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Abstract

Segmentation is a core computer vision competency, with
applications spanning a broad range of scientifically and
economically valuable domains. To date, however, the pro-
hibitive cost of annotation has limited the deployment of
flexible segmentation models. In this work, we propose
Zero-shot Unsupervised Transfer Instance Segmentation
(ZUTIS), a framework that aims to meet this challenge.
The key strengths of ZUTIS are: (i) no requirement for
instance-level or pixel-level annotations; (ii) an ability of
zero-shot transfer, i.e., no assumption on access to a tar-
get data distribution; (iii) a unified framework for seman-
tic and instance segmentations with solid performance on
both tasks compared to state-or-the art unsupervised meth-
ods. While comparing to previous work, we show ZUTIS
achieves a gain of 2.2 mask AP on COCO-20K and 14.5
mIoU on ImageNet-S with 919 categories for instance and
semantic segmentations, respectively. Code will be made
publicly available.1

1. Introduction
In computer vision, the task of segmentation aims to

group pixels within an image into coherent, meaningful re-
gions. Accurate segmentation unlocks a host of applica-
tions such as tumour assessment in medical images [2], land
cover estimation [51] for logistical planning, scene segmen-
tation for autonomous driving [11], to name a few. The
central challenge that limits the deployment of such applica-
tions is the high cost of obtaining large, accurate collections
of pixel-level annotations to train appropriate segmenters.
For example, it was reported that when constructing the
Cityscapes dataset, it took 90 minutes to fully annotate and
validate individual images [11].

To overcome this challenge, a range of unsupervised seg-
mentation methods have been developed that forgo pixel-
level supervision [10, 19, 28, 53, 56, 66]. One particularly
promising line of work has focused on a setting known as

1https://github.com/NoelShin/zutis

Figure 1. We propose ZUTIS, a framework for zero-shot unsu-
pervised transfer instance segmentation. The figure depicts in-
stance segmentations made by ZUTIS on COCO-20K [55] and
VOC2012 [14]. Without pixel-level annotation or access to the
target distribution, ZUTIS acquires the ability to reliably segment
instances within an image.

unsupervised semantic segmentation with language-image
pretraining (USSLIP) [48, 49], which leverages a vision-
language foundation model [3] that has been pretrained on
a large corpus of internet-sourced image-text pairs. USSLIP
methods exhibit strong segmentation performance, category
label flexibility and zero-shot transfer—the ability to per-
form well on a downstream task without access to images
from the target distribution. However, while USSLIP meth-
ods enable semantic segmentation, no such method devel-
oped to date possesses the ability to differentiate between
instances within a semantic category, a key functionality
for many fine-grained applications.

In this paper, we consider a challenging task, Zero-shot
Unsupervised Transfer Instance Segmentation, i.e., to seg-
ment the instances present in an image and infer its seman-
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tic classes without relying on manual supervision or access
to a target dataset. To tackle such challenge, we start from
the recent progress in USSLIP [49], retrieving images for
given concept with a pretrained visual language model (e.g.,
CLIP), then generating pseudo-masks for the collected im-
ages with an unsupervised saliency detector. To take one
step further, we extend the prior USSLIP architectures with
two critical abilities, namely, instance-level segmentation
and generalisation to unseen categories. In specific, we cou-
ple a query-based Transformer [54] decoder, which gener-
ates instance mask proposals, with an image encoder, which
is trained to output dense features (i.e. patch tokens) aligned
with text embeddings for a set of concepts from a frozen
CLIP [44] text encoder. Notably, the design of the proposed
approach allows to do inference for both semantic and in-
stance segmentations with strong performance compared to
prior state-of-the-art approaches.

In summary, our contributions are three-fold: (i) We in-
troduce a challenging task, namely, zero-shot unsupervised
transfer instance segmentation, which aims to segment ob-
ject instances without human supervision or access to a tar-
get data distribution; (ii) We propose a simple yet effective
framework, termed ZUTIS, that goes beyond prior USSLIP
approaches, and enables to concurrently perform instance
segmentation in addition to semantic segmentation; (iii)
We show that ZUTIS performs favourably against state-
of-the-art methods on standard unsupervised segmentation
benchmarks (e.g., COCO [35], ImageNet-S [15]) by a large
margin in both zero-shot transfer and unsupervised domain
adaptation settings.

