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Abstract

The goal of this work is to segment and name regions
of images without access to pixel-level labels during train-
ing. To tackle this task, we construct segmenters by distill-
ing the complementary strengths of two foundation models.
The first, CLIP [26], exhibits the ability to assign names
to image content but lacks an accessible representation of
object structure. The second, DINO [5], captures the spa-
tial extent of objects but has no knowledge of object names.
Our method, termed NamedMask, begins by using CLIP to
construct category-specific archives of images. These im-
ages are pseudo-labelled with a category-agnostic salient
object detector bootstrapped from DINO, then refined by
category-specific segmenters using the CLIP archive labels.
Thanks to the high quality of the refined masks, we show
that a standard segmentation architecture trained on these
archives with appropriate data augmentation achieves im-
pressive semantic segmentation abilities for both single-
object and multi-object images. As a result, our proposed
NamedMask performs favourably against a range of prior
work on five benchmarks including the VOC2012, COCO
and large-scale ImageNet-S datasets.

1. Introduction

Semantic segmentation is a task that entails grouping and
naming coherent regions of images. It has a broad range
of applications spanning domains such as autonomous driv-
ing, manufacturing and medicine. A key barrier to automat-
ing this task through supervised learning is the requirement
for pixel-level segmentation annotations, which can be ex-
tremely costly to obtain (e.g. 1.5 hours per image when
accounting for quality control [9]).

The emerging paradigm of foundation models (mod-
els that have been pre-trained on broad data and can be
adapted to a wide range of downstream tasks) has yielded
striking gains for many machine perception problem do-

Figure 1. We propose NamedMask, a segmenter distilled from the
complementary capabilities of CLIP and DINO. With no access to
pixel-level annotation, NamedMask not only accurately segments
single objects (left) but also multiple objects (right) within an im-
age. White pixels denote ignored regions. The images are drawn
from the VOC2012 benchmark.

mains [3]. There is therefore considerable interest in de-
termining whether such models can alleviate the prohibitive
annotation costs associated with semantic segmentation. In
this vein, MaskCLIP [41] demonstrated the potential ben-
efits of leveraging the representation learned by CLIP [26]
to perform “annotation-free”1 segmentation with no prior
knowledge of the target domain. However, unless segmen-
tation masks are available from at least some of the cate-
gories to guide pseudo-labelling, segmentation quality re-
mains far from supervised performance. ReCo [30] consid-
ered an alternative formulation in which only the names of
the target categories (but no images from the target domain)
are available during training. By coupling the retrieval ca-
pabilities of CLIP to curate archives of images belonging to
specific categories with a co-segmentation algorithm, ReCo
obtained improvements over MaskCLIP but still struggles

1This setting can be equivalently referred to as zero-shot transfer in the
terminology of [26].

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4961



to produce precise object segmentations.
In this work, we build upon the ReCo framework and re-

visit the mechanism through which it obtains pseudo-masks
with semantic labels. Drawing inspiration from recent work
showing that DINO features can be employed to perform
unsupervised salient object detection [22, 29, 36], our first
step is to replace the fragile co-segmentation of ReCo with
a more robust category-agnostic object segmentation facil-
itated by DINO. We then exploit the naming capabilities
of CLIP to assign the category label from each archive
of images to these segmentations to enable the training of
category-specific “expert” segmenters that refine the qual-
ity of the archive segmentations. Finally, we train a sin-
gle semantic segmentation model on the resulting collection
that is capable of segmenting objects from any category that
is represented in the archives, using copy-paste augmenta-
tion [15] to improve generalisation to images of multiple
objects. We show that our approach, which we term Named-
Mask, achieves substantial gains in performance for seman-
tic segmentation of objects (see Fig. 1 for examples).

Our contributions are: (1) We propose NamedMask,
a framework for segmenting and naming objects with-
out pixel-level annotation by distilling the complementary
strengths of CLIP and DINO; (2) We provide extensive
experiments to demonstrate the improvements brought by
NamedMask over prior semantic segmentation approaches
that also make use of language-image pretraining.

