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Abstract

We propose a new self-supervised method for predict-
ing 3D human body pose from a single image. The pre-
diction network is trained from a dataset of unlabelled im-
ages depicting people in typical poses and a set of un-
paired 2D poses. By minimising the need for annotated
data, the method has the potential for rapid application to
pose estimation of other articulated structures (e.g. ani-
mals). The self-supervision comes from an earlier idea ex-
ploiting consistency between predicted pose under 3D ro-
tation. Our method is a substantial advance on state-of-
the-art self-supervised methods in training a mapping di-
rectly from images, without limb articulation constraints or
any 3D empirical pose prior. We compare performance
with state-of-the-art self-supervised methods using bench-
mark datasets that provide images and ground-truth 3D
pose (Human3.6M, MPI-INF-3DHP). Despite the reduced
requirement for annotated data, we show that the method
outperforms on Human3.6M and matches performance on
MPI-INF-3DHP. Qualitative results on a dataset of human
hands show the potential for rapidly learning to predict 3D
pose for articulated structures other than the human body.
Project page: https://josesosajs.github.io/
imagepose/

1. Introduction
Estimating 3D pose for articulated objects is a long-

standing problem. Its foundations arise from the early days
of computer vision with model-based approaches represent-
ing the human body as an articulated structure of parts
[10, 26]. Interest in estimating 3D human pose grew within
the computer vision community motivated by the many
real-world applications, for example, pedestrian detection
[16], human-computer interaction [42], video surveillance
[43], and sports analysis [30].

Initial work on estimating 3D pose addressed this prob-
lem by extracting a set of hand-crafted features, for exam-
ple, segmentation masks [1]. Other early approaches, such
as exemplar-based methods, use extensive datasets of 3D
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Figure 1. 3D pose estimation pipeline. Our approach jointly
learns to estimate 3D pose from an image via intermediate rep-
resentations of 2D pose. The pipeline is embedded within a larger
network for end-to-end training.

poses (commonly constructed from motion capture data)
to search for the optimal 3D pose given its 2D projection
[2, 9, 15]. Subsequently, these approaches were surpassed
in performance by deep learning methods, initially using
supervised learning to regress from images to joint posi-
tions [37] or heatmaps [27, 36]. While annotations for 2D
joint positions in the image plane are relatively easy to ob-
tain, getting ground truth 3D joint positions from images
alone is not straightforward.

Because of the limited availability of 2D and 3D pose an-
notations, an immense amount of available data in the form
of images remains unexploited for training in pose estima-
tion. Although there are many annotated datasets for hu-
man pose estimation, the situation is very different for non-
human articulated structures such as animals. Recently, un-
supervised and self-supervised methods for 3D human pose
estimation have made progress using this unlabelled data
(at least lacking 3D annotations) and have demonstrated
that it is possible to learn to estimate 3D poses from 2D
poses relying on rotational consistency [3,5,41], multi-view
setup [13,31], and 3D structure constraints e.g. joint angles
between limbs [18]. However, what will happen if we do
not assume the availability of paired 2D poses? Is it still
possible to train a model to predict 3D poses? What are the
minimum assumptions to make this possible?

We have proposed a method which, for the first time,
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learns to map between images and 3D pose without requir-
ing 3D pose annotations or paired 2D pose annotations.
Training only needs a set of unlabelled images depicting
people in different poses and an unrelated set of 2D human
poses. The motivation is twofold: (1) there is the potential
for exceeding current levels of performance by training on
massive unlabelled datasets, and (2) the method could, in
principle, be applied to articulated structures (e.g. animals)
where little or no 2D/3D annotated data is available. In our
proposed method, we learn a 2D pose predictor and a 3D
‘lifting’ function to produce 3D joint positions from unla-
belled images (summarised in Figure 1) in an end-to-end
learning framework.

Our method simultaneously learns 2D and 3D pose rep-
resentations in a largely unsupervised fashion, requiring
only an empirical prior on unpaired 2D poses. We demon-
strate its effectiveness on Human3.6M [11] and MPI-INF-
3DHP [23] datasets, two of the most popular benchmarks
for human pose estimation. We also show the method’s
adaptability to other articulated structures using a synthetic
dataset of human hands [33]. In experiments, the approach
outperforms state-of-the-art self-supervised methods that
estimate 3D pose from images and require higher super-
vision in training. Overall, our method has the following
advantages:

• It does not assume any 3D pose annotations or paired
2D pose annotations.

