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Abstract

Single domain generalization challenges model gener-
alizability to unseen target domains when only one source
domain is provided for training. To tackle this problem, do-
main expansion is adopted to learn domain-invariant infor-
mation by exposing the model to more domain variations,
which is still under-explored in previous work. In this pa-
per, we propose a new and simplified objective for learning
the desirable domain expansions by generating unconfident
samples through the combination of entropy maximization
and cross-entropy minimization. We further devise a novel
framework that trains a pair of generators from different
views by switching the guidance from the dual classifiers.
In this way, the resulting method called Simple Domain Ex-
pansion (SimDE) can learn diverse domain expansions ef-
fectively and efficiently. Extensive experiments on prevalent
single domain generalization benchmarks demonstrate the
superiority of our method by offering improved results over
the state-of-the-arts methods.

1. Introduction
Deep learning models are known to suffer from se-

vere performance degradation in the presence of domain
shift [2, 52], where training and test data come from dif-
ferent distributions. Domain generalization is thus pro-
posed, to make the models generalizable to unknown tar-
get domains [22, 26, 53]. A classical domain generaliza-
tion setting assumes the access to multiple training source
domains at training, i.e., multi-source domain generaliza-
tion (MultiDG). Over the last decades, significant progress
has been made for MultiDG, resorting to techniques such
as domain alignment [28, 30, 34, 36], meta learning [1, 11,
25, 31], domain augmentation [33, 42, 53, 58, 59], and self-
supervisions [3, 4, 50].

However, collecting and labelling data from multiple do-

mains can be costly, which makes MultiDG less practical
in real world. A more challenging and realistic, but less
studied setting, is single-source domain generalization (Sin-
gleDG), where only one source domain is available at train-
ing. A single source domain impedes the model from learn-
ing domain-invariant information, as no domain compari-
son may be made. Consequently, the model can easily over-
fit the domain-specific signals on the single source domain.

The most prevalent way for tackling SingleDG is domain
expansion [29, 40, 41, 47, 51, 57], which attempts to expand
the single source domain by generating pseudo domains.
The key of domain expansion is how to diversify the do-
main distributions under the strong constraint of preserv-
ing original semantics. Previous methods have made large
progresses in learning diverse domain distributions, but two
limitations are still existed. Firstly, to balance the domain
diversification and semantic preserving behavior, the main
objective for domain expansion usually involves a compli-
cated interaction of different loss terms defined at the input,
latent and output spaces respectively, and need to be tuned
carefully. Secondly, recent work train many generators to
learn domain expansion from different views, e.g., PDEN
stacks 20 generators progressively [29], while L2D uses 5
generators in parallel with different kernel sizes [51].

To deal with the above two limitations, we propose a
simple yet more effective way for domain expansion in this
paper. We first seek to simplify the overly complicated do-
main expansion learning objective in previous work. In-
spired by the positive correlation between the output en-
tropy of the classifier and the extent of domain shift [32,48],
we expand the source domain distribution by maximizing
the predicted entropy of the generated samples. In other
words, the desired domain expansions can be obtained by
generating the unconfident samples with respect to the clas-
sifier. Meanwhile, we constrain the semantics by minimiz-
ing the cross-entropy loss between the generated samples
and the original labels. In this way, the main objective for

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4798



Feature 
Extractor Classifier

Feature 
ExtractorDecoderAdaINEncoder

n  N(0,1)

Domain Expansion Stage

Classifier

Task Model 1

DecoderAdaIN

n  N(0,1)

Encoder

Generator 1

Generator 2 Task Model 2

weight 
sharing

Feature 
Extractor

Feature 
ExtractorDecoderAdaINEncoder

n  N(0,1)

Task Model 1

DecoderAdaIN

n  N(0,1)

Encoder

Generator 1

Generator 2 Task Model 2

weight 
sharing

Classifier

Task Learning Stage

Classifier

Figure 1. The illustration of our method SimDE. The whole learning process iterates between the domain expansion stage and the task
learning stage. Parameters of the dashed model blocks are fixed in the corresponding stages. Forward propagation that related to loss
maximization is highlighted in red.

domain expansion can be implemented as a simple trade-off
between the entropy loss maximization and cross-entropy
loss minimization. Moreover, both the entropy and cross-
entropy can be easily calculated at the logit level of the
classifier, without the requirement of latent feature manipu-
lation or specific model structures [40, 51].

