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Abstract

Recently, learning from vast unlabeled data, especially
self-supervised learning, has been emerging and attract-
ing widespread attention. Self-supervised learning followed
by supervised fine-tuning on a few labeled examples can
significantly improve label efficiency and outperform stan-
dard supervised training using fully annotated data [6].
In this work, we present a novel hard negative-based self-
supervised deep learning paradigm, named HNSSL. Specif-
ically, we design a student-teacher network to generate a
multi-view of the data for self-supervised learning and inte-
grate an online hard negative pair mining into the training.
Then we derive a new triplet-type loss considering both pos-
itive sample pairs and online mined hard negative sample
pairs. Extensive experiments demonstrate the effectiveness
of the proposed method and its components on ILSVRC-
2012 based on the same backbone network. Specifically,
for the linear evaluation task, the proposed HNSSL with a
ResNet-50 encoder achieves the top-1 accuracy of 77.1%,
which outperforms its previous counterparts by 2.8%. For
the semi-supervised learning task, HNSSL with a ResNet-
50 encoder obtains the top-1 accuracy of 73.4%, which
outperforms the previous ResNet-50 encoder-based semi-
supervised learning results by 4.6% using only 10% labels.
For the task of transfer learning with linear evaluation,
HNSSL with a ResNet-50 encoder achieves the best accu-
racy on six of seven widely used transfer learning datasets,
which averagely outperforms previous ResNet-50 encoder-
based transfer learning results by 2.5%.

1. Introduction
Learning from a large-scale unlabeled dataset has long

been a hot topic in the computer vision community because
a large number of high-quality labels require laborious and
costly annotation for each task and there exists a huge
amount of unlabeled data from various data servers and
sources. Unsupervised or self-supervised learning can ef-
fectively learn a task-agnostic representation from vast un-
labeled data. The downstream tasks, such as image classifi-

cation, can be well performed by fine-tuning on a few task-
specific labels. This strategy has become a main-stream
pipeline for the transformer-based self-supervised learning
approaches [46]. Recent advanced self-supervised learning
achieves promising results and outperforms conventional
fully supervised learning methods on the image classifica-
tion [6].

The main effort of general self-supervised learning ap-
proaches mainly focuses on pretext task construction [18].
The pretext task can be designed to be predictive tasks [31],
generative tasks [1], contrastive tasks [34, 44], or a com-
bination of them. The supervision signal for the pretext
task, i.e., pseudo label, typically is yielded from a pretext
construction process which generally involves exhausted
multi-view construction to model various variations [37].
Through solving the pretext task with a specific objective
function, the network learns transferable visual features for
various downstream tasks.

The study of conventional self-supervised learning meth-
ods mainly involves data-related pretext task designs, such
as test time training [53], data augmentation prediction [40,
52, 54], cycle consistency loss [17, 41], masked auto-
encoder [13], self-distillation loss [4]. Popular pretext tasks
include colorizing gray scale images [50], image inpaint-
ing [35], playing image jigsaw puzzle [33], etc. For the
video-related self-supervised learning approaches, the data-
related pretext tasks can be sequence order verification [32],
solving sequence sorting [25], predicting the odd or unre-
lated element [10], classifying clip order [48], etc.

The recent tremendous success of self-supervised learn-
ing is mainly introduced by advanced learning strategies.
The InfoNCE loss is widely adopted for contrastive learn-
ing, which maximizes a lower bound of mutual informa-
tion based on the pseudo label in the pretext task [34].
SimCLR employs larger batch sizes, more training steps,
and a composition of data augmentations, which matches
the performance of a fully supervised ResNet-50 simply
by adding one additional linear classifier [5, 15]. Wu et
al. [47] maintains a large feature memory bank to store
training image representation. MoCo builds a large and
consistent dictionary through a dynamic queue and a
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momentum-updated encoder, which outperforms its super-
vised pretraining counterpart in the detection and segmen-
tation [14]. SimSiam employs a stop-gradient operation in
the Siamese architectures to prevent collapsing solutions of
self-supervised learning [8]. SimCLRv2 employs big, i.e.,
deep and wide, networks during pretraining and fine-tuning,
and it achieves surprisingly good performance for semi-
supervised learning on ImageNet [6, 39]. BYOL trains an
online network to predict a target network representation of
the same image where the target network is a slow-moving
average of the online network [11].