2. Related work

Our approach relates to prior work on unsuper-
vised semantic segmentation, semantic segmentation with
language-image pretraining and salient object detection.
We discuss connections to each of these next.
Unsupervised semantic segmentation. By coupling deep
neural networks with creative learning objectives, sub-
stantial progress has been made towards unsupervised se-
mantic segmentation. Examples of learning signals that
have been constructed without labels include expectation-
maximisation over segments [19], mutual information max-
imisation [20, 24], contrasting proposals [33], complemen-
tary signals from LiDAR and vision [34] and feature corre-
spondence distillation [16]. In contrast to name-only seg-
mentation, these methods do not make use of language-
image pretraining or require access to the target category
list during training. They do, however, require the use of a
small number of images labelled with segments (typically
the test set itself) together with the Hungarian algorithm to
assign names to segment predictions, or otherwise employ
nearest-neighbour lookup on a held-out set of images with
segmentation masks.
Annotation-free semantic segmentation using language-
image model. Several recent works have sought to lever-

age the zero-shot transfer capabilities of CLIP [26] to per-
form semantic segmentation with no access to paired data
(images labelled with categories or segments) from the tar-
get domain. MaskCLIP [41] illustrated the potential of us-
ing CLIP for semantic segmentation in a zero-shot transfer
setting (a setting that they term “annotation-free”). A re-
cent example of such line of research is ReCo [30], which
curates unlabelled images into examples of concepts with
CLIP, then applies a co-segmentation algorithm to derive
semantic segmentation training data. While ReCo achieves
promising results, it fails to coherently pseudo-label objects
and thus (as we show through experiments) does not lead to
high-quality object segmentations. In this work, we com-
pare directly with ReCo and demonstrate the substantial
gains in performance that can be attained by bootstrapping
the category-agnostic pseudo-labels enabled by DINO.
Unsupervised salient object detection. A range of work
has sought to perform salient object detection (the task
of segmenting foreground objects) without human anno-
tation [2, 35, 39]. One notable trend amongst recent ap-
proaches has been the application of spectral clustering in
combination with self-supervised features [22, 29, 36]. In
this work, we build on the SelfMask approach of [29] to
provide a robust category-agnostic segmenter for Named-
Mask.

3. Method

In this section, we formulate the semantic segmenta-
tion task considered in this work (Sec. 3.1) and the method,
NamedMask, that we propose to tackle it (Sec. 3.2).

3.1. Task formulation and terminology

Our objective is to perform semantic segmentation: for
a given image, x ∈ R3×H×W , we aim to assign a label, c,
from among a finite set of categories, C, to each pixel loca-
tion ω ∈ {1, . . . ,H} × {1, . . . ,W} of x. To facilitate cost-
effective scaling, we aim to do so without access to any form
of pixel-level annotation. To this end, we propose to ex-
ploit the perceptual grouping of objects and their semantic
categorisation offered by two foundation models. Specif-
ically, we leverage the semantic categorisation capabilities
of CLIP derived through large-scale language-image pre-
training and the perceptual grouping capabilities of DINO
derived from vision-only pretraining.
Terminology. To date, a wide array of methods have
been proposed to tackle the problem of semantic seg-
mentation with different levels of supervision (fully un-
supervised, unsupervised but with supervised pretraining,
weakly-supervised etc.). However, the terminologies used
to describe these levels of supervision are not always clear
or consistent. We therefore first aim to clarify the annotation
regime in which we operate and how it is closely related to
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Figure 2. Overview of the proposed pipeline used to construct the NamedMask training dataset for semantic segmentation. Given an
image archive for a concept retrieved by CLIP (left), we generate masks using an unsupervised saliency detector (middle). We refine the
segmentations of each category by a class expert trained with the constructed image-mask pairs (right). Using the retrieved images and
their refined segments, we train NamedMask to generate a segmenter capable of predicting a set of pre-defined categories (omitted in the
figure for simplicity).

prior work.