Based on the new objective, we further propose a novel
and simple framework that utilizes the classifier discrep-
ancy to train a pair of generators. Specifically, we adopt
dual classifiers to construct two mirrored objectives to train
the two generators from different views. For training the
first generator, the cross-entropy loss of the first classifier
is minimized for semantic preservation and the entropy loss
of the second classifier is maximized for domain diversi-
fication. In contrast, for training the second generator, the
classifiers for entropy maximization and cross-entropy min-
imization are switched. Intuitively, for one specific genera-
tor, one of the classifiers acts as its adversary that should be
fooled, and the other classifier acts as the referee to prevent
the generator taking the shortcuts (e.g., generate noisy sam-
ples), while for another generator, the roles of adversary and
referee are switched. With these two mirrored objectives,
we can obtain sufficiently diverse domain expansions with

only two generators without introducing more of them.
After the generators are trained, both the generated and

original samples are then used for training the classifiers.
We also incorporate two auxiliary components in our frame-
work for further improvement. One is a style divergence
loss [29] to prevent each generator from producing samples
with collapsed styles. The other is a domain alignment loss
to enhance the feature invariance between the original and
generated domains. The full method is named as simple
domain expansion (SimDE) thereafter. The whole training
process of SimDE alternates between the domain expansion
stage that learns the generators, and the task learning stage
that learns the task models. With our method, the final task
model can be more generalizable to the unseen domains.

We summarize our main contributions as follows:

• We propose a simple and new objective for domain ex-
pansion by maximizing the predicted entropy for do-
main diversification and minimizing the cross-entropy
for semantic preservation.

• We further propose a simple and novel framework
which trains only two generators for multi-view do-
main expansion under the guidance of dual classifiers.
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• We evaluate our method on several prevalent Sin-
gleDG benchmarks and the results show that our
method can reach the state-of-the-arts results.

2. Related Work
Multi-source domain generalization (MultiDG): Mas-

sive efforts have been made for MultiDG over the past
decades. Previous works mainly resort to domain align-
ment [28, 30, 34, 36], meta learning [1, 11, 25, 31], domain
augmentation [33, 42, 53, 58, 59] or self-supervisions [3, 4,
50]. Representatively, [28, 30, 34] adopt adversarial train-
ing [15] to align the feature distributions from different do-
mains, while CCSA [36] uses semantic contrastive losses.
MLDG [25] first proposes a meta-learning strategy that sim-
ulates MAML [13] by splitting the source domains into dis-
joint virtual source and virtual target domains. Subsequent
work follow this idea to meta learn a regularizer [1], a fea-
ture critic loss [31] or the semantic consistency [11]. On
the other hand, [33, 42, 58] generate new domains by ad-
versarially confusing the domain classifier to augment the
training distributions, while [53, 59] achieve the same goal
by interpolating the statistics between domains. Recently,
self-supervised tasks, such as the jigsaw puzzle [4, 50] or
rotation prediction [3], are incorporated in MultiDG as aux-
iliary losses to learn generalizable representations. Some
other methods also tackle MultiDG through exposing the
generic model to the domain-specific counterparts [27], de-
ploying domain-specific masks [5], dedicated style-agnostic
regularizations [37] or gradient-based dropout [20].