In this work, we propose a novel self-supervised learning
paradigm by introducing an effective negative image pair
mining in the contrastive learning framework. Specifically,
we introduce a student-teacher network into the contrastive
learning framework to construct a multi-view representation
of data. To effectively learn from unlabeled data in con-
trastive learning, we further construct the negative image
pairs by online hard negative image pair mining. The over-
all objective function can be derived as a form of triplet-
type loss facilitated by the collected positive and negative
image pairs. To avoid the collapsing solution and improve
the accuracy of self-supervised learning, we block the gra-
dient of the student sub-network in the training inspired by
SimSiam [8].

We conduct extensive experiments including linear eval-
uation, semi-supervised learning, transfer learning, and
ablation study to evaluate our method on the ImageNet
dataset [39]. The proposed method achieves 77.1% top-1
accuracy using a ResNet-50 encoder for the linear evalua-
tion, which outperforms previous ResNet-50 encoder-based
state-of-the-art methods by 2.8%. For the semi-supervised
learning task, our method with a ResNet-50 encoder ob-
tains the top-1 accuracy of 73.4%, which outperforms the
previous ResNet-50 encoder-based best result by 4.6% us-
ing 10% labels. For transfer learning with linear evalua-
tion, our method with a ResNet-50 encoder achieves the
best accuracy on six of seven widely used transfer learning
datasets, which averagely outperforms the previous ResNet-
50 encoder-based best results by 2.5%. More specifically,
our major contributions are summarized as follows.

• First, we build a student-teacher network to construct
multi-view representations in the contrastive learning
framework. The gradient of the student sub-network is
blocked to ease the training difficulty and stabilize the
training of self-supervised learning.

• Second, we collect hard negative image pairs on-the-
fly and add the hard negative image pairs into the train-
ing of contrastive self-supervised learning.

• Third, extensive experiments demonstrate that hard
negative-based self-supervised learning outperforms

previous state-of-the-art self-supervised learning ap-
proaches for linear evaluation, semi-supervised learn-
ing, and transfer learning based on the same encoder
on the ImageNet dataset.

2. Related Work
The mainstream unsupervised or self-supervised learn-

ing literature generally involves two aspects: data or
feature-related pretext tasks and loss functions [14]. The
data or feature-related pretext tasks typically can be spe-
cially constructed by the multi-view data or feature genera-
tion process [18]. Through solving the pretext task, the deep
network of self-supervised learning is expected to learn a
good representation for the downstream tasks. Loss objec-
tive functions can often improve the performance of self-
supervised learning significantly. Our hard negative-based
self-supervised learning focuses on the novel loss function
based on advanced student-teacher network design. Next,
we discuss the related studies with respect to these aspects.

Pretext tasks Without a large scale fully annotated
dataset, self-supervised learning can be designed to solve
a pretext task where pseudo labels are typically generated
based on data attributes [18]. Pathak et al. [36] use un-
supervised motion-based segmentation as the pretext task
for transfer learning on object detection. Context-based
pixel prediction is used as a pretext task to improve down-
stream tasks of image classification, detection, and seg-
mentation [35]. DeepCluster uses a standard clustering al-
gorithm, k-means, to generate pseudo labels and employs
its assignments as supervision to update the weights of
the network [2]. Larsson et al. [24] first conduct an in-
depth analysis of self-supervision via colorization show-
ing that colorization provides a powerful supervisory signal
for the ImageNet pretraining. ViLBERT extends the popu-
lar BERT model to learn joint visual-linguistic representa-
tions [20, 30].

Loss functions Contrastive loss measures the similarity
of image pairs in the feature space [12]. In contrastive learn-
ing framework, the target can be defined and generated on
the fly during training [12]. The recent significant success
of self-supervised learning has witnessed the widespread
adoption of contrastive learning [16]. Zhuang et al. [57]
train an embedding function to maximize a metric of local
aggregation, causing similar data instances to move together
in the embedding space while allowing dissimilar instances
to separate. Contrastive multi-view learning trains deep net-
works by maximizing mutual information between different
views of the same scene [44].