2. Related work
Our work relates to diverse themes in the litera-

ture including zero-shot semantic/instance segmentation,
unsupervised semantic segmentation (with and without
language-image pretraining), unsupervised object segmen-
tation, class-agnostic unsupervised instance segmentation,
universal architectures, and open-vocabulary segmentation.
Zero-shot semantic/instance segmentation with (image-
)language pre-training. Zero-shot semantic/instance seg-
mentation aims to generalise to unseen categories after
training for seen categories with ground-truth annotations.
The dominant approach exploits the relationships between
category label embeddings produced by a language model
(e.g., word2vec [38] or GloVe [43]) [4, 18, 23, 31, 34, 42,
63, 68, 69] to facilitate generalisation. More recently, there
has been growing interest in leveraging the joint image-text
embedding space produced by a pretrained vision-language
model (e.g. CLIP) to enable dense predictions [12, 33, 37,
45, 64]. In a similar vein, we build our approach on a pre-
trained vision-language model to enable generalisation to
novel categories, but with two key differences. First, we
do not assume access to a target data distribution, a setting

termed zero-shot transfer in [44]. Second, we do not use
any manual annotations during training. Note that the “an-
notation free” variant of MaskCLIP [70] enables semantic
segmentation in a similar regime in which neither access
to the target distribution nor ground-truth annotations are
available. We compare our method to MaskCLIP on se-
mantic segmentation tasks in Sec. 4.
Unsupervised semantic segmentation. A rich line of
work has considered the problem of unsupervised semantic
segmentation, creatively constructing learning signals from
proxy tasks [10, 19, 28, 41, 52, 56, 66]. One practical chal-
lenge associated with these approaches is their reliance on a
matching stage to enable deployment (typically performed
with Hungarian matching [32] on pixel-level segmentation
annotations) that establishes correspondences between seg-
ments and category names. By contrast, ZUTIS requires
no access to pixel-level supervision during either training
or inference. Furthermore, unlike the above, ZUTIS is ca-
pable of instance-level predictions as well as semantic seg-
mentation. We note one exception: MaskDistill [53] also
reports on unsupervised instance segmentation in addition
to semantic segmentation (also using Hungarian matching
to assign categories to predictions). In Sec. 4, we compare
ZUTIS with MaskDistill on unsupervised instance segmen-
tation.
Unsupervised semantic segmentation with language-
image pretraining (USSLIP). To achieve independence
from pixel-level annotations during both training and infer-
ence, a recent line of work targeting unsupervised semantic
segmentation proposes to leverage a vision-language model
(e.g., CLIP [44]) to assign names to categories [48, 49]. To
do so, images are curated from an unlabelled image col-
lection using the retrieval abilities of the vision-language
model, and then segmented via co-segmentation [48] or
salient object detection [49]. However, while these meth-
ods avoid pixel-level annotations, they are either fragile
(i.e., co-segmentation used in [48]) or rigid (i.e., a new seg-
menter needs to be retrained from scratch for each new cat-
egory [49]). Morever, no USSLIP method to date supports
instance segmentation. ZUTIS builds on this line of work,
but addresses its limited functionality by enabling instance
segmentation, and improves both robustness and flexibility.
Unsupervised object segmentation. Unsupervised object
segmentation, also referred to as saliency detection, aims
to train a detector to segment prominent object regions in
images without human supervision. Traditionally, hand-
crafted methods have been proposed utilising low-level cues
such as centre prior [29], contrast prior [27], and bound-
ary prior [62]. A more recent line of research uses object-
ness properties emerging from self-supervised features ex-
tracted from modern vision architectures [47, 50, 61] (i.e.
DINO [6]). In this work, we adopt SelfMask [47] to gener-
ate object masks for images that are used as pseudo-masks
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for our training.
Class-agnostic unsupervised instance segmentation. Re-
cently, FreeSOLO [59] proposed a self-supervised frame-
work for the class-agnostic instance segmentation task.
For this, coarse object masks are first generated by us-
ing the object localisation property of self-supervised fea-
tures (e.g., DenseCL [60]), then a class-agnostic object de-
tector is trained with the initial masks via a self-training
scheme [59]. Concurrent work, CutLER [58], follows the
similar framework, but with better initial masks produced
by proposed MaskCut. Unlike the above, we focus on
the conventional class-aware instance segmentation. The
classification of each instance mask is made possible as
ZUTIS is built on the recent progress in unsupervised se-
mantic segmentation with language-image pretraining (i.e.,
ReCo [48]).
Universal architectures. Recently, universal architec-
tures that deliver multiple object detection/segmentation
tasks in a unified manner have gained considerable atten-
tion [5, 8, 9, 65]. Similarly, we propose an architecture that
can tackle both semantic and instance segmentations with a
single architecture with two key differences: (i) ZUTIS is
flexible in terms of categories to segment as we use a text
encoder as a classifier; (ii) unlike the above which need to
train a model from scratch for a different task, ZUTIS re-
quires only a single training for semantic and instance seg-
mentations.
Open-vocabulary segmentation. Increasing the number
of object categories to be segmented has been explored
by utilising class-incremental few-shot learning [25], cap-
tions [17], grounded text descriptions [30], as well as an-
notation transfer [24, 26] and pairwise class balance regu-
larisation [22]. Similarly, we seek to scale the number of
classes to be segmented, but without human supervision.