Single domain generalization (SingleDG): As a more
challenging and realistic setting, SingleDG has recently at-
tached attentions from the community. A prevail approach
for SingleDG is domain expansion [29, 40, 41, 47, 51, 57],
which generates pseudo domains different from the origi-
nal source domain. Volpi et al. [47] first propose to expand
the source domain in the manner of adversarial attack [43],
and meanwhile restrict the semantics in the feature space.
Later, Qiao et al. [41] and Zhao et al. [57] make improve-
ments by adding additional relaxations through Wasserstein
auto-encoders [45] or information bottleneck [44]. Alterna-
tively, Another work of Qiao et al. [40] chooses to incor-
porate uncertainty assessment and MixUp [56]. Recently,
Li et al. [29] propose a joint framework by progressively
expanding the source domains and extracting invariant fea-
tures through contrastive learning. Wang et al. [51] deploy
a similar framework that mini-maximizes a mutual informa-
tion upper bound between source and generated domains. In
terms of the methods other than domain expansion, Fan et
al. [12] adversarially learn adaptive normalization layers,
while Cugu et al. [8] enforce attention consistency between
visual corruptions. Some MultiDG methods [4, 20, 36, 37]
without the requirement for multi-source domains can also
be applied to SingleDG, but they are usually less effective

than the domain expansion-based methods. In this paper,
we focus on the perspective of domain expansion, while our
method is orthogonal to methods from other perspectives.

3. Method
3.1. Overview

Without loss of generality, we focus on the classification
problem of SingleDG in this paper. Given a single source
domain S = {xi, yi}Ni=1 with N samples, the goal of Sin-
gleDG is to train a domain-agnostic model that can general-
ize well to the unseen target domains T . To tackle this prob-
lem, we follow the main idea of domain expansion by cre-
ating samples from pseudo domains to enrich the training
domain distributions and enhance domain invariance. We
propose a novel and simple method called SimDE to learn
the desired domain expansions effectively and efficiently.

The whole framework of SimDE is composed of four
networks, namely two task models M1, M2 and two gen-
erators G1, G2, as shown in Figure 1. The task model can
be decomposed into a feature extractor and a classification
head. The feature extractor is shared across the two task
models for complexity reduction. The two generators are
responsible for generating samples from pseudo domains in
the manner of learned image transformations. The learning
process of SimDE alternates between two stages, as shown
in Algorithm 1 and Figure 1. In the domain expansion stage,
we fix the parameters of the task models and train the gen-
erators to learn the desired domain expansions. In the task
learning stage, we fix the parameters of the generators and
use the generated samples together with the original sam-
ples to train the task models. With the two-step training
process, the task model can iteratively learn to recognize
the hard samples containing different domain variations and
thus be more robust to unseen target domains.

3.2. Domain Expansion Stage

We first introduce the learning strategy of SimDE in the
domain expansion stage. The goal of domain expansion is
to generate novel domains distinct from original domains
while not altering the latent semantics. To achieve this goal,
we propose a simple objective that operates at the output
logit level with a trade-off between predicted entropy max-
imization and cross-entropy minimization. The expanded
domains are encouraged to be distinct from the original do-
mains through entropy maximization, and the latent seman-
tics are constrained to be invariant through cross-entropy
minimization. Intuitively, we seek the desired domain ex-
pansions by generating the unconfident samples that con-
fuse the current task model.

To learn diverse domain expansions from different
views, we further utilize the dual classifier discrepancy to
train a pair of generators G1 and G2 based on the pro-
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Figure 2. Illustration of multi-view domain expansion in SimDE.

posed objective. Specifically, for training G1, we maximize
the entropy loss of the generated samples with respect to
the task model M2 and minimize the corresponding cross-
entropy loss with respect to the task model M1. Conversely,
for training generator G2, we switch the task models re-
sponsible for entropy maximization and cross-entropy min-
imization in the objective. Let the output from different net-
works be:

x̂1
i = G1(xi) p̂11i = M1(x̂

1
i ) p̂12i = M2(x̂

1
i )

x̂2
i = G2(xi) p̂21i = M1(x̂

2
i ) p̂22i = M2(x̂

2
i )

(1)

The training objectives are thus formulated as follows:

min
G1

−L2
ent + L1

ce =
1

N

∑
i
(p̂12i log p̂12i − yi log p̂

11
i )

min
G2

−L1
ent + L2

ce =
1

N

∑
i
(p̂21i log p̂21i − yi log p̂

22
i )

We illustrate the multi-view domain expansion induced
by the training objectives in Figure 2. Specifically, gener-
ator G1 is encouraged to expand the domain by approach-
ing the decision boundary of M2 while maintaining its dis-
tance to the decision boundary of M1. For generator G2,
the domain expansion behavior is the opposite. Due to the
discrepancy between the two decision boundaries, the two
generators can be guided to independently expand the orig-
inal source domain from two different directions. Through
this way, we can efficiently generate diverse domains with
only a pair of generators without introducing more of them.

