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Figure 1. Audiovisual temporal context is an important cue for the temporal localization of actions in egocentric unedited videos.
In video (a), the action, turning off the extractor fan, is more evident when observing the interplay between audio and visual streams. The
fan is invisible, but the interruption of the humming noise in the audio signal provides context to the movement of the hand in the visual
domain. Tn video (b), the recorder prepares a glass of juice. The green drawn boxes spatially localize the juice box. Knowing the content
of the box in action pour juice could help in predicting ambiguous actions grab juice, open juice, and close juice (green arrows). By
following the violet arrows in the labels, we can see the pattern of how people interact with kitchen items (e.g. opening something, using
it, then closing it).

Abstract

Egocentric videos capture sequences of human activities
from a first-person perspective and can provide rich multi-
modal signals. However, most current localization methods
use third-person videos and only incorporate visual infor-
mation. In this work, we take a deep look into the effective-
ness of audiovisual context in detecting actions in egocen-
tric videos and introduce a simple-yet-effective approach
via Observing, Watching, and Listening (OWL). OWL lever-
ages audiovisual information and context for egocentric
Temporal Action Localization (TAL). We validate our ap-
proach in two large-scale datasets, EPIC-KITCHENS and

HOMAGE. Extensive experiments demonstrate the rele-
vance of the audiovisual temporal context. Namely, we
boost the localization performance (mAP) over visual-only
models by +2.23% and +3.35% in the above datasets.

1. Introduction

Egocentric videos capture the world using wearable
cameras. Arguably, in these videos, localizing actions in
time is top of mind [14]. In doing so, we could enable
world-changing applications such as an episodic memory
AI assistant for health monitoring. Localizing and recog-
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nizing human actions in egocentric videos imposes several
challenges. Due to the capture nature, videos tend to be
long and highly unconstrained w.r.t. the activities occurring
on the stream. Given that the capture happens through a
camera mounted on a person’s head, challenging conditions
such as undesired camera motions, occlusions, and poor-
quality video make the problem of localizing and recogniz-
ing actions a complex task. Additionally, existing egocen-
tric datasets, e.g. EPIC-KITCHENS [15], focus on localiz-
ing atomic actions that happen densely across long videos.
Consequently, the performance of egocentric TAL lags far
behind compared to that in the third-person setting [33].
Given such complexity, analyzing the relationships of ac-
tions and looking beyond visual cues is essential in an ego-
centric scene.

Despite its challenges, there are particular properties of
the current egocentric datasets [15,37] to benefit TAL. Since
the videos are unedited and continuous, the audio stream is
synchronized with the visual stream, capturing the sounds
and appearance of what is happening in the video at the
moment. This differs from videos in traditional datasets cu-
rated from online video platforms like YouTube. In such
datasets and due to the editing, audio might not correspond
to the original sounds present in the scene. In the egocen-
tric video, we argue that audio plays an important role in
assisting visual models in localizing human actions. For
example, looking at Fig. 1a, we notice a person reaching
for something in a kitchen. Because of the camera view,
we cannot see the object they are interacting with. Can we
guess what exactly they are doing? By observing the light-
ing and the location (above the stove), we could imagine the
interaction with the fan. But how can we discern if the fan
was turned off or on? By hearing the sounds from the scene,
you would not doubt that the person is ‘turning off the ex-
traction fan’. The fan’s distinctive humming noise and its
disappearance indicate the action happening and its precise
temporal endpoints.

Using temporal context has been proven to be effective
for both action recognition and localization [11, 25, 34, 45,
48–50]. Temporal context might be even more informative
in egocentric videos. For instance, at being unedited and
continuous, actions unfold, with a more often than not, pre-
dictable sequence [21,22,25]. To illustrate how context can
help localize egocentric actions, we present a toy example in
Fig. 1b. Looking at the sequence holistically, the scenario
is clear: the recorder prepares a glass of juice. We could
probably struggle to recognize some actions if we look at
each shot separately (imitating a neural network classify-
ing a trimmed clip). It is unclear that the box, which the
recorder grabs from the fridge, then opens and closes, con-
tains juice. When we see some orange liquid (and hear)
pouring from it, we can guess it must be orange juice. The
instances ‘grab juice’ and ‘pour juice’ are almost five sec-

onds away but still are informative to each other. More-
over, by leveraging context, we can decode the sequential
patterns of actions in cooking activities. We argue that au-
diovisual context provides priors to localize actions better.