In particular, we consider a setting that we term Seg-
mentation Leveraging Only Weak Pretraining (SLOWP).
SLOWP methods make no use of pixel-level annotation and
are characterised by pretraining on data that is either: (1)
weakly-labelled (e.g. with class labels or alt-text) and does
not derive from the target distribution; or (2) unlabelled and
may or may not derive from the target distribution. Within
the space of SLOWP methods, we further distinguish three
sub-categories that more precisely characterise the knowl-
edge that the method possesses about the segmentation task
used to evaluate the model: (i) Zero-shot transfer assumes
no knowledge of the target distribution (images or category
names) during training; (ii) Name-only transfer assumes ac-
cess (during training) to the list of category names that are
to be used for the target segmentation task, but does not as-
sume access to any images from the target distribution; (iii)
Name-and-image transfer assumes access (during training)
to the list of category names in the target segmentation task
and access to unlabelled images from the target distribution.

To relate these categories to prior work, note that
MaskCLIP [41] represents a SLOWP zero-shot transfer
method: it uses language-image pretraining (via CLIP) and
does not make use of the target categories during training.
ReCo [30] typically represents a SLOWP name-only trans-
fer method: it uses language-image pretraining (via CLIP)
and image classification pretraining (via DeiT-S/SIN [23])
and has access to target category names for constructing
classifiers.

In this work, we propose a method, NamedMask, that
operates effectively in both the SLOWP name-only transfer
and SLOWP name-and-image transfer scenarios. We de-
scribe NamedMask next.

3.2. NamedMask

NamedMask is trained in a sequence of four stages: (1)
For a given list of target categories, we perform dynamic
dataset construction by curating archives of images for each
category from an unlabelled image collection using CLIP;
(2) For each image in each archive, we predict a category-
agnostic object mask with an unsupervised saliency detec-
tor; (3) We refine the predicted masks with a category-
specific “expert” segmenter, which is self-trained with the
generated image-mask pairs within each archive; (4) We
distill a segmenter using the image archives and their re-
fined masks as pseudo-labels. An overview of the first three
stages is provided in Fig. 2, and each stage is detailed in the
following.
Dynamic archive construction. To create a data set con-
taining images of categories of interest, we follow the ap-
proach proposed by ReCo [30] and curate an archive of im-
ages for each concept using an image-language model (i.e.
CLIP). Formally, given an image encoder ϕI and a text en-
coder ϕT of CLIP, we curate one archive from an unlabelled
image collection U for each category c of interest. We do
so by selecting the n images among the collection whose
visual embeddings ϕI(xi) ∈ Re lie closest to the text em-
bedding2 ϕT (c) ∈ Re of c. That is,

Ac = {xi | i ∈ arg topk [ϕI(U) · ϕT (c)]}, (1)

where Ac denotes the image archive for category c and arg
topk returns the indices of its arguments with the k largest
values. In this way, we dynamically construct a data set
comprising a collection of |C| archives (one for each cate-
gory).

Mask generation. To produce category-agnostic object
2Details of the prompt used to construct the text embedding can be

found in the supplementary material.
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segmentations for the images within each archive, we adopt
the SelfMask [29] unsupervised salient object detection
method. SelfMask learns to perform salient object detec-
tion by first performing spectral clustering on DINO fea-
tures across unlabelled images, then using these clusters
as pseudo-labels to train a variant of MaskFormer seg-
menter [7]. Given the SelfMask saliency detector ψs, we
first predict a category-agnostic saliency map yi = ψs(xi)
∈ {0, 1}H×W for each image xi ∈ R3×H×W in each
archive. We then simply assign to each category-agnostic
saliency map the category label c of the archive that contains
the image. This produces a collection of images annotated
with saliency masks and corresponding category labels.

Mask refinement through category experts. The
category-agnostic saliency detector employed in the previ-
ous stage is unaware of the category of objects that it is
being used to segment. We hypothesise that a segmenter
will produce superior segmentations when it is given knowl-
edge of the specific category of objects that it is required to
segment, and thus will produce improved pseudo-masks for
training NamedMask. To instantiate this idea, we refine the
category-agnostic predictions made by the saliency detec-
tor with a segmenter ψc, which specialises in segmenting
regions corresponding to category c. To this end, we train
a segmenter ψc to assign regions to either the category c
or the background class for each image in Ac, as a pixel-
level one-vs-all binary classification task. We then use the
predictions obtained by ψc as pseudo-masks for category c.
We show through experiments in Sec. 4.3 that this simple
approach yields superior segmentation training data relative
to using SelfMask predictions directly.