• It holds the potential for quickly adapting to 3D pose
prediction for other articulated structures (e.g. animals
and jointed inanimate objects).

2. Related Work
Our method broadly relates to prior work that estimates

3D human pose directly from images, and mainly to self-
supervised deep learning methods. However, it also draws
inspiration from earlier work on the estimation of 3D pose
from 2D pose. Therefore, we review both perspectives, re-
gardless of the degree of supervision required for training.

3D pose from 2D pose

A range of methods take as input 2D poses and lift them
to 3D space. Frequently, the 2D poses come from an off-
the-shelf 2D pose estimator, or they are simply annotations
for a given dataset. Early techniques for estimating 3D
poses from 2D joint positions rely on classical classification
algorithms and physical constraints. For example, given the
joint connectivity and bone lengths, [19] use binary deci-
sion trees to estimate the two possible states of a joint with
respect to its parent. Other methods implement the near-
est neighbour algorithm with large datasets of 3D poses to
search for the most likely 3D representation of a particular
2D pose [2, 9, 15].

In the deep learning context, Martinez et al. [22] present
a fully supervised approach to predict 3D positions given
2D joint locations using a fully connected network with
residual blocks. This network structure has become pop-
ular, and subsequent unsupervised approaches [3, 5, 38, 41]
incorporate it within their processes. For instance, Drover
et al. [5] propose a weakly supervised approach that lifts a
2D pose to 3D and then evaluates its 2D projection through
a GAN loss. Later, Chen et al. [3] extended this work by
adding a symmetrical pipeline of consecutive transforma-
tions (lifting, rotation, and projection) of the estimated 3D
representation. This cycle of transformations exploits geo-
metric consistency and removes the dependency on any 3D
correspondences.

More recently, Wandt et al. [38] incorporate two funda-
mental elements to the model in [3] that increase the perfor-
mance of the 3D lifting process: the use of normalising flow
(NF) and a learned elevation angle for the 3D rotations. Pre-
vious methods have successfully used normalising flow to
estimate 3D prior distributions given 3D human poses [40].
However, the method in [38] is the first to use normalising
flow to infer the probability of a reconstructed 3D pose from
a prior distribution of the 2D input.

Unlike these previous methods, we do not assume access
to ground truth 2D poses as input. Instead, our model takes
a single image and predicts the 2D pose from it, which is
then lifted to 3D. Overall, it estimates both the 2D and 3D
poses from the input image, removing the dependency on
paired 2D pose annotations or pre-trained 2D pose predic-
tors.

3D pose from an image

Work under this category is more related to our ap-
proach. Typically, methods for estimating 3D pose from
single images break down the task into two steps. First,
the 2D joints are localised, and then the 3D pose is esti-
mated from these 2D joint positions. Early deep-learning
implementations of this two-step process depend on hav-
ing access to 2D ground truth joint locations and 3D data
for supervising training [20, 29, 44]. Furthermore, most of
those methods integrate pre-trained 2D pose estimators, e.g.
a stacked hourglass network [27] and AlphaPose [6], for
solving the joint localization step.

On the unsupervised side, many approaches incorporate
specific assumptions for the 2D and 3D joint configuration
or even add some small portion of actual 3D data to guide
the training. For instance, [35] shows a unified multi-stage
CNN architecture to estimate 2D and 3D joint locations
from single images. This approach relies on a probabilis-
tic 3D model of the human pose responsible for lifting the
2D representations. Other methods incorporate motion in-
formation; for example, Zhou et al. [45] use sequences of
images and their corresponding 2D pose to guide their 3D
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Figure 2. Self-supervised architecture for estimating the 3D pose of a person. Our method aims to map an image of a person x to its
3D pose v. To achieve this; we train the networks Φ,Ω, D, and Λ with help of a normalising flow network and a couple of rotations and
projections. The pipeline starts with passing an input image x through Φ to obtain a skeleton image s, then Ω produces a set of 2D joint
positions y given s. We then embed the mapping into a larger cyclic architecture, where the 2D pose y is lifted into 3D using Λ. The 3D
pose v is then rotated, v̂ projected into 2D, ŷ is lifted back again into 3D through the same Λ, v̂′ inversely rotated, and finally v′ projected
back to the 2D pose y′ which should resemble the original 2D pose y.