We propose OWL (Observe, Watch, Listen), a simple-
yet-effective transformer-based architecture that leverages
audiovisual context to localize actions in egocentric videos.
We do a methodical analysis to verify the importance of
audiovisual context in egocentric videos. First, we study
which components of the action localization pipeline would
benefit from audio cues (Sec. 4, Tab. 1). Furthermore, we
analyze what temporal neighborhood provides the richer
context (Sec. 4, Tab. 3). Finally, we analyze how visually
occluded instances largely benefit from the context in ego-
centric videos (Sec. 4, Tab. 6). OWL uses self-attention
to encode context within each modality and cross-attention
to capture relevant context across modalities. Our experi-
ments on EPIC-KITCHENS [15], and HOMAGE [37] val-
idate that OWL effectively encodes audiovisual context for
egocentric TAL and significantly improves over proposed
audiovisual baselines.
Contributions. The contributions of our work are three-
fold: (1) We propose a transformer-based method for ego-
centric action localization by effectively fusing audiovisual
context (Sec. 3). (2) We conduct extensive experiments on
EPIC-KITCHENS and HOMAGE in Sec. 4.3, and achieve
competitive results. (3) We conduct a thorough analysis
that validates our hypothesis and findings about the audio-
visual context for action localization in egocentric videos
(Sec. 4.4).

2. Related Work
Audiovisual learning. Video and audio are common
modality choices for a multi-modal learning scenario in
video understanding. Deep learning facilitates audiovi-
sual learning as it enables learning per-modality hierarchi-
cal representations [38], which are more optimal than de-
signing hand-crafted features. Recent works provide us
with more sophisticated solutions where the learned modal-
ity representations are being fused implicitly by the net-
work and are optimized for the downstream task, such as
[1, 17, 25, 26, 32, 44, 46]. While several works discussed the
audiovisual scenario for the action recognition task [46],
incorporating audio for TAL is not a widely researched
area. [41] proposes a new task of audiovisual event localiza-
tion that aims at predicting the event class from a 10-second
clip. [4] studies multi-modal fusion approaches for audio-
visual localization but ablates it on third-person datasets.
Compared to them, we design our method for long, diverse
egocentric videos. We are particularly motivated by [26],
who emphasized the advantage of using egocentric unedited
videos for applying audiovisual learning in action recogni-
tion. To the best of our knowledge, we are the first work
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that analyzes this advantage in egocentric TAL.

Temporal action localization (TAL). Given an untrimmed
video, TAL models aim to detect the boundaries and classes
of all actions happening inside the video. Recent work
can be categorized into separate-stage and combined-stage
methods. The separate-stage methods generate a set of
class-agnostic proposals (generation) first and then use a
separate classifier to assign an action class to each pro-
posal [5,8,18,28,29,48]. Most existing separate-stage meth-
ods focus on generating better proposals and rely on global
video classification models and dataset statistics to classify
them. Combined-stage solutions perform action localiza-
tion in one unified pipeline by optimizing for both tasks si-
multaneously [30, 33, 47, 51, 52]. In this paper, we follow
the separate-stage approach.

Egocentric (unedited) videos. TAL has been extensively
studied for third-person and mostly edited videos (typi-
cally from consumer media platforms like YouTube and
movies) [9, 24, 53]. The appearance of new large-scale
egocentric datasets [15, 23, 37] opened up a unique oppor-
tunity for researchers to study human actions in unedited
videos. The annotations for action localization in most
common (third-person) benchmarks are relatively sparse,
with a low variation in assigned classes per video (Activ-
ityNet [9] has on average 1.5 instances and 1.0 class per
video, in THUMOS14 these numbers are 15.4 and 1.1, re-
spectively). That makes it possible to condition the lo-
calized action class by gathering visual cues at the video
level. This paradigm is not suitable for more dense and di-
verse datasets. For instance, EPIC-KITCHENS has, on av-
erage, 128.5 instances and 53.2 classes per video. That said,
assigning proposals with a single video-level class would
yield pretty poor localization results. To address the densely
annotated videos on EPIC-KITCHENS, Damen et al. intro-
duce a baseline separate-stage approach using BMN [28]
proposals and SlowFast [20] classification. [33] proposes a
combined-stage method (AGT) that leverages graph-based
and transformer-based architectures to localize and classify
actions jointly. Note that these approaches do not explicitly
(or implicitly) model temporal context or leverage the ego-
centric audio streams. Our work lies in the separate-stage
group; thus, to design OWL, we thoroughly investigate ef-
fective multi-modal and contextualized classifiers to assign
each proposal an action class.