Self-supervised student-teacher learning The student-
teacher network can be used to generate multi-view repre-
sentations of unlabeled data. Temporal ensembling main-
tains an exponential moving average (EMA) prediction as
the pseudo label for the self-supervised training [23]. In-
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stead of averaging label predictions, the mean-teacher uses
EMA to update model weights [43]. MoCo further uses mo-
mentum to update the encoder for the new keys on-the-fly
and maintains a queue of keys in the contrastive learning
framework [9, 14]. BYOL maintains a student-teacher net-
work to yield a multi-view of samples in the training [11].
Without negative sample pairs in the training, BYOL uses
a large batch size and achieves surprisingly good perfor-
mance. Momentum teacher performs two independent mo-
mentum updates for the teacher’s weight and the teacher’s
batch normalization statistics to maintain a stable training
process [27]. Kalantidis et al. [19] propose hard negative
mixing, which synthesizes hard negatives directly in the
embedding space instead.

3. Method

In this section, we describe each component of the
proposed hard negative-based self-supervised learning
(HNSSL).

3.1. Overall Framework

We employ a student-teacher network to construct two
representational views of the sample, as illustrated in Fig. 1.
At the top of the student and teacher sub-networks, we con-
struct both the positive sample pairs and negative sample
pairs. Specifically, we consider the representations of the
same sample from student and teacher sub-networks as the
positive pair, and we only retain the most similar pair of
two different samples to construct the negative pair, i.e.,
hard negative pair. We block the gradient update of the stu-
dent sub-network and employ the exponential moving av-
erage (EMA) to update its parameters to stabilize the self-
supervised training. The problem definition and network
configuration including the general loss function are de-
scribed in the section 3.2. The hard negative pair mining
(HNPM) is shown in section 3.3 and the detailed network
update rule is in section 3.4. We also analyze the stability
of our method and the connection between our method and
InfoNCE [34] in section 3.5. The implementation details
are provided in section 3.6.

3.2. Student-Teacher Network

Problem definition: Unsupervised or self-supervised
learning tries to learn a good representation from a large
scale unlabeled dataset D = {I1, I2, · · · , IN}, where each
I represents an image. For an image sampled from the
dataset Ii ∼ D, we can obtain two representational views
of Ii by constructing one student sub-network S (·; θS) and
one teacher sub-network T (·; θT ) [42]. To learn various
invariants, we employ advanced data augmentation A, in-
cluding color jittering, horizontal flipping, Gaussian blur-
ring, and random cropping, in the data generation process

for the teacher sub-network. We then obtain two views of
representations for image Ii as

Ui = T (A (Ii) ; θT ) , U ′
i = S(Ii; θS), (1)

where Ui is the representation from the teacher sub-network
and U ′

i is the representation from the student sub-network.
The self-supervised learning tries to build pretext tasks

from these unlabeled data. The generated representation
views Ui and U ′

i from the student and teacher sub-networks
can be considered as a positive pair, which belong to the
same cluster. The hard negative-based contrastive self-
supervised learning tries to yield compact representations
for images of the same cluster by minimizing their normal-
ized L2 distance in the representational space. The intra-
cluster distance can be defined

L1 = EIi∼D

[(
Ui

∥Ui∥∞
− U ′

i

∥U ′
i∥∞

)2
]
, (2)

where images are randomly sampled from the dataset Ii ∼
D, ∥ · ∥∞ is the infinity norm, i.e., the maximum of the
absolute value of elements in the vector.

3.3. Hard Negative Pair Mining (HNPM)

It is not efficient to train a self-supervised network
by solely using positive pairs of samples. Current self-
supervised learning uses large batch size [5], memory
bank [47], or large dynamic dictionary [14] to achieve
promising results. Adding negative image pairs can signif-
icantly improve the training efficiency of a self-supervised
learning model.

