus, we find that editing the model with one in-
painted image is sufficient.

5. Addressing Intraclass Inconsistencies
5.1. Identify model weakness

Archaeocyathids can have different textures. There ex-
ists a fair amount of intraclass variation among archaeocy-
athids. For example, there are recrystallized (white/gray)
and red mud filled (red/brown) archaeocyathids, irregular
(long) and regular (round) archaeocyathids, and more. We
denote the two primary textures as (a) and (b) (Fig. 1). The
Mask R-CNN segments (a) (archaeocyathids with porous
textures; mean precision = 0.84; mean recall = 0.67) better
than it segments (b) (archaeocyathids filled with red mud;
mean precision = 0.56; mean recall = 0.25) (Fig. 9).

Test effect of optimal texture. To test the effect of the
porous texture on the segmentation quality, we stitch copies

% Pixels Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

1 0.86± 0.16 0.75± 0.26 0.63± 0.28
35 0.90± 0.14 0.65± 0.29 0.57± 0.31
100 0.91± 0.12 0.63± 0.26 0.56± 0.27

Table 3. Mapping different amounts of non-archaeocyathid
pixels to red mud. Metrics computed on 215 archaeocyathids
from 4 images (mean and standard deviation reported). “% Pixels”
indicates the percent of non-archaeocyathid pixels in image C that
were inpainted with red mud. The first row shows performance
of the original model (no edits). The second row is when pixels
for one calcimicrobe are replaced. The third row is when non-
archaeocyathid pixels on the rock face (i.e. excluding the sides of
the rock and the platform on which the rock sits) are replaced. The
last row is when all non-archaeocyathid pixels are replaced. When
more non-archaeocyathid pixels are replaced, the precision of the
archaeocyathid masks improves.

Sequence Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

A,B 0.85± 0.24 0.39± 0.25 0.35± 0.24
A,B,C 0.91± 0.12 0.63± 0.26 0.56± 0.27
A,B,C,D 0.90± 0.14 0.64± 0.25 0.56± 0.27
A,B,C,D,F 0.89± 0.16 0.64± 0.26 0.56± 0.28
A,B,C,D,F,E 0.87± 0.18 0.67± 0.25 0.56± 0.28

E,B,D,A,F,C 0.91± 0.13 0.62± 0.27 0.55± 0.28
C,F,A,D,B,E 0.88± 0.15 0.65± 0.26 0.57± 0.27

A,B,C,E,D,F 0.90± 0.14 0.63± 0.26 0.57± 0.27
F,D,E,C,B,A 0.89± 0.15 0.59± 0.26 0.51± 0.27

B,A,E,D,C,F 0.89± 0.15 0.64± 0.25 0.57± 0.27
F,C,D,E,A,B 0.87± 0.16 0.62± 0.25 0.52± 0.27

Table 4. Mapping non-archaeocyathids to red mud using mul-
tiple, sequential edit images. Metrics computed on 215 archaeo-
cyathids from 4 images (mean and standard deviation reported).
The “Sequence” column denotes the sequence of training images
used for each edit. The first set of 6 sequences corresponds to
adding one image at a time. The next set of 2 sequences is in order
of increasing and decreasing precision when using a single image
(Tab. 2). The next two sets are in order of increasing and decreas-
ing recall and IoU respectively. Most combinations are compa-
rable to editing with the last image only (Tab. 2) and generally
improve precision while decreasing recall and IoU.

of a square crop of the texture from one such porous-
textured archaeocyathid to form a continuous textured im-
age of the same size as our images. We then substitute the
texture in for all the archaeocyathids in the training images
(Fig. 7c) and run inference on the modified images. The
quality of the masks improves (mean IoU increases from
0.63 ± 0.29 to 0.66 ± 0.31) though to a lesser extent than
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Figure 9. Inconsistent segmentation of archaeocyathids. Exam-
ples of output archaeocyathids masks with varying segmentation
quality. The Mask R-CNN fails to segment the irregular, red mud
filled (b) archaeocyathid but produces a complete mask for the reg-
ular, (a) archaeocyathid that contains a porous texture.