3. Method
In this section, we start by introducing the considered

problem scenario, namely, zero-shot unsupervised transfer
instance segmentation in Sec. 3.1, and describe the core
building blocks of our proposed approach in Sec. 3.2, fol-
lowed by the architecture details for addressing unsuper-
vised semantic and instance segmentation tasks with pre-
trained language-image models in Sec. 3.3.

3.1. Problem scenario
We consider the problem of zero-shot unsupervised

transfer instance segmentation, which aims to jointly seg-
ment objects present in an image and predicts their seman-
tic categories in both unsupervised and zero-shot transfer
manner. The unsupervised property of the task prohibits
any reliance on manual supervision for instance segmenta-
tion, while the zero-shot transfer property assumes that a
segmenter has no access to a target data distribution (e.g.,

a training split of an evaluation benchmark). Note that,
such properties pose significant differences from the exist-
ing zero-shot instance segmentation, which leverages hu-
man supervision (e.g., pixel-level annotations) in a training
split (of an evaluation benchmark) for a certain group of
classes (e.g., seen categories) during training.

To tackle this challenge, we propose a simple yet effec-
tive framework in which we first predict class-agnostic ob-
ject masks (mask proposal), then classify each mask (mask
classification) based on the pixelwise classification obtained
in a joint image-text space. Formally, we seek to train a seg-
menter Φseg, consisting of an image encoder Φenc

I , an image
decoder Φdec

I , and a text encoder ΦT . The segmenter in-
gests an image x ∈ R3×H×W , a set of concepts/object
categories (C), and outputs a set of masks for semantic seg-
mentation (SS) and instance segmentation (IS):

Φseg(x, C) =

{
ΦT (C)WΦenc

I (x) ∈ {0, 1}|C|×H×W for SS,
Φdec

I ◦ Φenc
I (x) ∈ {0, 1}n×H×W for IS.

(1)

where W is a matrix projecting image features into a text
embedding space and n denotes a pre-defined number of
object mask predictions. Note that, at this stage, the object
masks from the image decoder are class-agnostic. To de-
cide a class of the mask proposals, each mask is assigned a
category via a dot-product between its average image em-
bedding (from the image encoder) and text embeddings fol-
lowed by a softmax (detailed in Sec. 3.3). It is worth noting
that the design of our framework allows the model to tackle
both instance and semantic segmentations concurrently—
we show performance of our model on both tasks in Sec. 4

In the following sections, we introduce the key com-
ponents for our framework in an unsupervised and zero-
shot transfer fashion: generating pseudo-labels for unla-
belled images with existing pretrained foundation models,
and an efficient transformer-based architecture for simulta-
neous semantic and instance segmentation.

3.2. Pseudo-label training
To train a segmenter without relying on manual labels,

we adopt pseudo-label training as in [48, 49]. Here, we
briefly describe our pseudo-mask generation process, com-
posed of archive construction, unsupervised saliency detec-
tion, and copy-paste augmentation used to generate syn-
thetic images containing multiple objects.
Archive construction. Given an image encoder ϕI and a
text encoder ϕT from a pretrained vision-language model
(e.g., CLIP), we first build archives of images for a set of
categories C by curating images for each concept from an
unlabelled image dataset U (called an index dataset). For-
mally, we extract a set of normalised image embeddings FI
as follows:

FI = {ϕI(xi) ∈ Rd, i = 1, ..., N} (2)
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Figure 2. Overview of ZUTIS. Given an image encoder and a text encoder from a language-image model (e.g., CLIP), ZUTIS learns to
perform both semantic and instance segmentation. (Top) image features for an image are fed to a feed-forward network (FFN) followed
by a transformer decoder to produce mask proposals, which are used to make predictions for instance segmentation at inference (bottom
right). At the same time, the image features are projected into a text embedding space in which semantic predictions are made via a dot-
product between the projected image features and frozen text features for a set of categories (bottom left). For simplicity, the pseudo-mask
generation step is omitted. See the text for details.