For each of the generator, we further prevent mode col-
lapse in the generated samples with a style divergence loss
as [29]. For generator G1, the loss is defined as:

L1
sty = − 1

N

∑
i
||G1(xi, n)−G1(xi, n

′)||2 (2)

where n, n′ ∼ N(0, 1) is Gaussian noises that serve as the
conditions for generation, || · ||2 is the L2 distance. For
generator G2, the diversity loss L2

sty is defined similarly.

Algorithm 1 The episodic training process of Simple Do-
main Expansion (SimDE)
Input: Source domain dataset S; task models M1, M2;
generators G1, G2

Output: learned task models M1, M2

1: for all i in 1, . . . , E0 do
2: initialize the weights of G1 and G2 randomly
3: for all j in 1, . . . , E1 do {domain}
4: sample (xi, yi) from S
5: train G1 with Eq. 3
6: train G2 with Eq. 4
7: end for
8: for all k in 1, . . . , E2 do
9: sample (xi, yi) from S

10: (x̂1
i , yi)← (G1(xi, n), yi)

11: (x̂2
i , yi)← (G2(xi, n), yi)

12: update M1 & M2 with Eq. 8
13: end for
14: end for

After incorporating the style divergence loss, the total
objectives for domain expansion stage is reformulated as:

min
G1

L1
de = −L2

ent + L1
ce + λstyL1

sty (3)

min
G2

L2
de = −L1

ent + L2
ce + λstyL2

sty (4)

where λsty is the loss balancing weight.
Architecture of the generator: The generator conducts

an image-to-image transformation that converts the original
image x from the original source domain to a new image
x̂ from the unseen pseudo domain. We implement the gen-
erator as an encoder-decoder structure with a style integra-
tion module based on the adaptive instance normalization
(AdaIN) [19], as shown in Figure 1. The scaling parameter
β and the shifting parameter γ of AdaIN are derived from a
fully connected layer with a random Gaussian noise as the
input. The forward process is formulated as:

[β, γ] = FC(n) AdaIN(e, n) = β · e− µ(e)

σ(e)
+ γ

G(x, n) = Dec (AdaIN (Enc(x), n))

(5)

where n ∼ N(0, 1), µ and σ is the mean and standard de-
viation, e is the bottleneck embedding, FC(·), Enc(·) and
Dec(·) denote the fully-connected layer, the encoder and
decoder respectively.

Note that the implementation of the generator is not re-
stricted. Any image-to-image network, such as the spatial
transformation network (STN) [21], can be embedded into
our framework depending on the tasks at hand. Without
loss of generality, we use the AdaIN-based encoder-decoder
structure in this paper following [29, 51].
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Table 1. SingleDG accuracy on Digits dataset. All the methods
are trained on MNIST. “SV”, “MM”, “SY”, “US” denote SVHN,
MNIST-M, SYN and USPS respectively. The bottom half of the
table shows the domain expansion-based methods.

Method SV MM SY US Avg.

ERM 27.83 52.72 39.65 76.94 49.29
MixUp [56] 28.50 54.00 41.20 76.60 50.10
PAR [49] 30.50 58.40 44.10 76.90 52.50
CCSA [36] 25.89 49.29 37.31 83.72 49.05
d-SNE [54] 26.22 50.98 37.83 93.16 52.05
JiGen [4] 33.80 57.80 43.79 77.15 53.14
AutoAug [6] 45.23 60.53 64.52 80.62 62.72
RandAug [7] 54.77 74.05 59.60 77.33 66.44