Figure 10. Example of improvement due to texture replace-
ment. An example of a red mud filled archaeocyathid that the
model misses in the unperturbed image (left) and perfectly seg-
ments when replaced with a porous texture (right). A similar trend
occurs for other red mud filled archaeocyathids.

the predicted masks for the inpainted non-archaeocyathids.
Further analysis shows that there is an increase both in
instance-level precision (mean increases from 0.78 ± 0.22
to 0.80±0.17) and recall (mean increases from 0.77±0.25
to 0.87±0.23). Qualitatively, we find that the segmentation
of previously poorly-segmented archaeocyathids improves
(Fig. 10).

5.2. Mitigate model weakness

Mapping archaeocyathids to the optimal texture.
Since the modified images seem to solicit an improved
segmentation, we apply the model-editing method to map
poorly-performing archaeocyathids to the porous texture
equivalent. Unlike our previous extension of the model-
editing method to enforce a binary supercategorization, we
use the method to strengthen the characteristics of the ar-
chaeocyathid class (i.e. a similar reason as the original
work [32]). We edit with each of the 6 training images in-
dividually and produce two additional models edited with
image D to test the effect of replacing different amounts of
archaeocyathid pixels with the porous texture.

Results Although mapping all the archaeocyathids to the
porous texture at once sometimes improves the segmenta-
tion of the edit image itself, it generally produces masks

Image Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

A 0.85± 0.16 0.70± 0.30 0.56± 0.32
B 0.84± 0.16 0.70± 0.29 0.55± 0.32
C 0.85± 0.18 0.73± 0.29 0.59± 0.31
D 0.84± 0.15 0.72± 0.28 0.55± 0.32
E 0.80± 0.20 0.69± 0.32 0.52± 0.34
F 0.85± 0.15 0.70± 0.30 0.57± 0.32

Table 5. Mapping all archaeocyathids to porous texture. Met-
rics computed on 215 archaeocyathids from 4 images (mean and
standard deviation reported) when editing with each of the training
images. The top row shows the original model’s performance (no
edits). None of the edits produce an improvement over the original
model.

% Pixels Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

6 0.86± 0.16 0.75± 0.26 0.62± 0.29
49 0.85± 0.16 0.74± 0.26 0.61± 0.29
100 0.84± 0.15 0.72± 0.28 0.55± 0.32

Table 6. Mapping different amounts of archaeocyathid pix-
els to porous texture. Metrics computed on 215 archaeocyathids
from 4 images (mean and standard deviation reported). “% Pix-
els” indicates the percent of archaeocyathid pixels in image D that
were replaced with the porous texture. The first row shows the
original model’s performance (no edits). The second row is when
pixels for one, (b) archaeocyathid are replaced. The third row is
when pixels for 18 (b) archaeocyathids (roughly 50% of archaeo-
cyathid pixels) are replaced. The last row is when all archaeo-
cyathid pixels are replaced. The performance for 6% of replaced
pixels is nearly identical to that under the original model; none of
the edits show an improvement over the original model.

with lower IoUs and does not improve the precision or re-
call for the unseen images (Tab. 5). Furthermore, map-
ping fewer archaeocyathid pixels to the porous texture does
not significantly change the performance from the original
model (Tab. 6). Thus, mapping the archaeocyathids to the
porous texture does not seem to be an effective approach.
This trend likely occurs because the visual contrast between
archaeocyathids and the porous texture is less vivid than that
between non-archaeocyathids and red mud (Sec. 4).

6. Combinations of Mappings
6.1. Simultaneous Mapping

When we run inference on training images where
both non-archaeocyathids are inpainted with red mud
and archaeocyathids are replaced with the porous texture
(Fig. 7d), the segmentation improves (mean IoU improves
from 0.63 ± 0.29 to 0.71 ± 0.30, mean precision improves
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from 0.79± 0.22 to 0.85± 0.17, and mean recall improves
from 0.77± 0.25 to 0.88± 0.21).

However, when we edit (20k steps; lr = 10−4) with
these images, the edited model produces lower quality
masks for both the edit image and the unseen images
(Tab. 7). Thus, this mapping is not an effective approach.