Temporal context in action localization. The importance
of temporal context has been a long-standing aspect in ac-
tion localization [2, 13, 36, 45, 48, 49]. Some works [48, 49]
propose graph-based methods, where they define propos-
als and snippets as graph nodes and perform graph con-
volutions for the information exchange. Our approach is
closer to recent work that leverages the Transformer archi-
tecture [31, 33, 40]. Due to the rising popularity of trans-

formers for vision tasks [3, 10, 16], a few works [31, 33, 40]
extended the transformer building blocks to the inner work-
ing of TAL as a way to infuse temporal context between pro-
posals. In contrast to the prior art, our work considers the in-
terplay of multiple modalities, visual and audio, while also
modeling the surrounding context of an action. By putting
audiovisual context at the forefront, architectural differ-
ences arise in comparison to existing transformer-based ap-
proaches.

3. Methodology
Given a sequence of video frames V = {It}Tt=1 , the task

of TAL is to predict a set of segments Ψ = {τn, sn, yn}Nn=1

with start/end timestamps τn, confidence score sn and ac-
tion class labels yn. In our work, we consider both the
visual and audio modalities of the video sequence. We
first encode either modality into snippet-level features x ∈
RD×L [18, 48], where L is the number of encoded snippets
and D is the channel dimension. The feature encoder usu-
ally adopts the pre-trained backbone of an action recogni-
tion model, such as [20,43]. Our approach follows a sepa-
rate-stage pipeline, where Proposal generator G generates
class-agnostics proposals ΨG = {τn, sn}Nn=1, and then the
Proposal classifier C assigns a class label yn to them (in-
cluding background class), as shown in Fig. 2a.

Observe, watch, and listen. We propose OWL (Observe,
Watch, Listen), a transformer-based model [42], to leverage
multi-modal context in TAL. It uses an encoder composed
of a self-attention module to encode the audio features and
a decoder composed of a self-attention and a cross-atten-
tion modules to encode the visual features and to fuse both
modalities (Fig. 2b). Besides watching the visual signal
and listening to the audio signal, our OWL is also able to
observe each proposal in the context of its neighbors’ pro-
posals. We model the visual and audio proposal-level fea-
tures zv and za as the input tokens for the transformer. We
use the superscripts v and a for the visual and audio modal-
ities, respectively.

Positional encodings. As transformer operations are per-
mutation invariant, we use positional encodings to preserve
the temporal relationship of the proposals. We encode the
relative proposal start time and its absolute duration. The
relative start time pr incorporates the position of an action
in the video and the temporal order of actions. By encoding
the absolute duration pd, we inject the temporal informa-
tion that is lost after pooling. Specifically, pd = te − ts and
pr = ts

T , where te and te are the proposal’s predicted start
and end times, respectively. We pass pr and pd to a fully-
connected (FC) layer to generate the positional encoding
p ∈ RDe

[19]. p is concatenated to zv and za and passed
to the transformer encoder.

Intra-modal & inter-modal context. For each token of
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Figure 2. (a) Separate-stage pipeline for TAL. Given a sequence of snippet features, G produces class-agnostic action proposals with
start/end timestamps. Then, C takes a set of proposal features and produces classification labels for each proposal. (b) OWL: We input the
auditory sequence (yellow) into the encoder and the visual sequence (blue) into the decoder. K,V , and Q refer to the components of multi-
head attention as in [42]. The encoder and decoder first perform self-attention to enrich the intra-modal representations. Then, the decoder
performs multi-head cross-attention. The amount of context W (the green band on the attention pattern), within which self-attention and
cross-attention act, can be controlled by the attention mask of size M ×M . M is the input sequence size (number of proposals).

either modality, the self-attention module observes its rel-
evant intra-modal context, correlating other proposals to
enhance its feature representation. After self-attention, we
obtain enhanced representations zve and zae for each pro-
posal. The transformer decoder fuses both modalities. It
contains a cross-attention module, which takes zve and zae
as input tokens. The visual modality tokens are used as
queries Q, and audio modality tokens are used as keys K
and values V (Fig. 2b). Recall that attention mechanism
transforms Q,K, V as

Attention(Q,K, V ) = softmax

(
QKT

√
D

)
V. (1)

Hereby, the audio features are linearly combined based on
the similarities between video and audio proposal-level fea-
tures. The resulting features are enriched by observing the
inter-modal context from neighboring proposals. Theo-
retically, we can correlate all M proposals in a video, but
to study how much context is needed, we restrict the self-
attention and the cross-attention to attend only to the pro-
posals within a temporal neighborhood W (inspired by [6]).
As shown in Fig. 2b, each proposal can attend to only W

2 to-
kens from each side.