ADA [47] 35.51 60.41 45.32 77.26 54.62
M-ADA [41] 42.55 67.94 48.95 78.53 59.49
ME-ADA [57] 42.56 63.27 50.39 81.04 59.32
UMGUD [40] 43.30 67.40 57.10 77.40 61.30
L2D [51] 62.86 87.30 63.72 83.97 74.46
PDEN [29] 62.21 82.20 69.39 85.26 74.77
SimDE (ours) 66.08 84.90 70.04 86.56 76.89

3.3. Task Learning Stage

Our ultimate goal is to obtain a domain-agnostic task
model by exposing it to diverse domain variations. There-
fore, after training the generators, we freeze their parame-
ters and use them to generate samples from unseen domains.
Each of the task model receives the generated samples from
both of the generators, as well as the original samples, and
then minimize the cross-entropy loss. Specifically, for task
model M1, the loss is formulated as:

L̂1
ce = −

1

3N

∑
i
(yi log xi + yi log x̂

1
i + yi log x̂

2
i ) (6)

and the loss L̂2
ce for task model M2 can be defined similarly.

To make full use of the generated samples and en-
hance the representation invariance, we further incorporate
a domain-invariant regularization between the original sam-
ples and the generated samples, which is also a common
practice in previous work [29, 40, 41, 51]. Here we adopt
the supervised contrastive loss [23] to increase the mutual
information between samples from the same class but dif-
ferent domains. Follow [29, 51], we use a projector head to
extract lower dimensional embeddings z for loss computa-
tion. Within a specific batch, all the embeddings obtained
from different task models and different domains are pooled
together as the input of the contrastive loss, which is formu-
lated as follows:

Lcon = −
N∑
i=0

1

|P (i)|
∑

p∈P (i)

log
e(zi·zp/τ)∑

a∈A(i) e
(zi·za/τ)

(7)

where A(i) if the set of all the samples except zi, P (i) =

Table 2. SingleDG accuracy on CIFAR-10-C. Average results of
four main corruption categories at severity level-5 are reported.
The bottom half of the table shows the results of the domain
expansion-based methods.

Method Weather Blur Noise Digits Avg

ERM 67.28 56.73 30.02 62.30 54.08
CCSA [36] 67.66 57.81 28.73 61.96 54.04
d-SNE [54] 67.90 56.59 33.97 61.83 55.07
AutoAug [6] 79.32 74.49 44.90 73.88 69.34
RandAug [7] 80.36 78.74 53.78 74.84 72.77

ADA [47] 72.67 67.04 39.97 66.62 61.58
M-ADA [41] 75.54 63.76 54.21 65.10 64.65
ME-ADA [57] 74.44 71.37 66.47 70.83 70.77
L2D [51] 75.98 69.16 73.29 72.02 72.61
PDEN [29] 78.75 75.68 76.38 75.54 76.37
SimDE (ours) 79.39 79.16 75.30 78.49 78.21

{p ∈ A(i) : yp = yi} is the set of all positives that share
the same class with zi, and |P (i)| is its cardinality, and τ is
the temperature parameter.

Taking the cross-entropy loss and the contrastive loss
together, we can obtain the total objective during the task
learning stage as:

min
M1,M2

Lta = L̂1
ce + L̂2

ce + λconLcon (8)

where λcon is the loss balancing weight.

4. Experiment

4.1. Datasets and Setups

To demonstrate the effectiveness of our method, we
carry out experiments on four commonly-used SingleDG
benchmark datasets: Digits is composed by five different
datasets, namely MNIST [24], SVHN [38], MNIST-M [14],
SYN [14] and USPS [9], with each dataset considered as a
unique domain. Follow standard protocols [41,47], the first
10, 000 images from MNIST are used for training and the
remaining four domains are used for testing. CIFAR10-
C [17] is a corrupted version of CIFAR10 [24]. Follow pre-
vious protocols [51,57], we use the 15 common corruptions
for evaluation, which belong to four main categories includ-
ing weather, blur, noise and digital. PACS [26] consists
of four domains including photo, art painting, cartoon and
sketch. There are totally 9, 991 images and 7 classes. We
choose one of the four domains as the source domain and
the remaining three domains as the target domains, which
results in four different cases. DomainNet [39] is a large
scale dataset with 6 domains, 345 classes and 596,010 im-
ages. Following [8], we use the Real domain as the training
set, and the remaining as test.
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Table 3. SingleDG accuracy on PACS. For each of the source do-
main “A”, “C”, “P” and “S”, the averaged results on the remaining
target domains are reported. Bottom half of the table shows the
results of the domain expansion-based methods.