Image Precision Recall IoU

None 0.86± 0.17 0.75± 0.26 0.63± 0.28

A 0.82± 0.19 0.58± 0.29 0.41± 0.30
B 0.82± 0.18 0.58± 0.29 0.41± 0.31
C 0.81± 0.22 0.57± 0.32 0.44± 0.32
D 0.82± 0.20 0.61± 0.29 0.45± 0.32
E 0.76± 0.26 0.67± 0.30 0.43± 0.33
F 0.79± 0.24 0.66± 0.29 0.48± 0.33

Table 7. Mapping simultaneously. Mean and standard deviation
are computed on 215 archaeocyathids from 4 images when editing
with each of the training images. The top row indicates the original
model’s performance on the test images. None of the edits produce
an improvement over the original model.

6.2. Sequential Mapping

In addition to simultaneously mapping to both perturba-
tions, we try mapping the non-archaeocyathids to red mud
and then mapping the archaeocyathids to the porous tex-
ture. This procedure is identical to editing on multiple im-
ages with the non-archaeocyathids to red mud perturbation
(Sec. 4.3) except we edit (20k steps; lr = 10−4) to an im-
age with only the non-archaeocyathids inpainted followed
by an image with only the archaeocyathids inpainted (and
vice versa). We perform this mapping with image C since it
produces the most improvement in the non-archaeocyathids
to red mud mapping (Tab. 2). We find that the performance
of each sequentially edited model corresponds to the per-
formance of the last mapping in isolation. For example,
the model edited with the non-archaeocyathid mapping fol-
lowed by the archaeocyathid mapping produces masks of
similar quality to the model edited with the archaeocyathid
mapping alone (Tab. 8). This trend seems reasonable given
the results from the earlier multi-image edit experiments.

7. Conclusion
In this work, we focus on improving a fossil segmen-

tation model first by identifying its model weaknesses via
image perturbations and second by mitigating those weak-
nesses using model editing. Specifically, we study a Mask
R-CNN trained on a small, fine-grain rock sample dataset
to segment instances of archaeocyathid fossils.

First, we show how inpainting and texture synthesis
can identify model weaknesses such as interclass confusion

Order Precision Recall IoU

Ar 0.85± 0.18 0.73± 0.29 0.59± 0.31
No 0.91± 0.12 0.63± 0.26 0.56± 0.27

Ar, No 0.91± 0.12 0.62± 0.27 0.56± 0.28
No, Ar 0.85± 0.16 0.73± 0.28 0.59± 0.31

Table 8. Mapping sequentially. Metrics computed on 215 ar-
chaeocyathids from 4 images (mean and standard deviation re-
ported); all edits were done using only image C. Ar, No represents
mapping archaeocyathids to porous texture followed by mapping
non-archaeocyathids to red mud; No, Ar represents the reverse se-
quence. Ar and No results are from Tabs. 2 and 5. The result of
each sequential mapping is similar to the result when editing with
the last mapping only (i.e. Ar, No is similar to No).

(e.g. our model confused a different type of fossil for ar-
chaeocyathids) and intraclass inconsistencies (e.g. perfor-
mance varied for archaeocyathids with different textures).
Second, we extend a model-editing technique [32] for im-
age classification to image segmentation and show how to
best apply it to mitigate identified model weaknesses. We
show that one edit image is sufficient, that mapping all rele-
vant pixels is more effective than mapping fewer pixels, and
that sequentially performing edits typically yields the same
performance as the last edit alone.

We also demonstrate that model editing may not work in
challenging circumstances when the visual appearance of
an object is very similar to that of another type of object
in the edit image. Lastly, we find that while model-editing
can negatively impact IoU and recall, it can improve pre-
cision when designed to mitigate interclass confusion (e.g.
treating non-archaeocyathid pixels as red mud).

Although our work focuses on improving a fossil seg-
mentation model, our methodology may be useful for tack-
ling similar problems that involve training a segmentation
model on a small, fine-grained dataset. Further research
could investigate what properties of the images cause one
training image to be more effective than another and work
towards mitigating the negative impacts on IoU and recall.

Limitations. Given that our work focuses on editing a
Mask R-CNN trained on a few images from one rock sam-
ple, the main limitation is that our findings may not gener-
alize well to other segmentation models trained on small,
fine-grain datasets. Our goal is to present a novel combina-
tion of techniques for investigating and improving the per-
formance of segmentation models with a limited amount of
labeled data, and we ran extensive experiments to substan-
tiate our decisions. Thus, work in novel domains should
validate our findings on their own models and datasets.
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