Training and inference. We generate classification scores
based on the enriched proposal-level features produced by
OWL. We train the classifier C using standard cross-entropy
loss. For the datasets with multiple annotations per instance
(e.g. noun and verb in EPIC-KITCHENS), we optimize for
both noun and verb classification with a joint loss. During
inference, we multiply the scores of each noun and verb
prediction pair to generate the action scores.

4. Experiments
4.1. Dataset

We evaluate our proposed method on two large-scale
egocentric video datasets. EPIC-KITCHENS [15] con-
tains 700 unscripted videos of people performing their daily
kitchen routines. It has, on average, 129 annotated instances
per video, which make it significantly harder to perform
TAL compared to the established benchmarks [9, 24, 53].
Around 28% of actions overlap, and each annotated in-
stance is composed of a verb and a noun pair describing
an action performed with an object. Overall, there are 300
noun and 97 verb classes.

HOMAGE [37] is a multi-view action dataset with au-
diovisual synchronized video data containing a diverse set
of daily activities. It has, on average, 15 instances per video,
and 90% of the scenes in HOMAGE have the egocentric
view. The action annotations for HOMAGE are not de-
composed into nouns and verbs, as in EPIC-KITCHENS.
Therefore, we adapt our model to provide predictions for
each action class directly. We train our model for 446 (out
of 453) classes, as we removed some videos due to issues
with the metadata.

4.2. Implementation Details

Features. For EPIC-KITCHENS, we experiment with au-
diovisual TBN [26], and a combination of visual Slow-
Fast [20] and auditory SlowFast [27] features. We observe
that using SlowFast features shows superior performance
than TBN. Thus, we report all experiments using SlowFast
features. We provide TBN experiments in the supplemen-
tary. We extract features at 5 FPS for training the proposal
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Table 1. Showing how uni-modal and multi-modal inputs affect the performance on EPIC-KITCHENS, measured by the average
mAP. A, V, and AV - auditory, visual, and audiovisual inputs, respectively (e.g., G-V x C-AV means that we input video features to proposal
generator and audiovisual to the proposal classifier). We report the results on the validation set. Using audiovisual inputs results in a
performance boost compared to uni-modal inputs for proposal classification and generation stages.

Noun Verb Action
C-A C-V C-AV C-A C-V C-AV C-A C-V C-AV

G-A 2.00 9.01 9.81 2.00 8.17 8.94 0.45 5.65 6.70
G-V 1.60 10.64 12.48 1.76 10.59 11.96 0.59 7.06 7.66
G-AV 2.03 11.22 12.63 2.10 10.01 11.47 0.71 7.69 8.35

generator and max-pool them temporally for the proposal
classification part. SlowFast features have a dimensionality
of D = 2304. For EPIC-KITCHENS, both backbones are
pre-trained on the EPIC-KITCHENS recognition task. For
HOMAGE, the auditory SlowFast is pre-trained on VGG-
Sound [12], and the visual on EPIC-KITCHENS.
Proposal generation. We use BMN [28] as our G. In [28],
the input is rescaled to a fixed size before being fed to
the network. Given that the datasets are dense and contain
mostly atomic actions, we implemented the sliding window
approach (similarly to [35]). We use the sliding window of
size 256 and the stride of 128 (160 and 80, respectively, for
HOMAGE). We show the increase in average recall when
using the sliding windows compared to the rescaling of the
inputs in Table 2. As mentioned in [52], feature rescaling is
suboptimal for detecting short actions in long videos. This
is particularly relevant for our work as EPIC-KITCHENS
is annotated with many atomic instances, and a video dura-
tion can exceed one hour. We also show the ablation for the
best window size in the supplementary. We find a simple
concatenation of visual and audio features, followed by an
FC layer, to be an effective strategy to fuse the modalities
(early fusion). We apply Soft-NMS [7] as post-processing.