where xi ∈ R3×H×W and N denotes the total number of
images in U . Similarly, we extract a set of normalised text
embeddings ϕT (c) ∈ Rd for a name of each category c ∈ C
from the text encoder. Then we select k images with highest
similarities between image and text embeddings to form an
archive for a category c:

Uc = {xi ∈ U | i ∈ argtopk[FIϕT (c)])} (3)

where argtopk returns indices of k largest values.
Unsupervised saliency detection. Given the image
archives for the categories of interest, we generate category-
agnostic saliency masks Si ∈ {0, 1}H×W by feeding each
image xi into an unsupervised saliency detector (e.g., Self-
Mask [47]). We then assign the corresponding category
name (from archive construction) and an instance id to
the inferred saliency mask, which allows for training a
segmenter for semantic and instance segmentations as de-
scribed in Sec. 3.3.
Synthetic image generation with copy-paste augmenta-
tion. To train a segmenter which can segment multiple ob-
jects within an image, we follow [49] and use copy-paste
augmentation [16] to synthesise an image with multiple
objects. A pseudo-mask is created accordingly by copy-
pasting the binary pseudo-masks of the images used for the
synthetic image, with a unique instance id and a category
label allocated to each mask.

3.3. Architecture
To tackle both semantic and instance segmentation tasks

while preserving zero-shot ability of a pretrained vision-

language model (VLM), we propose a simple framework
termed, ZUTIS, which operates on features from image and
text encoders of VLM (shown in Fig. 2).
Semantic segmentation. Given an image encoder ψI and
a text encoder ψT from a pretrained VLM, we extract dense
features ψI(xi) ∈ Rev×h×w (e.g., patch tokens from a vi-
sion transformer) for an image xi from the image encoder
where ev, h, and w denote the dimensionality of a visual
embedding space, height and width of the features, respec-
tively. The dense features are projected into a text embed-
ding space by a projection matrix W ∈ Ret×ev , where et
is a dimension of the text space. With text embeddings
ψT (C) ∈ R|C|×et from the text encoder for a set of cate-
gories, we compute logits via dot-product between the pro-
jected image features and text features which are followed
by a softmax function:

Pi = softmax(ψT (C)ψ̃I(xi), dim=0) (4)

where ψ̃I(.) and Pi denote WψI(.) and the probability
map, respectively. Then a cross-entropy loss Lce is used to
minimise differences between the prediction and the corre-
sponding pseudo-mask generated in Sec. 3.2. To inherit the
zero-shot ability of pretrained VLM, we only optimise the
parameters of the image encoder, leaving the text encoder
frozen. Note that this approach is related to MaskCLIP, but
with a key difference: we update the parameters in image
encoder, while MaskCLIP keeps the parameters fixed, and
instead uses value features from the last self-attention layer
of the image encoder to produce a semantic prediction. We
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compare our method to MaskCLIP in Sec. 4.3.

Instance segmentation. Here, we first produce object
mask proposals using a query-based transformer decoder.
In detail, given dense image features ψI(xi) before projec-
tion to the textual space, we pass the features to a feed-
forward network (FFN) with a hidden layer (e.g., an MLP
with three layers) whose output features are used as val-
ues V ∈ Rd×h×w for the transformer decoder. Given nq
object queries Q ∈ Rnq×d and V , the decoder outputs
query vectors that are fed into another FFN before produc-
ing mask proposals M ∈ Rnq×h×w via a dot-product be-
tween the resulting Q and V . Then, we update the model
with a bipartite matching loss [5, 8, 9] Lmask between the
proposals and the pseudo-masks for the image. We find that
it is essential to stop gradients from the transformer de-
coder flowing to the image encoder, otherwise the model
fails to converge (see Sec. 4.2). For Lmask, we use a mix-
ture of dice coefficient [39] and binary cross-entropy losses
Lmask = Ldice + Lbce with equal weights following [8].

During inference, we assign each mask proposal ml ∈
M a category whose text embedding shares the highest sim-
ilarity with an average image embedding of the mask. For
this, we first binarise ml with a threshold t and compute the
average image embedding ψI(xi,ml; t):

ψI(xi,ml; t) = mean(ψ̃I(xi)[ml > t]) ∈ Ret . (5)

Then, we assign the mask that category with highest simi-
larity to the average image embedding:

argmax
c∈C

[
ψT (C)ψI(xi,ml; t)

]
. (6)

Note that both text and average image embeddings are L2-
normalised before dot-product. In addition, we compute a
confidence score sl ∈ [0, 1] for each mask proposal, defined
as the average value of the mask region multiplied by the
maximum class probability for the mask (similarly to [8]).
Lastly, to reduce false positives occurring from redundant
predictions for a single object, we apply non-maximum sup-
pression (NMS) to the proposals before outputting final in-
stance predictions. We show the effect of NMS in Sec. 4.2.