pose estimation framework.
Like our work, Kundu et al. [17] propose a self-

supervised architecture to learn 3D poses from unlabelled
images. They incorporate three assumptions: human pose
articulation constraints, a part-based 2D human puppet
model, and unpaired 3D poses. Other approaches explore
learning without direct supervision by producing synthetic
multi-views of the same skeleton [31], accessing multi-view
videos [25], or relying solely on 3D kinematic constraints
[18]. In contrast, our method does not depend on multi-
view images nor any 3D data; it requires only an unlabelled
dataset of images depicting people in typical poses and an
unpaired empirical prior for the 2D pose.

3. Method
Our proposed 3D pose estimation model consists of a

pipeline of three networks Φ,Ω,Λ mapping from full body
images to 3D pose. This is shown in the upper-left blue
dotted box in Figure 2. The pipeline consists of:

• a Convolutional Neural Network (CNN) Φ mapping
from an input image x to an intermediate skeleton im-

age s,

• a second CNN Ω mapping from s to a 2D pose repre-
sentation y, and

• a fully connected network Λ lifting the 2D pose y to
the required 3D pose v.

The 3D pose is represented as an articulated structure of 3D
line segments corresponding to the parts of the body (e.g.,
torso, head, upper arm, foot).

We train the three networks together by incorporating
into a larger network (Figure 2) and optimise end-to-end.
This larger network is constructed to incorporate a loop of
transformations of the 3D pose. The degree of geometric
consistency around the loop contributes to a loss function
and provides self-supervision of the training. The training
starts with a dataset of images depicting people in differ-
ent poses. We also assume we have a (normally unrelated)
dataset of typical 2D poses from which we obtain skeleton
images using a differentiable rendering function κ. These
will be used in a GAN framework D to help ensure the gen-
erated skeleton images are realistic. In the following sec-
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tions, we provide more details about the components of our
model.

Image to 3D pose mapping

The image-to-pose mapping is the composition of networks
Φ,Ω,Λ to map an image x showing a person to its 3D pose
representation v. The first part of the mapping is a CNN Φ,
which maps from the image x to a skeleton image s = Φ(x)
showing the person as a stick figure. Our network Φ adopts
a similar architecture to the autoencoder in [14] but without
the decoder stage. After training, the emergent skeleton in
s aligns with the person in x as expected.

Then, the network Ω maps the skeleton image s to a 2D
pose representation y = Ω(Φ(x)). Informally, Ω learns to
extract 2D joint positions (xi, yi) from the skeleton image.
Finally, Λ is a neural network that lifts the 2D pose to the re-
quired pose v in 3D. In particular, Λ(y) estimates the depth
zi = di + ∆ for each pair of (xi, yi) joint positions in the
input y, where ∆ is a constant depth. Then, the 3D position
of joint vi in the 3D pose v is given by

vi = (xi · zi, yi · zi, zi) (1)

where zi is forced to be larger than one, to prevent am-
biguity from negative depths. In line with previous works
[3, 38, 41], ∆ is fixed to 10.

Our lifting network Λ is based on the work of [3,22] and
extended following [38]. In this context, our extended ver-
sion not only outputs the depth zi for each joint position
(xi, yi) in the input, it also produces a value for the eleva-
tion angle α. This angle will be used when performing the
rotations of the 3D pose v. In particular, we use α to fix
the elevation angle of the vertical axis to the ground-plane
about which the rotation is performed.

Skeleton images and discriminator

We encourage the training network to generate realistic
skeleton images with the help of an empirical prior of 2D
poses. Note that these 2D poses are unpaired, i.e., they are
not annotations of the training images.

The 2D poses from our empirical prior are first rendered
as skeleton images using the renderer proposed by [14]. Let
C be a set of connected joint pairs (i, j), e an image pixel
location, and u a set of (x, y) 2D coordinates of body joint
positions. The skeleton image rendering function is given
by:

κ(u)e = exp

(
−γ min

(i,j)∈C,r∈[0,1]
||e− rui − (1− r)uj ||2

)
(2)

Informally κ works by defining a distance field from the
line segments linking joints and applies an exponential fall-
off to create the image.