Methods A C P S Avg

ERM 70.49 73.56 41.21 45.92 57.80
JiGen [4] 70.47 73.59 41.05 44.86 57.49
SagNet [37] 73.20 75.67 48.53 50.07 61.87
RSC [20] 74.20 75.27 43.03 51.03 60.88

ADA [47] 72.43 71.97 44.63 45.73 58.69
ME-ADA [57] 74.13 74.53 43.97 54.37 61.75
L2D [51] 77.08 75.21 54.14 55.21 65.41
PDEN [29] 76.43 73.87 58.52 53.92 65.68
SimDE (ours) 78.52 76.14 59.32 56.39 67.59

Table 4. SingleDG accuracy on DomainNet. The models are
trained on Real (R), and tested on Painting (P), Infograph (I), Cli-
part (C), Sketch (S) and Quickdraw (Q). Bottom half of the table
shows the results of the domain expansion-based methods.

Methods P I C S Q Avg

ERM 38.05 13.31 37.89 26.26 3.36 23.78
MixUp [56] 38.60 13.94 38.02 26.01 3.71 24.05
CutOut [10] 38.34 13.69 38.44 26.24 3.65 24.07
CutMix [55] 38.28 13.45 38.65 26.85 3.60 24.17
RandAug [7] 41.30 13.57 41.11 30.40 5.31 26.34
AugMix [18] 40.79 13.89 41.67 29.80 6.26 26.48
VC [8] 41.38 13.58 41.80 30.58 6.06 26.68
ACVC [8] 41.32 12.89 42.79 30.86 6.57 26.89

ME-ADA [57] 37.95 13.12 40.31 26.79 4.53 24.54
PDEN [29] 38.45 11.25 38.99 31.71 5.58 25.20
SimDE (ours) 39.96 12.91 41.73 33.46 6.85 26.98

+RA 41.43 12.81 42.52 34.31 7.28 27.67
+AugMix 40.73 12.61 42.04 33.25 7.01 27.13
+VC 40.87 12.99 43.07 34.49 8.20 27.92

4.2. Evaluation of Single Domain Generalization

Results on Digits: Table 1 shows the comparison results
of our method and state-of-the-arts. The domain expansion-
based methods shown in the bottom half generally performs
better than other regularization-based methods shown in the
top half, justifying the effectiveness of domain expansion
for SingleDG. Notably, our method achieves an at least
2.12% average performance gain among the domain expan-
sion competitors. Specifically, the proposed SimDE clearly
exceeds the second-best method PDEN with 3.87%, 2.70%
and 1.30% on SVHN, MNIST-M and USPS respectively,
showing its advantages in overall generalizability.

Results on CIFAR10-C: The average results of the four
main corruption categories under severity level-5 are shown
in Table 2. Our method reaches the highest average perfor-

Table 5. The main objectives of SimDE and its different variants
for domain expansion.

Method G1 max G1 min G2 max G2 min

Variant A L1
ent L1

ce N/A N/A
Variant B L1

ent L1
ce L2

ent L2
ce

Variant C L1
ent L1

ce L1
ent L1

ce

Variant D L1
ent + L2

ent L1
ce + L2

ce N/A N/A
SimDE (ours) L2

ent L1
ce L1

ent L2
ce

mance among all the competitors and exceeds most of them
with large margins. Specifically, the improvement brought
by our method is significant on blur and digital corruptions,
surpassing the second-best method PDEN with 3.18% and
2.95% respectively. Moreover, PDEN adopts a progressive
learning strategy that keeps all the trained generators from
previous stages in the memory, while our method is more
efficient by maintaining only two generators.