Discussion. The key differences of ZUTIS from prior work
for unsupervised semantic segmentation with language-
image pretraining are two-fold: (i) rather than using a fixed
n-way classifier, we use a pretrained, frozen text encoder as
a classifier, and optimise an image encoder to output dense
features aligned with the textual features from the text en-
coder, a design choice that allows the model to be open-
vocabulary; (ii) we enable instance segmentation by train-
ing a query-based transformer decoder by bootstrapping the
results from saliency detection via copy-paste augmenta-
tion.

4. Experiments
In this section, we first describe the details of our experi-

ments including datasets, network architecture, training and
inference details, and evaluation metrics. Next, we ablate
components of our method such as the use of stop-gradient
and non-maximum suppression, and report the performance
of the model on both semantic and instance segmentation.

4.1. Implementation details
Datasets. We evaluate our model on COCO2017 [35] val
split, PASCAL VOC2012 [14], CoCA [67], and ImageNet-
S [15] test split for semantic segmentation and COCO-
20K [55] for instance segmentation following [53]. To
demonstrate our model’s zero-shot ability to new con-
cepts, we additionally consider the CUB-200-2011 [57]
test split. In detail, VOC2012 trainval split has
2,913 images with 21 categories including a background.
COCO2017 val and CoCA are composed of 5,000 and
1,295 images with 80 object categories and a background
class. ImageNet-S test consists of 27,423 images with
919 object classes which are a subset of ImageNet1K [46]
classes. COCO-20K comprises 19,817 images from the
COCO2014 train split with the same 80 object classes as
COCO2017. CUB-200-2011 test is composed of 5,794
images with 200 fine-grained bird breeds.

Note that, in this paper, we primarily consider the zero-
shot transfer setting, in which the model has no access
to training data sharing a data distribution with a down-
stream benchmark. Thus, throughout our experiments, we
use images retrieved from ImageNet1K (1.2M images) and
PASS [1] (1.4M images) by the ViT-L/14@336px CLIP
model to form an index image dataset except an experi-
ment in the unsupervised domain adaptation setting for the
ImageNet-S bechmark where we only retrieve ImageNet1K
images. For prompt engineering, we average text embed-
dings from 85 templates to obtain a textual feature for a
category following [48,49,70]. In all cases, we fix the num-
ber of images for an archive as 500 (i.e. 500 images for a
category) as in [49].
Architecture. We use transformer-based CLIP models for
the image encoder (e.g., ViT-B/16) and text encoder. We use
6 transformer layers for the transformer decoder and three-
layer MLP for the FFN. We feed patch tokens from the last
layer of the image encoder to the decoder after bilinearly
upsampling them by a factor of 2 to enable predictions at a
higher resolution.
Training. We compute the final loss L for the model as
L = Lce + λmaskLmask with λmask set to 1.0. We op-
timise our model with the AdamW optimiser [36], with an
initial learning rate of 5e-5 and a weight decay of 0.05. For
the image encoder, we use a smaller learning rate of 5e-
6. We train for 20K iterations with the Poly learning rate
scheduler [7], except when training for 919 categories of
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Figure 3. With more computation measured in throughput, ZUTIS
can produce better performance in both semantic segmentation
(left) and instance segmentation (right).

ImageNet-S where the model is updated for 80K iterations.
We use standard data augmentations such as random resiz-
ing, cropping and colour jittering. Following [49], we adopt
copy-paste augmentation [16] and set the maximum number
of images used for copy-pasting to 10. To further encourage
the model to differentiate objects of the same category, we
select images used for copy-paste from a randomly selected
archive 50% of the time. As in [5, 8], we compute a mask
loss for predictions by each transformer decoder layer.
Inference. We perform inference on images at their origi-
nal resolution, except for the large-scale ImageNet-S bench-
mark where we resize images with a longer side larger than
1024 while preserving its aspect ratio. For such cases, the
original resolution is restored with a bilinear upsampler fol-
lowing [49]. In addition, we apply NMS for instance seg-
mentation predictions as mentioned in Sec. 3.3.
Evaluation metrics. To measure our model’s performance,
we use the standard metrics such as mean intersection-over-
union (mIoU) for semantic segmentation and COCO-style
mask average precision (APmk) for instance segmentation.