Following [14], we use a discriminator network D that
uses the prior skeleton images to encourage the predicted
skeleton images to represent plausible poses. The task of D
is to determine whether or not a skeleton image s = Φ(x)
looks like an authentic skeleton image such as those in the
prior w = κ(u). Formally, the goal is to learn D(s) ∈ [0, 1]
to match the reference distribution of skeleton images p(w)
and the distribution of predicted skeleton images q(s). An
adversarial loss [8] compares the unpaired samples w and
the predictions s:

LD = Ew(log(D(w)) + Es(log(1−D(s)) (3)

Random rotations and projections

A fundamental component of our model is the lifting pro-
cess which allows learning an accurate 3D pose v from the
estimated 2D input y. To provide self-supervision of the lift-
ing function and ultimately the whole end-to-end network,
we emulate a second virtual view of the 3D pose v by ran-
domly rotating it v̂ = R∗v . Previous work [3] has selected
a rotation matrix R by uniformly sampling azimuth and
elevation angles from a fixed distribution. Recently, [38]
demonstrates that learning the distribution of elevation an-
gles leads to better results. Thus, we follow their approach
and use Λ to also predict the elevation angle for the rotation
matrix. The rotation around the azimuth axis Ra is sampled
from a uniform distribution [−π, π].

In line with [38], we also predict the dataset’s normal
distribution of elevation angles Re by calculating a batch-
wise mean µe and standard deviation σe. We sample from
the normal distribution N (µe, σe) to rotate the pose in the
elevation direction Re. Then, the complete rotation matrix
R is given by R = RT

e RaRe.
After rotating the 3D pose, we project v̂ through a per-

spective projection. Then, the same lifting network Λ(ŷ)
produces another 3D pose v̂′ which is then rotated back to
the original view. The final 3D pose v′ is projected to 2D
using the same perspective projection. This loop of trans-
formations of the 3D pose provides a self-supervised con-
sistency loss. In this context, we assume that if the lifting
network Λ accurately estimates the depth for the 2D input
y, then the 3D poses v̂ and v̂′ should be similar. The same
principle applies to y and the final 2D projection y′. This
gives the following two components of the loss function:

L3d = ||v̂′ − v̂||2 (4)

L2d = ||y′ − y||2 (5)

Additionally, the 3D poses v and v′ should be similar.
However, instead of comparing with an L2 loss, we follow
[38,41] and measure the change in the difference in 3D pose
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between two samples from a batch at corresponding stages
in the network.

Ldef = ||(v′(j) − v′
(k)

)− (v(j) − v(k))||2 (6)

Similar to Wandt et al. [38], we do not assume samples
are from the same video sequence; the samples j and k may
come from different sequences and subjects.

Empirical prior on 2D pose

Like Wandt et al. [38], we use a normalizing flow to provide
a prior over 2D pose. A normalising flow transforms a sim-
ple distribution (e.g. a normal distribution) into a complex
distribution in such a way that the density of a sample under
this complex distribution can be easily computed.

Let Z ∈ RN be a normal distribution and g an invertible
function g(z) = ȳ with ȳ ∈ RN as a projection of the 2D
human pose vector ŷ in a PCA subspace. By a change of
variables, the probability density function for ȳ is given by

pY (ȳ) = pZ(f(ȳ))

∣∣∣∣det(δf

δȳ

)∣∣∣∣ (7)

where f is the inverse of g and δf
δȳ is the Jacobian of

f . Following the normalising flow implementation in [38],
we represent f as a neural network [4] and optimise over a
dataset of 2D poses with negative log likelihood loss:

LNF = − log(pY (ȳ)) (8)

Additional losses

We compute a loss from the mapping from skeleton images
to 2D pose y = Ω(s). We use the same loss as [14], but
without pretraining Ω, i.e., we learn this mapping simulta-
neously with all the other networks. LΩ is given by

LΩ = ||(Ω(κ(u))− u)||2 + λ||(κ(y)− s)||2 (9)

where u represents a 2D pose from the unpaired prior,
s is the predicted skeleton image, and λ is a balancing co-
efficient set to 0.1. The function κ is the skeleton image
renderer defined in Equation 2.