Results on PACS: We report the comparison results on
PACS in Table 3. Methods like SagNet and RSC are proved
to be effective under MultiDG scenarios [20, 37], but their
performances fall behind the SOTA domain expansion-
based methods due to the lack of multiple source domains.
Among all the competitors, our method again achieves the
highest performance on all the source-target combinations.
Specifically, the proposed SimDE surpasses the second-best
method PEDN with 2.09%, 2.27%, 0.80%, and 2.47% for
source domain art-painting, cartoon, photo and sketch re-
spectively, showing the effectiveness of our method.

Results on DomainNet: We report the comparison re-
sults in Table 4. Among all the domain expansion-based
competitors, SimDE achieves the best results on 4 out of 5
domains, as well as the top averaged performance. SimDE
also obtains better averaged result than the methods based
on massive strong augmentations like RandAug, AugMix
and VC. Furthermore, SimDE is orthogonal to these strong
augmentation methods and can bring further improvements
when combined with them. Specifically, when combined
with VC, SimDE can achieve the highest performance, sur-
passing the second-best method ACVC with a clear margin
of 1.03% on average. These results demonstrate the superi-
ority of SimDE on large-scale benchmarks.

4.3. Additional Analysis

Different choices of domain expansion objectives: To
show the rationale of our methodology design, we compare
SimDE with its different variants in Figure 3 and Table 5.
The performance comparisons are shown in Table 6. First of
all, variant A learns a single branch of generator and clas-
sifier with entropy maximization and cross-entropy mini-
mization. We notice that the performance obtained by vari-
ant A can already reach the state-of-the-arts, showing the
effectiveness of the simplified objective. Secondly, variant
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min 

(e) SimDE (ours)

Figure 3. Illustration of different domain expansion learning objectives of SimDE and its variants. For clarity, only the different imple-
mentations of entropy loss and cross-entropy loss are shown, while other components maintain the same across different variants.

Table 6. Performances of different variants and loss combinations under single domain generalization on Digits and PACS. For each source
domain, the averaged results on the target domains are reported. Note that Lsty and Lcon are used in variants A∼D by default.

Method Digits PACS

SV MM SY US Avg A C P S Avg

Variant A 64.07 81.83 66.26 84.18 74.09 77.87 75.45 56.60 55.10 66.26
Variant B 65.40 83.17 68.13 84.27 75.24 78.02 75.55 58.88 55.39 66.96
Variant C 62.28 83.39 65.52 84.47 73.91 78.34 75.47 56.30 55.35 66.37
Variant D 64.62 82.00 66.70 83.45 74.19 77.64 74.81 57.52 55.45 66.36

SimDE (ours) 66.08 84.90 70.04 86.56 76.89 78.52 76.14 59.32 56.39 67.59
SimDE w/o Lsty 66.00 82.86 69.43 86.25 76.14 78.16 75.85 58.78 55.92 67.18
SimDE w/o Lcon 65.46 83.69 68.60 84.48 75.56 77.95 76.09 57.53 55.79 66.84

B introduces another full branch of generator and classifier
into variant A, which means generator G1 and G2 use differ-
ent objectives. Such a simple extension can improve the fi-
nal performances. However, the dual classifier discrepancy
is not fully utilized in variant B and redundancy may still
exists between the generations from G1 and G2. Thirdly,
variant C only introduces another generator into variant A
and the performance improvement is marginal, indicating
that merely adding generators with the same objective is not
beneficial. Similarly, variant D also fails to bring improve-
ment by training a single generator with respect to the guid-
ance of dual classifiers, indicating that better performance
cannot be achieved with the collaborative training of two
classifiers. Finally, our SimDE obtains the optimal perfor-
mance by switching the objectives derived from dual clas-
sifiers, which could facilitate the generators to learn from
different views as shown in Figure 2.