4.2. Ablation study

Here, we study the influence of the components in our
method, including the choice of encoder architecture, stop-
gradient and NMS. For experiments in the ablation study,
we report the results on the VOC2012 trainval split.
Effect of encoder architecture. In Fig. 3, we show the
performance of our model with different transformer-based
CLIP image encoders such as ViT-B/32, ViT-B/16, and
ViT-L/14 [13].2 We observe that at the cost of computa-
tion measured in throughput, heavier models consistently
outperform lighter models in both mIoU (left) and APmk

(right). While ViT-L/14 performs best, we report results
with either ViT-B/32 or ViT-B/16 in the following experi-
ments to limit differences in performance due to model size
(ResNet50 [21] is typically used by previous unsupervised
methods). Note that ViT-B/32 and ViT-B/16 are the lightest
CLIP models compatible with our framework.

2While there are also ResNet-based CLIP encoders, we found them not
suitable for instance segmentation as they directly output features in the
joint image-text space via an attention pooling [44].

stop-grad NMS APmk APmk
50 APmk

75

✗ ✗ 0.3 0.4 0.3
✓ ✗ 4.4 8.7 4.2
✓ ✓ 13.7 30.9 11.1

Table 1. Stopping gradients from the transformer decoder to the
image encoder plays a crucial role in our framework while non-
maximum suppression (NMS) produces a substantial boost in per-
formance. The performance is measured in COCO-style AP met-
rics for instance segmentation.

class-agnostic class-aware
stop-grad APmk APmk

50 APmk
75 APmk APmk

50 APmk
75

✗ 8.4 19.9 6.4 1.0 1.9 0.9
✓ 9.9 24.1 7.4 13.7 30.9 11.1

Table 2. Applying a stop-grad operation between the image en-
coder and decoder allows the encoder features to keep semantic
representations.

Effect on stop-gradient and non-maximum suppression.
As described in Sec. 3.3, we prevent gradients from back-
propagating to the encoder parameters when optimising the
transformer decoder to generate mask proposals. We ob-
serve in Tab. 1 that this is crucial, otherwise the optimisation
does not converge to a reasonable solution. For our model
trained with stop-gradient, applying NMS to its mask pro-
posals brings a noticeable gain in performance from 4.4 to
13.7 APmk. This is because the model tends to predict re-
dundant mask proposals for a single object, increasing false
positives during evaluation. We therefore employ both stop-
gradient and NMS throughout the experiments.

Analysis on a stop-gradient operation. To further inves-
tigate why applying a stop-grad operation is essential in
our framework, we hypothesise that if stop-grad is not ap-
plied, gradients from the mask loss for instance segmenta-
tion could potentially dominate the visual feature learning,
thus harming the visual-language alignment in pretrained
VLM. To verify this, we evaluate the models trained w/ and
w/o the stop-grad w.r.t. class-agnostic and -aware APmk.
As shown in Tab. 2, while the model trained w/o stop-grad
performs poorly on class-aware APmk, it performs reason-
ably on class-agnostic APmk, indicating that the resulting
features are capable of segmenting objects but not suitable
for classification. Thus, it is crucial to separate features used
for semantic and instance predictions via a stop-grad for en-
abling class-aware instance segmentation.

4.3. Main results
Here, we compare ZUTIS to existing unsupervised

instance segmentation and semantic segmentation ap-
proaches. While we mainly focus on the zero-shot transfer
setting in which the model has no access to training data
for the target downstream task, we also report results for se-
mantic segmentation in the unsupervised domain adaptation
setting to draw comparison with existing approaches, where
the target data distribution is exposed to the model.
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model backbone APmk APmk
50 APmk

75

unsupervised methods w/o language-image pretraining
DINO [6] ViT-S/16 0.7 2.0 0.4
LOST [50] ViT-S/16 1.2 3.3 0.6
MaskDistill [53] ViT-S/16 1.7 4.1 1.4
MaskDistill [53]† RN50-C4 3.5 7.7 2.9

unsupervised method w/ language-image pretraining
MaskCLIP [70] ViT-B/32 0.3 0.8 0.2
ZUTIS (Ours) ViT-B/32 3.4 8.0 2.6
MaskCLIP [70] ViT-B/16 1.3 3.4 0.8
ZUTIS (Ours) ViT-B/16 5.7 11.0 5.4