Based on the proven effectiveness of incorporating rela-
tive bone lengths into pose estimation methods [21, 28, 38],
we add this to impose a soft constraint when estimating the
3D pose. Following the formulation in [38], we calculate
the relative bone lengths bn for the n-th bone divided by
the mean of all bones of a given pose v. We use a pre-
calculated relative bone length b̄n as the mean of a Gaussian
prior. Then, the negative log-likelihood of the bone lengths
defines a loss function Lbl,

Lbl = − log(

N∏
n=1

N (bn|b̄n, σb)) (10)

where N is the number of bones defined by the connec-
tivity between joints. Note that this is a soft constraint that
allows variation in the relative bone lengths between indi-
viduals.

3.1. Training

We train Φ,Ω, D, and Λ from scratch. Only the nor-
malising flow is independently pre-trained, as indicated in
[38]. The complete loss function for training our model
has seven components expressed as LD (Equation 3), LΩ

(Equation 9), L2d (Equation 5), L3d (Equation 4), Ldef

(Equation 6), LNF (Equation 8), and Lbl (Equation 10). For
convenience in ablation studies, we group three of these loss
terms and represent them as Lbase

Lbase = L2d + L3d + Ldef (11)

Thus, the final composite loss function is defined as:

L = LD + LΩ + Lbase + LNF + Lbl (12)

During testing we only keep the pipeline composed of
the trained Φ, Ω, and Λ networks illustrated in the upper-
left box in Figure 2. Please see the supplementary section
for a more detailed description of the networks and training.

4. Experiments
4.1. Datasets

Human3.6M: Human3.6M [12] is a widely used large-
scale pose dataset consisting of videos of 11 subjects doing
17 activities against a static background. There are 3.6M
frames depicting the human body and corresponding 3D
body poses. In line with the standard protocol II on Hu-
man3.6M [12], we use frames from subjects S1, S5, S6, S7,
and S8 for training. For testing, we use frames from sub-
jects S9 and S11. We pre-processed the video data by crop-
ping the human body on each frame and removing the back-
ground, using the bounding boxes and segmentation masks
provided in the dataset.

MPI-INF-3DHP: MPI-INF-3DHP [24] is a human pose
dataset containing 3D annotations. Unlike Human3.6M,
this dataset incorporates studio and outdoor recordings. The
dataset comprises eight subjects with two video sequences
for each, doing different activities, e.g. walking, sitting, ex-
ercising, and reaching. We train our model with the images
from the train split and evaluate with the given test set.

HandDB: HandDB [33] is a dataset of images show-
ing human hands under different scenarios. For our exper-
iments, we use part of the subset of hands generated from
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synthetic data, which contains 2D annotations for 21 key
points: four for each of the five fingers and one for the wrist.
For training and testing, we select two sequences (synth2
and synth3) of images from the four included in this subset
and split them 80/20, respectively.

4.2. Metrics

Following previous methods [3, 5, 22, 25, 31], we use the
standard Protocol II to evaluate the Human3.6M dataset
[12]. Protocol II performs a rigid alignment between the
predicted 3D pose and the 3D ground truth via the Pro-
crustes method [7]. Then, it calculates the Mean Per
Joint Position Error (MPJPE), which takes the average Eu-
clidean distance between the ground-truth joint positions
and the corresponding estimated positions across all 17
joints [12]. For simplicity, we refer to this metric as P-
MPJPE (for Procrustes-MPJPE). For evaluation of the MPI-
INF-3DHP dataset, we show the Percentage of Correct Key-
points (PCK), which represents the percentage of estimated
joint positions within a fixed distance of 150mm from their
respective ground truth. We also report the corresponding
area under the curve (AUC).

4.3. Results

Using our trained model with the Human3.6M dataset,
we predict 3D pose (consisting of 17 joint positions) for
every frame in all videos of subjects S9 and S11 (∼ 584k
frames) and calculate the average P-MPJPE. Table 1 com-
pares our method with the state-of-the-art 3D pose estima-
tion methods.