Note that for cases when there are a large number of
target categories (e.g. 919 categories in ImageNet-S [13]),
training one expert per class can be computationally expen-
sive. For such cases, we group the relevant categories by
applying k-means clustering to the text embeddings of the
categories extracted from a CLIP text encoder and train an
expert for each category group.

Training NamedMask. Given the resulting collection of
image archives annotated by category-specific segmenters,
NamedMask is produced by simply training a standard
semantic segmentation architecture using a cross-entropy
loss. Thus, self-training produces a segmenter that ex-
ploits the complementary information encoded by two dif-
ferent foundation models, where the visual-only model (i.e.
DINO) implicitly captures the perceptual grouping of ob-
jects, and the ability to name categories derives from the
language-image model (i.e. CLIP).

4. Experiments

In this section, we begin by describing the datasets
considered for our experiments, implementation details,

and our ablation study. We then compare our model to
state-of-the-art unsupervised semantic segmentation (USS)
methods and approaches that leverage only weak pretrain-
ing (SLOWP).

4.1. Datasets

Evaluation benchmarks. We consider five segmen-
tation benchmarks including COCO [21], CoCA [40],
Cityscapes [9], PASCAL VOC2012 [12], and ImageNet-
S [13]. COCO consists of 118,287 and 5,000 images for
train and validation splits with 80 object categories and a
background class and CoCA comprises 1,295 images of
80 object categories with a background. Cityscapes con-
tains 2,975 and 500 urban scene images for training and
validation splits with 30 categories among which we pick
14 object categories to evaluate based on the original pa-
per [9]. VOC2012 is composed of 1,464 training and
1,449 validation images with 21 categories including back-
ground, and the large-scale ImageNet-S [13] dataset com-
prises 9,190 train, 12,419 validation, and 27,423 test im-
ages with precise pixel-level annotations. There are three
variations of ImageNet-S: ImageNet-S50, ImageNet-S300,
and ImageNet-S919, consisting of 50, 300, and 919 seman-
tic categories of ImageNet1K [10], respectively.

We use the VOC2012 train split and the ImageNet-S300

validation split for our ablation studies, and compare our
models to previous USS and SLOWP methods on CoCA,
the validation split of COCO, Cityscapes, and VOC2012,
and the test split of ImageNet-S.

Image collections. To curate image archives for each cate-
gory, we use two unlabelled image collections: (1) For ex-
periments on PASCAL VOC2012, we use the ImageNet1K
training set without labels, following [30]. (2) For ex-
periments on ImageNet-S, we use unlabelled images from
LAION-5B [28]. For the latter, we implement the archive
curation process using the CLIP feature index provided with
the LAION-5B release3. Since the LAION-5B dataset was
collected with limited manual curation, we apply a face de-
tector to all images and discard any image containing a vis-
ible human face [11]. We refer the reader to the supple-
mentary material for further details about the usage of the
LAION-5B dataset.

4.2. Implementation details

We conduct the experiments on a single A100 NVIDIA
graphic card with PyTorch [25]. Code will be made publicly
available.
Network architecture and optimisation. We use
DeepLabv3+ [6] with a ResNet50 [18] backbone for both
category experts and NamedMask. We initialise the back-
bone with DINO [5] that is pretrained on ImageNet [27]

3https://laion.ai
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SelfMask 78.5 26.8 68.0 59.2 22.9 69.3 43.1 80.7 14.0 70.2 20.3 74.2 70.1 57.7 41.5 20.6 74.3 18.4 64.7 25.0 50.0
experts 80.2 29.0 72.9 65.0 30.4 74.9 48.9 82.4 15.8 77.8 27.2 75.2 74.5 62.1 43.1 21.3 74.9 26.7 69.8 36.4 54.4

Table 1. Category experts produce better quality segmentation masks than the baseline unsupervised saliency detector. We report
segmentation performance for each method on Pascal VOC2012. The performance metric is (class-wise) IoU (%).

in a self-supervised manner. For expert training, we adopt
a lightweight learning schedule of 5K gradient updates
with a batch size of 8 for COCO, CoCA, Cityscapes, and
VOC2012 and 10K updates with a batch size of 16 for
ImageNet-S. For NamedMask, we train the model with 20K
iterations for COCO, CoCA, Cityscapes, and VOC2012 and
80K iterations for ImageNet-S. We use standard data aug-
mentations such as random scaling, random cropping and
colour jittering. We use Adam optimiser with an initial
learning rate of 0.0005 and a weight decay of 0.0002. We
decay the learning rate with the Poly learning rate [6].