Table 3. Comparison to previous unsupervised instance segmen-
tation methods on COCO-20K. †Mask R-CNN [20] trained with
pseudo-masks from MaskDistill. The numbers for the methods
without language-image pretraining are quoted from [53].

model arch. COCO CoCA
initialised with different encoder features
ReCo† [48] DeiT-S/16 & RN50x16 23.8 28.8
NamedMask‡ [49] RN50 & DLv3+ 28.4 27.3
initialised with CLIP encoder features
MaskCLIP [70] ViT-B/16 20.6 20.2
ZUTIS (Ours) ViT-B/16 32.8 32.7

Table 4. Comparison to previous unsupervised semantic segmen-
tation methods leveraging image-language pretraining on COCO
and CoCA in terms of mIoU (%). †Initialised with supervised
Stylised-ImageNet pretraining [40]. ‡Initialised with DINO [6].

Unsupervised instance segmentation. In Tab. 3, we evalu-
ate our model on unsupervised instance segmentation on the
COCO-20K dataset. As a baseline for our method, we eval-
uate MaskCLIP for instance segmentation by treating its se-
mantic segmentation masks for an image as mask proposals.
When comparing to the state-of-the-art approach [53], our
model shows comparable (with ViT-B/32) or better perfor-
mance (with ViT-B/16) by 3.3 APmk

50 . For qualitative visual-
isations of our model’s predictions, see Fig. 1.
Unsupervised semantic segmentation. For semantic seg-
mentation, we primarily compare to unsupervised ap-
proaches that leverage language-image pretraining such
as NamedMask, ReCo, and MaskCLIP. As ReCo and
MaskCLIP do not predict a “background” category, we re-
implement their methods to predict background class since
it appears in all the benchmarks considered in our exper-
iments. Specifically, for ReCo, we follow [49] and treat
the pixels as background if their maximum class probabil-
ity is lower than a threshold (=0.9). For MaskCLIP, we sim-
ply provide a text embedding for “background” along with
other object category embeddings which we find more ef-
fective than thresholding.

In Tab. 4, we evaluate our model in the zero-shot trans-
fer setting on the COCO val and CoCA benchmarks and
compare to unsupervised methods. Note that ReCo and
NamedMask have different settings from ours in terms of

initialisation and architecture for a backbone (i.e., ReCo
initialises its backbone with supervised Stylised-ImageNet
training and NamedMask with DINO), thus a direct com-
parison is not possible. Relative to MaskCLIP (which is
comparable), our model shows improvements of 12.2 and
12.5 mIoU on COCO and CoCA, respectively.

In Tab. 5, we evaluate our method in the unsupervised
domain adaptation setting, where the model is trained with
images retrieved from the ImageNet1K train split, and
evaluated on ImageNet-S. Compared to the state-of-the-
art unsupervised method (i.e. NamedMask), our approach
achieves a gain of 4.6 mIoU with ViT-B/32 and 14.5 mIoU
with ViT-B/16 at the expense of lower throughput.

Generalisation to new categories. Since we optimise our
image encoder to produce visual embeddings aligned to the
text embedding from the frozen text encoder, we expect
the resulting model to be capable of segmenting objects of
novel concepts which are unseen during training. To verify
this, we consider two scenarios: (i) a high-level to low-level
category transfer, i.e., the model is evaluated on categories
that it did not encounter during training but only their super-
set category; (ii) transfer to unseen categories semantically
far from those it has seen during training.

For the first scenario, we evaluate our model, trained for
80 categories in COCO including ‘bird’, on the test split
of CUB-200-2011 benchmark which has 200 fine-grained
bird categories. Here, given a high-level category (i.e.
“bird”) or a low-level category for an image (i.e. image-
specific fine-grained bird categories), we encode the cate-
gory with the text encoder and proceed with segmentation
as usual. Then we compare the segmentation result with
the groundtruth mask. It is worth mentioning that the per-
formance is measured in IoU rather than mIoU, as we do
not expect the model to distinguish between the fine-grained
categories. This is because the image archive for “bird” is
likely to contain images of different bird breeds, which en-
courages the model to learn the invariance between birds.
However, we expect the model to also identify the “bird”
regions given a specific bird breed as a target. As shown
in Tab. 6, when given low-level categories (bird breeds) as
input, our model can perform equally well as given a high-
level category (“bird”). Note that the semantically clos-
est category to the fine-grained categories among the 80
classes in COCO is “bird” and that only 16 out of 200 fine-
grained bird categories contain “bird” as a part of its name
(e.g. “Anna Hummingbird”). This implies that the model is
equipped with knowledge about fine-grained bird species.