Features AR (%)

Rescaling 54.91
Sliding window 64.61

Table 2. Proposal Average Recall (AR) on EPIC-KITCHENS
for the proposals treating the input sequence with rescaling vs. us-
ing the sliding windows. As videos can vary in duration, their
features can have different temporal dimensions. We investigate
two types of input sequence treatment in the proposal generator:
(1) rescaling the features to produce the input of a particular tem-
poral size and (2) iterating over the features with a sliding window.
We can see that the sliding window approach results in a 10% AR
increase compared to rescaling.

Proposal classification. In OWL, both the transformer en-
coder and decoder have 1 layer and 8 attention heads with a
hidden unit dimension of 512. We experiment using learned
or fixed positional encodings and find that the learned en-

codings perform better. The dimensionality of positional
encodings De = 32. We also provide baselines with var-
ious multi-modal fusion strategies in the supplementary.
These baselines perform worse than OWL.

4.3. Quantitative Results

Audiovisual impact. Before incorporating context with
OWL, we validate a simple baseline to verify the impact
of the auditory signal on G and C. Here, instead of using the
transformer, we simply concatenate audiovisual inputs and
use FC layer to encode the proposal feature (no context).

We demonstrate the performance for 9 combinations of
inputs in Tab. 1: G with visual (V) and/or auditory (A) in-
puts followed by C with visual (V) and/or auditory (A) in-
puts. We find that the audiovisual classifier (C-AV) achieves
the best results for all tasks (noun, verb, action). Further-
more, the audiovisual generator (G-AV) performs the best
for nouns and actions. This finding validates our intuition
that audio is a complementary signal to the video for de-
tecting egocentric actions for both localization and recog-
nition. We hypothesize that audio helps localize actions
where visual interactions are occluded (an obstacle, bad
camera view), unclear (dark environments), or ambiguous
and where the audio signal is strong enough and discrim-
inative. We discuss these scenarios in Sec. 4.4. Note that
our naive audiovisual baseline (G-AV and C-AV) achieves
8.35% and already improves the action mAP by 1.3% when
compared to visual-only performance (G-V and C-V) of
7.06%. We will further refer to the visual-only model as
VM.

Incorporating context. In Tab. 3a, we ablate on the atten-
tion window size W . We find that increasing the window
size does improve the performance of our model, validat-
ing our theory that the temporal context is useful for the
proposal classification. Specifically, for EPIC-KITCHENS,
W = 32 (9.06%) and W = 64 (9.29%) give us the best ac-
tion average mAP. Using a smaller window performs com-
parably to the audiovisual baseline. Enlarging the window
further degrades the performance slightly, suggesting that
temporally distant proposals become irrelevant. Similarly,
for HOMAGE increasing W improved the performance and
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Table 3. The effect of attention window size W in the trans-
former block as described in Sec. 3. We report the performance
on the validation set, measured by the average mAP (%). Each
token on the attention pattern can attend to W

2
tokens from each

side. The optimal context size is 64 for EPIC-KITCHENS and 4
for HOMAGE. As discussed in Sec. 4.3, the differences in the rel-
evant context size can be explained by the annotation density of
the datasets.

(a) EPIC-KITCHENS

W 0 4 16 32 64 128 256 512

Noun 12.52 13.33 13.32 13.22 13.96 13.89 13.23 12.64
Verb 11.86 11.60 11.39 12.15 11.67 12.16 11.64 11.53

Action 8.21 8.71 8.90 9.06 9.29 8.78 8.58 8.66

(b) Homage

W 0 2 4 5 6 7 8 9

Action 8.17 9.11 9.59 9.43 9.46 9.07 8.78 8.64

Table 4. Action localization on HOMAGE. We compare the per-
formance of the visual-only model (VM) vs. OWL. OWL signifi-
cantly improves over the proposed baseline.

Method VM OWL

Average mAP 6.16 9.59

reached its peak of 9.59% with W = 4. Recall that EPIC-
KITCHENS has, on average, ∼8.6 times more instances
per video. Overall, our findings are similar to the obser-
vation on the optimal temporal context in [25]. However,
they measure the context window size in trimmed actions
and OWL in proposals. As proposals are dense and noisy
and can be classified as background, our optimal window
size is larger.