To curate category archives from ImageNet and LAION-
5B, the ViT-L/14@336px and ViT-L/14 variants of CLIP
are employed repectively. For our unsupervised saliency
detection method, we adopt the model from SelfMask [29],
and apply a bilateral solver [1] to predictions from SelfMask
as a post-processing step.
Inference. When evaluating on ImageNet-S, images are re-
sized such that their larger dimension is 1024 pixels while
preserving their aspect ratio. For evaluation, the predictions
of the model are then resized back to the original resolution
to match the ground-truth mask by using a bilinear upsam-
pler. For the ImageNet-S300 validation set (used in our abla-
tion study), we resize the shorter side of images to 384 with
a maximum length for the larger dimension of 512 pixels.
For the other benchmarks, we use the original resolution of
the images.
Metric. Following the common practice, we employ
intersection-over-union (IoU) to measure a class-agnostic
mask quality and mean IoU (mIoU) to evaluate the perfor-
mance of semantic segmentation.

4.3. Ablation study

In this section, we present a thorough ablation study on
each component of our proposed NamedMask, namely, the
influence of archive size, the influence of adopting category
experts and the effect of the number of category experts. We
also investigate the influence of adopting copy-paste aug-
mentation for segmenting images with multiple objects.
Effect of archive size. Unlike supervised approaches for
which it is costly to acquire annotations, the dataset creation
process for NamedMask can be easily scaled. To investigate
the influence of the number of images used for training, we
vary the size of archive curated by CLIP for each category,
from 1 to 500 images, and train NamedMask on the re-
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Figure 3. Larger image archives produce better segmenters.
Here, “archive size” denotes the number of images retrieved by
CLIP to curate an image archive for each category.

sulting images with corresponding pseudo-labels obtained
from SelfMask. As for quantitative evaluation, we adopt the
VOC2012 training set and report numbers in Fig. 3. Note
that, the training is done only on the constructed archive of
ImageNet images, with pseudo labels acquired from Self-
Mask (i.e. no category experts have been introduced at this
stage).

As shown in Fig. 3, that the archive size plays an impor-
tant role in the performance of our model, monotonically in-
creasing with the number of images for an archive. For the
remaining experiments, we curate 500 images per archive.

Effect of category experts on mask quality. As described
in Sec. 3.2, we propose to refine the pseudo-labels from
SelfMask with category-specific experts, which are trained
to distinguish foreground and background pixels.

To compare the quality of category-agnostic masks gen-
erated by SelfMask and class-specific masks by an expert,
we evaluate their predictions on 20 object categories from
the VOC2012 train split. Specifically, we train 20 category
experts on image archives constructed by retrieving from
ImageNet1K. In Tab. 1, we show the (class) IoU of each
category. We observe that the experts consistently outper-
form SelfMask across all categories. For a qualitative com-
parison, we visualise the examples predictions from both
SelfMask and category experts in Fig. 4. In the following
experiments, we produce pseudo-masks from an expert for
each category by default.
Training an expert for a category group. When there
are numerous classes that are semantically close to one an-
other, training individual category experts may become pro-
hibitively expensive. We therefore group categories by ap-
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Figure 4. Category experts refine the masks provided by an unsupervised saliency detector (i.e. SelfMask). The images are selected
from VOC2012. Zoom in for details.

model # experts avg. IoU

SelfMask [29] - 62.7
1 63.3
30 64.1
60 64.0category experts

90 63.9

Table 2. Effect of grouping semantically relevant categories for
category expert training on the ImageNet-S300 validation split.

model copy-paste single obj. multi-obj. all

SelfMask + CLIP - 63.3 42.1 50.4
NamedMask (Ours) ✗ 67.0 50.5 56.6
NamedMask (Ours) ✓ 68.0 53.6 58.7

Table 3. Copy-paste augmentation helps the model to segment
multiple objects in an image. The performance is measured in
mIoU (%). A baseline model is marked in gray. Best score for
each column is highlighted in bold.

plying k-means to text embeddings of the categories into k
concept groups as described in Sec. 3.2.