Ablation study on different components: We conduct
ablation study about the style divergence loss Lsty and the
contrastive loss Lcon in our framework. As shown in Ta-

ble 6, all these components make contributions to the final
performance. Firstly, the contrastive loss brings consistent
improvements in different cases, showing the advantage of
enforcing feature invariance between domains. Secondly,
although not crucial, the style divergence loss still boosts
the overall performance, indicating that the generalizabil-
ity can be improved by encouraging more styles in outputs
from individual generators.

Choices of domain-invariant regularizations: The
proposed SimDE is a general framework that can be in-
corporated with different domain alignment constraints. In
Section 3.3, we instantiate the domain alignment in the
manner of contrastive learning. Here we further show more
instantiations. Specifically, classic discrepancy minimiza-
tion loss like the MSE, JSD, or MMD [16] loss is included.
Follow [41], we also develop a variant based on meta-
learning by setting the original domain and the generated
domain as meta-train and meta-test respectively. The re-
sults of different variants are shown in Table 7. In general,
our method can benefit from different domain alignment
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(a) ERM (b) MEADA (c) L2D (d) SimDE (ours)

Figure 4. The t-SNE visualizations of the target domain features with Sketch as the source domain on the PACS dataset. Features from the
same class are plotted in the same color.

Table 7. Comparison of different domain-invariant regularizations
on Digits dataset.

Method SV MM SY US Avg.

SimDE with JSD 65.76 84.32 67.89 86.18 76.04
SimDE with MSE 64.13 82.78 69.58 86.51 75.75
SimDE with MMD 66.42 83.92 69.70 84.75 76.20
SimDE with Meta 65.93 83.41 68.99 85.23 75.89
SimDE with CL (ours) 66.08 84.90 70.04 86.56 76.89

regularizations. Among all the variants, incorporating the
JSD loss, the MMD loss and the contrastive loss generally
brings better performances. The best overall performance is
obtained by using the contrastive loss, suggesting its advan-
tages in learning compact and invariant representations.

t-SNE visualizations of features: To further demon-
strate the effectiveness of the proposed SimDE, we use t-
SNE [46] to visualize the unseen target feature distribution
of different methods in Figure 4. Specifically, we choose
sketch on PACS dataset as the source domain since it has the
largest domain shift. It can be seen clearly that the feature
distribution induced by our method is more compact and
sparse, while other methods like MEADA and L2D tend to
mingle the features from different classes. This verifies the
success of the domain expansion framework proposed by
our method.

4.4. Extension to Few-shot Domain Adaptation

To further show the generalizability of our method, we
conduct experiments under the few-shot domain adaptation
setting [35], where a few labelled samples from the target
domain as well as the whole source domain are used for
training. Follow [29, 41], we use MNIST as the source do-
main and SVHN as the target. The models are first trained
on the source domain with the proposed SimDE and then
finetuned on the target domain. Models are evaluated on the
test set of the target domain, as shown in Table 8. By fine-
tuning with a few target samples, the model performance
on target domain can be greatly improved, and saturates as

Table 8. Few-shot domain adaptation accuracy with source do-
main as MNIST and target domain as SVHN.

Method Training images per class
0 7 10

FADA [35] - 47.00 -
CCSA [36] - - 37.63

M-ADA [41] 36.61 56.33 57.16
PDEN [29] 60.26 69.28 70.10
SimDE (ours) 64.23 70.89 71.50

the number of target samples increases. Our method con-
sistently outperforms the domain expansion competitors M-
ADA and PDEN in different cases of training samples. The
results suggest that our method can induce a more unbiased
model which benefits the downstream target adaptation.

5. Conclusion
In this paper, we propose a new and simple domain ex-

pansion learning objective for SingleDG by generating un-
confident samples through the trade-off between entropy
maximization and cross-entropy minimization. To enhance
the diversity of domain expansions, we further propose a
novel framework that trains a pair of generators by switch-
ing the guidance of dual classifiers. The proposed method,
called Simple Domain Expansion (SimDE) forms a two-step
adversarial training process, where the task models com-
pete with the generators to improve the generalizability to
unseen target domains. Extensive experiments on popular
SingleDG benchmarks show that SimDE can reach state-of-
the-arts results, demonstrating the success of the proposed
domain expansion learning framework.
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