Comparison with the state-of-the-art. We compare the
performance of OWL on EPIC-KITCHENS with the exist-
ing methods in Tab. 5. OWL performs significantly bet-
ter than the baselines [15, 33] and achieves 9.29% average
mAP for the action class. For HOMAGE, to the best of our
knowledge, we are the first work to explore it for TAL. As
shown in Tab. 4, OWL achieves 9.59% average mAP, a de-
cent performance for more diverse dataset activities, and a
good baseline score to encourage more contributions from
future work. In addition, we compare OWL with VM to
validate the effectiveness of our approach to incorporate au-
dio. OWL significantly outperforms VM by 3.43% average
mAP.

4.4. Performance Analysis and Qualitative Results

Visual occlusion analysis. We validate the hypothesis that
OWL helps to detect actions in visually occluded environ-
ments by comparing the mAP of more-occluded vs. less-

occluded instances. To define the occlusion level, we as-
sume that the visual occlusion must happen in the place
of hand-object interactions. We utilize the detected hand-
object interactions in EPIC-KITCHENS [39]. We measure
the percentage of occluded frames per action instance by
considering a frame as occluded when the object’s bound-
ing box of the interaction is missing. Then, we divide the
validation set into 3 disjoint partitions: No occlusion, Low
occlusion (< 8%), High occlusion (> 8%). We empir-
ically find that 8% of occluded frames balances the size
of the three partitions. We then evaluate VM and OWL
on these partitions and measure performance improvement.
As shown in Tab. 6 both models achieve the lowest per-
formance on High occlusion across all tasks. As we hy-
pothesized, we achieve the highest performance boost when
using OWL over VM on High occlusion instances (56.7%
improvement on action task vs. only 18.0% with Low oc-
clusion and 22.2% with No occlusion).

Per-class performance of OWL. In Fig. 3, we show a per-
class performance comparison of OWL vs. VM on EPIC-
KITCHENS. We plot the absolute performance improve-
ment for the noun and verb classes, measured by average
precision (AP). We can observe that OWL performs better
than VM for most verb and noun classes. We attribute the
improvements to audio or context incorporation.
Audio. Verbs drink, pour, crush have distinctive sounds,
and OWL performs better than VM in these classes. Drink,
is an interesting case as the sound source is very close to the
camera microphone. As we expect, OWL improves by more
than 10% in this class. Likewise, several nouns, such as ma-
chine:washing, toaster, fridge, fan:extractor, microwave,
kettle, etc., are electronic appliances which usually have dis-
tinctive sounds when turned on/off and while operating.
Context. Several verbs, such as transition (used inter-
changeably with move, walk in in the dataset taxonomy),
open, put, close are predicted better with OWL. We believe
that the improvement in these verb classes can be attributed
to context incorporation. As mentioned in Fig. 1, humans
often do their routine kitchen activities following some pat-
terns (logical order in human-object interactions). We also
observed that in EPIC-KITCHENS annotations, packaged
food is often annotated as if its content was revealed (e.g.
a closed package is annotated as peas, or orange juice as
in Fig. 1). Predicting the content of packaged food without
context is challenging, even for humans. We find that nu-
merous food classes are ambiguous when shown packaged,
such as salt, cereal, pasta, juice, meat, grape, nut, carrot,
etc. We attribute the improvement in these classes to the
context incorporation in OWL.

Qualitative Results. Fig. 4 visualizes the localization re-
sults of OWL and compares them to the results of VM. As
we can see, VM fails to predict open juice and close juice
actions. However, OWL predicts them successfully. We be-
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Table 5. Action localization on EPIC-KITCHENS. We measure mAP@tIoU for tIoU ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and the average mAP
on the validation and test sets. For reporting results on the test set, we do not use validation set for training, compared to [15]. OWL
significantly improves over the presented baseline methods.

Method mAP (Val) for Noun classes @tIoU mAP (Test) for Noun classes @tIoU
0.1 0.2 0.3 0.4 0.5 Avg. 0.1 0.2 0.3 0.4 0.5 Avg.

Damen et al. [15] 10.31 8.33 6.17 4.47 3.35 6.53 11.99 8.49 06.04 4.10 2.80 6.68
AGT [33] 11.63 9.33 7.05 6.57 3.89 7.70 - - - - - -

OWL (ours) 17.94 15.81 14.14 12.13 9.80 13.96 16.78 15.22 13.60 11.64 9.74 13.40
(a) Noun

Method mAP (Val) for Verb classes @tIoU mAP (Test) for Verb classes @tIoU
0.1 0.2 0.3 0.4 0.5 Avg. 0.1 0.2 0.3 0.4 0.5 Avg.