We include supervised [2, 25], semi-supervised [31, 32,
39], and self-supervised [17, 18] approaches that estimate
the 3D pose from images. For a more comprehensive com-
parison, we also consider supervised [22] and unsupervised
[3, 5, 34, 38, 41] methods that estimate 3D pose from 2D
landmarks. The performance of our method exceeds that of
some methods that rely on 3D supervision [2], multi-view
images [31, 32] or priors on 3D data [17].

To demonstrate our model’s generalisation performance,
we evaluate using the MPI-INF-3DHP test dataset under
different settings. First, we trained the model using Hu-
man3.6M. Second, we train our model with images from the
MPI-INF-3DHP training set. Finally, we train with both im-
ages from the MPI-INF-3DHP training data and the training
set of Human3.6M. For the first experiment, the set of 2D
poses used for the normalising flow prior on 2D pose and
the derived empirical prior on skeletons comes from Hu-
man3.6M, and for the rest the empirical prior comes from
2D poses on MPI-INF-3DHP. Table 2 presents the PCK and
AUC scores for the different evaluation conditions.

Figure 3 shows qualitative results on images from Hu-
man3.6M and MPI-INF-3DHP datasets. It includes a ran-
dom selection of predicted 3D poses and their correspond-

Assumptions Method P-MPJPE(↓)
3D pose from 2D landmarks

3D poses Martinez et al. [22] 52.1
2D poses Chen et al. [3] 68.0
2D poses Drover et al. [5] 64.6
2D poses Yu et al. [41] 52.3
2D poses Wandt et al. [38] 36.7

3D pose from images
3D Poses Chen et al. [2] 114.2
3D Poses Mitra et al. [25] 72.5
MV + P3D Rhodin et al. [32] 128.6
MV + P3D Rhodin et al. [31] 98.2
MV + 2D Wandt et al. [39] 53.0
Unpaired 3D Kundu et al. [17] 99.2
3D Struct. Kundu et al. [18] 89.4
Unpaired 2D Ours 96.7

Table 1. P-MPJPE (in mm’s) for all activities in Human3.6M.
MV = Multi view, Unpaired 3D = Unpaired 3D poses, 3D Struct. =
3D body structure constraints, Unpaired 2D = Unpaired 2D poses,
P3D = Partial 3D poses (i.e, one portion of the 3D pose annotations
available).

Method PCK(↑) AUC(↑)
Unpaired 3D Kundu et al. [17] 83.2 58.7
3D Struct. Kundu et al. [18] 79.2 43.4
Unpaired 2D Ours- 58.7 24.3
Unpaired 2D Ours* 69.6 32.8
Unpaired 2D Ours+ 75.3 40.0

Table 2. Evaluation results on MPI-INF-3DHP dataset. First
column shows the main assumption for each method, where Un-
paired 3D = Unpaired 3D poses, 3D Struct. = 3D body structure
constraints, and Unpaired 2D = Unpaired 2D poses. Ours- indi-
cates the model trained with Human3.6M and tested with MPI-
INF-3DHP. Ours* represents the model trained with images from
MPI-INF-3DHP. Ours+ indicates that the MPI-INF-3DHP train set
has been extended with images from Human3.6M.

ing input image.
To demonstrate the adaptability of the method, we ap-

plied it to estimate hand pose using part of the synthetic
subset from [33]. This required a different structure for the
target 3D pose. For training and testing the model, we se-
lect sequences of images showing hands under similar con-
ditions (synth2 and synth3). We augment the training set
offline by making two rotated versions of each image (45◦

and 90◦). We use half of the 2D annotations provided with
the dataset to build the prior on 2D hand poses. The train-
ing set does not include the images corresponding to those
annotations. With the trained model, we estimate 3D hand
poses consisting of 21 key points (representing hand joint
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A. Results on Human3.6M dataset B. Results on MPI-INF-3DHP dataset

Figure 3. Qualitative results on images from Human3.6M and MPI-INF-3DHP datasets. Each figure contains the input image and its
corresponding estimated 3D pose by our model. An extended version of qualitative results for both datasets is included in the supplemental
document.

positions). Since the synthetic subset of HandDB does not
contain 3D annotations (just 2D), we only show qualitative
results in Figure 4.