To show the effect of k, we evaluate the category experts,
by varying the number of category groups on the ImageNet-
S300 validation set. In Tab. 2, we report average IoU over
300 categories for k={30, 60, 90} which corresponds to
10%, 20%, and 30% of the total number of classes, respec-
tively. As baselines, we also show average IoU for Self-
Mask and a single expert for 300 categories (i.e. k=1). As
can be seen, training an expert always shows higher score
than the baseline, even when k is set to 1. However, when
we set the number of experts higher than 30, the perfor-
mance appears to saturate. We conjecture that this is be-
cause there is a trade-off between the number of different
images which an expert can see during training and average
semantic relevance within a category group. That is, when
k is large, the average number of categories assigned to one
group tends to be low, which decreases the total number of

model dataset

MaskCLIP [41] WebImageText
ReCo [30] WebImageText, (Stylized-)ImageNet
NamedMask (Ours) WebImageText, ImageNet

Table 4. Datasets employed in training each model. ReCo utilises
both Stylized-ImageNet and ImageNet.

images used for training an expert for the group. In con-
trast, when k is small, the total number of images for an
expert become large at the cost of reduced semantic rele-
vance in a class group. For this reason, we group categories
of ImageNet-S300 and -S919 into 30 and 90 which (approx.)
accounts for 10% of total classes, respectively.

Effect of copy-paste on segmenting multiple objects. In
contrast to the salient object detectors and category experts
which segment an object of a single category or a group of
similar categories within an image, our model can be readily
trained to segment multiple objects of different categories
by employing the copy-paste augmentation [15]. To demon-
strate this, we evaluate two NamedMask models, trained
with and without copy-paste augmentation on the images
containing a single object or multi-objects from possibly
different categories. As a baseline, we also evaluate seg-
mentation of SelfMask whose semantic label is decided by
applying CLIP to a given image. As shown in Tab. 3, when
validated on the VOC2012 training split, copy-paste brings
a notable gain in performance by 4.1 mIoU compared to the
model trained without copy-paste. We therefore adopt the
copy-paste augmentation as a default setting in the remain-
ing experiments.

4.4. Comparison to state-of-the-art methods

To describe the effectiveness of our approach, we com-
pare NamedMask against existing approaches that fall into
the proposed segmentation leveraging only weak pretrain-
ing (SLOWP) setting. Specifically, we consider and re-
implement MaskCLIP [41] with the zero-shot transfer set-
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model transfer type COCO CoCA Cityscapesobj

MaskCLIP [41] zero-shot 5.3 3.1 6.1
ReCo† [30] name-only 17.1 16.9 14.1
NamedMask name-only 28.4 27.3 18.2

Table 5. Comparison to previous segmentation leveraging only
weak pre-training (SLOWP) methods on the COCO, CoCA, and
Cityscapesobj benchmarks in terms of mIoU. Highest scores on
each benchmark are in bold. †initialises the backbone with
Stylized-ImageNet pre-training.

model transfer type backbone mIoU

USS
Inst. Disc. [37] - ResNet50 4.3
MoCo [17] - ResNet50 3.7
InfoMin [31] - ResNet50 4.4
SwAV [4] - ResNet50 4.4
MaskCon. [32] - ResNet50† 35.0
MaskDist. [33] - ResNet50† 45.8

SLOWP
MaskCLIP∗ [41] zero-shot ResNet50 29.1
ReCo∗‡ [30] name-only DeiT-S/16 34.2
NamedMask name-only ResNet50 59.2

Table 6. Comparison to existing unsupervised semantic seg-
mentation (USS) and segmentation leveraging only weak pre-
training (SLOWP) methods on the PASCAL VOC2012 valida-
tion set. Numbers for USS methods are from MaskDistill. ∗Re-
implemented and adapted by us to predict a background class.
†uses dilated ResNet [38]. ‡initialises the backbone with Stylized-
ImageNet [14] pre-training. Highest scores of each kind of meth-
ods are in bold.

ting (i.e. the annotation-free setting in their paper) and
ReCo [30] with the name-only transfer or and name-and-
image transfer setting. As described in Sec. 3.1, the trans-
fer type of each SLOWP method is determined by whether
it has access to either category names or unlabelled im-
ages from the evaluation benchmark during training. As
such, the transfer type of a method varies with its evaluation
benchmark (see Tab. 4 for datasets of which categories and
images each SLOWP approach has access to during train-
ing).