Damen et al. [15] 10.83 9.84 8.43 7.11 5.58 8.36 11.10 9.40 7.44 5.69 4.09 7.54
AGT [33] 12.01 10.25 8.15 7.12 6.14 8.73 - - - - - -

OWL (ours) 14.48 13.05 11.82 10.25 8.73 11.67 16.78 15.43 14.01 12.73 11.24 14.04
(b) Verb

Method mAP (Val) for Action classes @tIoU mAP (Test) for Action classes @tIoU
0.1 0.2 0.3 0.4 0.5 Avg. 0.1 0.2 0.3 0.4 0.5 Avg.

Damen et al. [15] 6.95 6.10 5.22 4.36 3.43 5.21 6.40 5.37 4.41 3.36 2.47 4.40
AGT [33] 7.78 6.92 5.53 4.22 3.86 5.66 - - - - - -

OWL (ours) 11.01 10.37 9.47 8.24 7.26 9.29 9.69 9.03 8.07 7.11 6.23 8.03
(c) Action

Table 6. Visual occlusion analysis. As discussed in Sec. 4.4, we breakdown the validation set of EPIC-KITCHENS into 3 partitions: No
occlusion, Low occlusion, and High occlusion, based on the percentage of missing predictions of the hand-objects interactions [15, 39].
We then report the mAP of VM and OWL for each partition. Intuitively, when the object is out of the frame (occluded), the hand-object
interactions are missing. OWL improves the performance across all partitions, especially in High occlusion subset.

No occlusion Low occlusion High occlusion Validation set
noun verb action noun verb action noun verb action noun verb action

VM mAP 16.0 14.8 10.8 14.3 16.0 12.8 9.4 10.0 6.0 10.6 10.6 7.1
OWL mAP 19.4 16.4 13.2 17.7 20.0 15.1 12.9 14.5 9.4 14.0 11.7 9.3

Improvement in % 21.3 10.8 22.2 23.8 25.0 18.0 37.2 45.0 56.7 31.2 10.2 31.6
# instances 4879 2407 2382 9668

lieve that context helps the model understand the sequential
relationships of the actions (opening, performing an action,
then closing). Furthermore, the localized actions are more
temporally precise with OWL (open fridge, pour juice). Our
intuition is that the fridge and pouring sounds help to local-
ize the actions better. We present more qualitative results in
the supplementary.

5. Limitations

The scope of this work is limited to audio-visual context
for TAL in untrimmed unedited videos with a large number
of action categories per video. We acknowledge that the

audio and visual signals may have an interesting interplay
in highly edited videos, e.g. those on YouTube, TikTok, and
movies. However, the audio signal in the edited video might
not be predominantly associated with the action. It might
also be mixed with speech and music to evoke emotions in
the viewers. Thus, we believe it is healthy to explore the
two lines of research independently, edited vs. unedited.

6. Conclusion

This work studies multi-modal TAL using egocentric
unedited videos. The specific challenges of public egocen-
tric video benchmarks (e.g., unedited footage, localization
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Figure 3. Absolute per class performance improvement of OWL with respect to VM, measured by the average precision (AP, %).
To focus on the significant changes, we only visualize classes with the absolute difference in AP greater than 5%. We show the noun
classes in orange and the verb classes in pink. As described in Sec. 4.4, we emphasize the bars of the classes, for which we attributed the
improvement to the sound with green edges and to the context with red edges.
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Figure 4. Qualitative results for EPIC-KITCHENS. The juice preparation scenario discussed in Sec. 1 (also described in Fig.1b). The
ground truth (GT) annotations are compared with the predictions of VM and OWL. We highlight with red the GT actions that were missed
by both VM and OWL (close cupboard) and with green the predictions where only either of them succeeds (OWL successfully predicts
open juice and close juice). We can observe how OWL produces more temporally precise and complete outputs.

of actions out of frame, and a large number of action classes
per video) invite us to rethink the inner workings of the TAL
models. This work does so through two booster principles:
multi-modality, with audio, and temporal continuity to com-
plement the visual signal. We validate our hypothesis by
experimenting with multiple audiovisual fusion approaches
and context-aware pipelines. A technical contribution of
our work is OWL, a transformer-based model that leverages
both temporal context and modality fusion. By using OWL,
we achieve competitive performance on EPIC-KITCHENS
and set a strong baseline record on HOMAGE.
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