4.4. Ablation study

To evaluate the effectiveness of the design of our loss
function, we progressively removed components from the
complete loss expressed by Equation 12. First, we evaluate
the model guided by the discriminator loss LD and LΩ. As
expected, even when the 2D predictions are mostly accu-
rate, the overall performance decreases since there is noth-
ing else to regulate the 3D predictions and these are more
likely to be deformed. We keep the LD, LΩ, and Lbase

losses for the second experiment, i.e., removing LNF and
Lbl. Although the model can produce plausible 3D poses,
the performance is still inferior.

Finally we assess the performance when removing only
the loss term constraining the bone lengths Lbl from the
original loss formulation (Equation 12). Adding the com-
bination of the loss terms for the normalising flow prior on
2D pose LNF and relative bone length Lbl has proven to be
useful, increasing the performance of the model by 20.8%
with respect to the loss function that does not contain those

Figure 4. Qualitative results on HandDB dataset. First column
shows the input image overlay with the 2D ground truth annota-
tions from the dataset. Next columns display novel views of the
3D hand predictions.
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Configuration P-MPJPE(↓)
LD + LΩ 139.3
LD + LΩ + Lbase 122.1
LD + LΩ + Lbase + LNF 112.3
LD + LΩ + Lbase + LNF + Lbl 96.7

Table 3. Ablation studies. Experiments with different loss terms
using Human3.6M dataset for training and testing.

terms. Table 3 shows the results for each of the modifica-
tions to the loss function.

5. Discussion
Our method outperforms self-supervised state-of-the-art

approaches that estimate 3D pose from images and assume
unpaired 3D data for supervision [17]. Also, it performs
better than recent methods that rely on 3D supervision [2]
or multi-view images [31,32]. Moreover, its performance is
similar to one method that assume 3D kinematic constraints
[18]. We achieve superior performance to Kundu et al. [18]
in 20% of the activities (Discuss, Pose, and Wait), and close
scores for the rest.

Most failure cases of our model on the Human3.6M
dataset appear for snapshots from activities such as Sitting
and Sitting Down. We assume this occurs because of the
self-occlusions and perspective ambiguity in these activi-
ties. However, according to the examples shown in Fig-
ure 5, the model can still produce plausible 3D poses for
most cases, even if they do not exactly match their respec-
tive 3D ground truth. The high P-MPJPE comes from mis-
matches between the ‘joints’ representing the body’s ex-
tremities, e.g. hands and feet.

With the experiments using the MPI-INF-3DHP dataset,
we demonstrate the cross-dataset generalisation of our
method. We also show that it works well even if we train the
NF network with a different dataset (Human3.6M). More-
over, when training with images from Human3.6M and
MPI-INF-3DHP, the experimental results suggest that in-
creasing the diversity of images in the training set could
help to improve the overall performance. In principle, ex-
tending the dataset of images is relatively straightforward
since 3D annotations are not require.

6. Conclusion
We demonstrate how to estimate 3D human pose with a

training architecture requiring only images depicting people
in different poses and an unpaired set of typical 2D poses.
We demonstrate qualitatively that our approach holds the
potential for rapidly learning about the pose of articulated
structures other than the human body without the need to
collect ground-truth 3D pose data, e.g. human hands.

Figure 5. Failure cases on Human3.6M. 3D predictions with a P-
MPJPE greater than 200mm. The first column shows the input im-
ages. The second column displays the predicted 3D pose (coloured
in red) aligned with its respective ground truth (coloured in green).
Following columns show different views of the predicted 3D pose.

Overall, using human datasets the qualitative and quanti-
tative results suggest that our method is comparable to other
self-supervised state-of-the-art approaches that estimate 3D
pose from images despite requiring a less onerous dataset
for training. Furthermore, it performs better than state-
of-the-art methods that rely on multi-view images or 3D
pose annotations for supervision. Prior work has demon-
strated the value of using temporal information from image
sequences and domain adaptation networks. Incorporating
these into our approach would be a promising direction for
future work. Finally, the way is open to apply the method
to much larger datasets of unlabelled images to see whether
performance continues to improve, and to apply the method
to other articulated structures (e.g., mice, dogs and other
animals), exploiting the relatively light requirement for self-
supervision in the form of an empirical prior on 2D poses.
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