As MaskCLIP and ReCo do not explicitly define back-
ground categories, we classify the pixels as background if
their highest class probability is lower than a certain thresh-
old t. We set t as 0.25 and 0.9 for MaskCLIP and ReCo (see
the supp. mat. for more details on how t is selected).

We evaluate on popular segmentation benchmarks
including COCO, CoCA, VOC2012, and large-scale
ImageNet-S datasets. Additionally, we also evaluate on
the object categories (e.g. car, person) in Cityscapes (de-
noted Cityscapesobj). In addition to SLOWP methods,
we also compare with state-of-the-art unsupervised seman-

tic segmentation (USS) including MaskContrast [32] and
MaskDistill [33] on the VOC2012 and ImageNet-S bench-
marks, as they share with SLOWP the similar goal of train-
ing without manual annotations.

In Tab. 5, we compare NamedMask to previous SLOWP
methods on COCO, CoCA, and Cityscapesobj benchmarks.
We make two observations: (i) ReCo and NamedMask,
which have access to the category names, outperform
MaskCLIP, which is unaware of the concepts of the target
benchmarks during training; (ii) when comparing the two
name-only transfer methods, NamedMask performs better
than ReCo by a large margin on each dataset.

In Tab. 6, we report the results of NamedMask on the
VOC2012 validation split. Our approach shows favourable
performance over the existing models for both SLOWP and
USS. In detail, while the previous SLOWP methods fall be-
hind the state-of-the-art USS models, NamedMask outper-
forms them by some (≈13.4 mIoU). We also observe that
the proposed method is competitive on ImageNet-S, which
consists of significantly more number of categories than
VOC2012. Here, NamedMask corresponds to the name-
and-image transfer setting since it has implicit access to
unlabelled images from the target distribution through its
use of SelfMask (which is bootstrapped from DINO). Sim-
ilarly, ReCo is categorised as name-and-image transfer, as
it uses ImageNet1K training images for constructing classi-
fiers. With the caveat that each method has access to differ-
ent information, NamedMask outperforms the state-of-the-
art methods by 15.5, 14.7, and 11.9 mIoU on ImageNet-S50

(in Tab. 7), ImageNet-S300 (in Tab. 8), and ImageNet-S919

(in Tab. 9), respectively.
For qualitative results, we show sample visualisations of

our method in Fig. 1. More visualisation examples includ-
ing failure cares are shown in the supplementary material.

5. Limitations

We note several limitations of our approach: (1) We need
to train a new segmenter each time we wish to include an-
other category which is not considered in the previous train-
ing of NamedMask. Future work could potentially address
this by developing a segmenter that directly predicts embed-
dings in the shared textual embedding space of CLIP. These
could subsequently be used for naming predictions beyond
the categories seen during training (i.e. generalisation to
unseen categories without retraining). (2) While we pri-
marily focus on object semantic segmentation by leveraging
an unsupervised saliency detector, it would strengthen our
approach to incorporate cues to segment “stuff” categories
such as water, sky, etc. This could potentially be done by
building prior work such as ReCo or MaskCLIP, which are
capable of predicting stuff categories, into our pseudo-label
generation step. (3) We note that NamedMask struggles to
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model transfer type mIoU S MS ML L

USS
MDC [8] - 3.6 0.4 2.6 3.8 4.9
MDC† [8] - 14.3 2.6 10.9 14.6 19.1
PiCIE [8] - 4.5 0.2 3.1 5.0 5.3
PiCIE† [8] - 17.6 4.4 13.1 20.1 23.1
MaskCon. [32] - 24.2 12.2 25.6 24.7 20.4
LUSSs [13] - 29.3 6.6 25.0 33.2 32.6
LUSSp [13] - 32.0 9.7 26.2 36.5 40.5