For the second scenario, we split 65 seen and 15 unseen
classes in the COCO dataset and evaluate our model on the
unseen classes following prior work on zero-shot instance
segmentation [69]. For this, we train our model with im-
age archives constructed only for the seen categories. As
shown in Tab. 7, when compared to a baseline unsupervised
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model arch. # params (M) throughput (img/s) mIoU S MS ML L

unsupervised methods w/o language-image pretraining
PASSp [15] RN50 25.6 - 6.6 1.3 4.6 7.1 8.4
PASSs [15] RN50 25.6 - 11.0 2.4 8.3 11.9 13.4

unsupervised methods w/ language-image pretraining
ReCo† [48] DeiT-S/16 & RN50x16 170.4 32.3 10.3 6.0 11.6 10.2 6.7
NamedMask‡ [49] RN50 & DLv3+ 26.6 125.0 22.9 5.1 19.4 24.4 19.8
ZUTIS (Ours) ViT-B/32 87.8 76.9 27.5 5.6 22.3 28.9 26.5
ZUTIS (Ours) ViT-B/16 86.2 43.5 37.4 10.7 32.1 40.2 33.4

Table 5. Comparison to existing unsupervised methods on the ImageNet-S benchmark with 919 object categories in the unsupervised
domain adaptation setting. We also show mIoU in diverse object sizes from small (S), medium-small (MS), medium-large (ML), and large
(L). †Encoder initialised with supervised Stylized-ImageNet pretraining. ‡Encoder initialised with unsupervised pretraining (i.e., DINO).

category-specific label CUB-200-2011

✗ 72.5
✓ 72.6

Table 6. High-level to low-level zero-shot transfer on the CUB-
200-2011 benchmark. When given a finegrained bird breed,
ZUTIS can segment the corresponding bird regions as good as
when it is given a high-level category “bird.”

model APmk APmk
50 APmk

75

MaskCLIP [70] 0.7 2.0 0.4
ZUTIS (Ours) 3.3 (+2.6) 7.2 (+5.2) 2.8 (+2.4)

Table 7. Zero-shot unsupervised instance segmentation for 15 un-
seen categories on COCO-20K.

method, our model performs favourably by a notable mar-
gin (i.e., +5.2 APmk

50 ). It indicates good generalisability of
our model to the unseen categories which are semantically
remote from the concepts seen during training.

4.4. Limitations
Although we show strong performance on unsupervised

semantic segmentation and instance segmentation leverag-
ing only image-language pretraining, we also note two lim-
itations to our work: (i) While the use of a vision-language
model such as CLIP [44] significantly simplifies deploy-
ment relative to unsupervised approaches that employ Hun-
garian matching, it also represents the source of potential
error. For instance, our method will be unable to segment
categories that are not present in CLIP’s pretraining data
(extremely rare concepts, for example). (ii) Our pipeline
for sourcing pseudo-masks with a vision-language model
(VLM) and a saliency detector has drawbacks. Images re-
trieved for a given concept by VLM can contain objects
of a distracting class which the detector can highlight to-
gether with the desired category object. For example, both
a skateboard and a person riding it can be segmented by the
detector when we retrieve the image for “skateboard” and
generate a pseudo-mask for it.

5. Broader impact
The goal of this work is to propose a practical frame-

work for instance and semantic segmentation. As such,
we hope that our work facilitates many useful applications
of segmentation (medical image analysis, fault detection in
manufacturing, security monitoring etc.). However, auto-
matic segmentation represents a dual-use technology and is
therefore subject to misuse (unlawful surveillance, for ex-
ample). We also note that we build ZUTIS on top of foun-
dation models like CLIP [44]. These models are known to
reflect biases present in large, minimally curated internet
corpora and thus our model is likely to inherit these biases
also. Consequently, any practical deployment of ZUTIS
will require assessment (and potentially also mitigation) of
the risks posed by such biases.

6. Conclusion
In this work, we introduced ZUTIS, the first framework

for joint instance segmentation and semantic segmentation
in a zero-shot transfer setting that requires no pixel-level or
instance-level annotation. We employ a query-based trans-
former architecture for instance segmentation and train it
on pseudo-labels generated from applying an unsupervised
saliency detector to images retrieved by CLIP. Through
careful experiments, we demonstrated the effectiveness of
ZUTIS across both instance segmentation and semantic
segmentation tasks. In future work, we intend to explore
the application of ZUTIS to other modalities such as video.
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