SLOWP
MaskCLIP∗ [41] zero-shot 17.9 3.6 13.1 18.6 20.6
ReCo∗† [30] name & image 22.6 10.0 24.6 22.1 18.8
NamedMask name & image 47.5 23.5 48.7 49.3 38.0

Table 7. Comparison to existing USS and SLOWP methods on
the ImageNet-S50 benchmark. Scores for USS are drawn from
LUSS [13]. We also report mIoU under different object sizes from
small (S), medium-small (MS), medium-large (ML), and large (L).
∗Re-implemented and adapted by us to predict a background class.
†initialises the encoder with supervised ImageNet (for MDC and
PiCIE) or Stylized-ImageNet pre-training (for ReCo). Best score
for each column within a same method type is in bold.

model transfer type mIoU S MS ML L

USS
LUSSs [13] - 16.0 2.8 12.0 16.4 21.7
LUSSp [13] - 18.1 4.2 13.6 19.5 23.5

SLOWP
MaskCLIP∗ [41] zero-shot 1.6 0.4 0.6 1.2 2.5
ReCo∗† [30] name & image 8.5 5.4 9.7 8.4 5.6
NamedMask name & image 32.8 9.9 29.1 34.9 26.0
Table 8. Evaluation on the ImageNet-S300 benchmark. ∗Re-
implemented and adapted by us to predict a background class.
†initialises the encoder with Stylized-ImageNet pre-training.

differentiate a category which often appears with another
concept. For example, a rider of a motorbike sometimes is
classified as part of the motorbike. We conjecture that this
is due to the use of a (unsupervised) saliency detector for
pseudo-mask generation which highlights dominant regions
in an image without account for a semantic of interest. We
believe this can be alleviated by considering a semantic pre-
diction for an expected category in an image (similary to the
language-guided attention mechanism used in ReCo [30])
in addition to the prediction made by the saliency detector.

6. Broader impact
NamedMask distills segmenters from foundation mod-

els. While powerful, these models have been shown to ex-
hibit biases across different racial and religious groups [3].
It is therefore likely that NamedMask inherits these biases
to some degree. As such NamedMask represents a research
prototype that is not appropriate for real-world usage with-

model transfer type mIoU S MS ML L

USS
LUSSs [13] - 6.6 1.3 4.6 7.1 8.4
LUSSp [13] - 11.0 2.4 8.3 11.9 13.4

SLOWP
MaskCLIP∗ [41] zero-shot 0.5 0.1 0.2 0.3 0.8
ReCo∗† [30] name & image 3.8 2.6 4.6 3.6 2.5
NamedMask name & image 22.9 5.1 19.4 24.4 19.8
Table 9. Evaluation on the ImageNet-S919 benchmark. ∗Re-
implemented and adapted by us to predict a background class.
†initialises the encoder with Stylized-ImageNet pre-training.
NamedMask is able to segment reasonably well even when numer-
ous categories (i.e. 919 classes) are present in the target dataset.

out additional consideration of the deployment setting and
the design of appropriate mitigation mechanisms.

NamedMask aims to achieve semantic segmentation
with a methodology that can be scaled up without the pro-
hibitive cost of manually-collected segment annotation. In
doing so, we hope that it will help enable the deployment
of semantic segmentation for applications that yield posi-
tive societal impact. As with many powerful computer vi-
sion technologies, however, NamedMask is a tool that is
subject to dual use and is therefore vulnerable to abuse.
We are likely unable to anticipate all such possible abuses,
but examples could include applications that entail unlawful
surveillance.

7. Conclusion
In this work, we introduced NamedMask, a method for

semantic segmentation that is trained by distilling the com-
plementary capabilities of two foundation models, CLIP
and DINO, into a single segmenter. By doing so, Named-
Mask achieves impressive segmentation quality across both
single-object and multi-object images without pixel-level
annotation. We demonstrate the effectiveness of Named-
Mask by comparing to prior methods on several standard se-
mantic segmentation benchmarks including the large-scale
ImageNet-S919 dataset, where we observe that NamedMask
achieves a significant boost in segmentation performance.
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