We heuristically construct negative pairs in the self-
supervised learning framework by online mining hard nega-
tive pairs of images. For two different images Ii and image
Ij , we measure the dissimilarity of the two images by the
normalized L2 distance in the representation space

Uj = T (A (Ij) ; θT ) ,

DisSim(U ′
i , Uj) =

(
U ′
i

∥U ′
i∥∞

− Uj

∥Uj∥∞

)2

.
(3)

There exist large numbers of negative pairs of samples.
Hard samples have been widely proven to improve the per-
formance of a deep learning model [28, 38]. In the self-
supervised learning framework, we define the hard negative
pairs to be image pairs of small dissimilarity according to
Eq. (3). We try to maximize the normalized L2 distance or
dissimilarity of negative image pairs in the latent space. The
contrastive loss for negative pairs can be derived

L2 = −EIi∼D[log
( ∑
Ij∈B̃i

(DisSim(U ′
i , Uj))

)
], (4)
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Figure 1. The architecture of hard negative-based self-supervised learning (HNSSL). HNSSL employs triplet-type loss with both positive
sample pairs and negative sample pairs. The student and teacher sub-networks yield two representational views of one sample, which forms
the positive sample pair in the training. For the negative sample pair, we employ hard negative pair mining (HNPM) to generate negative
pairs on-the-fly. We block the gradient update of the student sub-network and employ exponential moving average (EMA) to update its
parameters which stabilizes the training and avoids a collapsing solution.

where images are randomly sampled from the dataset Ii ∼
D, B̃i is the hard negative sample set of the current batch
Bi for image Ii. The hard negative sample set B̃i can be
constructed

B̃i = {Ij |Ij ∈ Bi, Ij ̸= Ii,DisSim(U ′
i , Uj) ≤ 1}. (5)

We construct hard negative pairs on-the-fly in training,
which can be used to efficiently train the self-supervised
network.

3.4. Network Update

To stabilize the training and avoid a collapsing solution
in the self-supervised learning [8], we block the gradient for
the student sub-network S(·; θS). We employ the exponen-
tial moving average (EMA) to update the parameters θS in
the student sub-network [43]

θS ← τθS + (1− τ)× θT , (6)

where τ is a smoothing coefficient to tune the updated
strength of the student sub-network.

In the back-propagation, we only use the gradient to up-
date the parameters of the teacher sub-network. The overall

loss function can be derived as

L(θT ) = α1L1 + α2L2, (7)

where 0 < α1 < 1 and 0 < α2 < 1 are the fixed coef-
ficients to tune the trade-off between the intra-cluster loss
and inter-cluster loss. During the back-propagation, we em-
ploy gradient clipping to stabilize the training of the teacher
sub-network.

3.5. Connection with InfoNCE and Stability

In our method, we employ online hard negative pair min-
ing (HNPM) to add negative image pairs in the training
and use a normalized L2 distance in the loss function. We
will demonstrate that minimizing the loss of our method
is equivalent to minimizing the InfoNCE loss [34]. To
simplify the analysis, we temporarily remove the online
hard negative pair mining mechanism in our method in the
derivation of connection with InfoNCE.

The InfoNCE loss [34] can be written as

LNCE = −EIi∼D[log
fk(Ui, U

′
i)∑

Ij∈D fk(Uj , U ′
i)
]. (8)
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where Ui, U ′
i are calculated from the teacher sub-network

and the student sub-network, fk(·, ·) models the mutual in-
formation between the encoded representations in the In-
foNCE and can use similarity loss as a surrogate loss to
approximate the mutual information.

We define the similarity loss as the reciprocal of normal-
ized L2 distance of the encoded representations. The In-
foNCE loss can then be defined as

LNCE ≜ EIi∼D[log
DisSim(Ui, U

′
i)∑

Ij∈D DisSim(Uj , U ′
i)
]

= EIi∼D[log(
Ui

∥Ui∥∞
− U ′

i

∥U ′
i∥∞

)2]

− EIi∼D[log
( ∑
Ij∈D

(
Uj

∥Uj∥∞
− U ′

i

∥U ′
i∥∞

)2
)
].

(9)
The second part of the derived loss in Eq. (9) is the same as
our negative pair loss in Eq. (4) if we temporarily neglect
our hard negative sample pair mining for each batch. Mini-
mizing the first part of Eq. (9) is equivalent with minimizing
EIi∼D[(

Ui

∥Ui∥∞
− U ′

i

∥U ′
i∥∞

)2], which is the positive pair loss in
the Eq. (2). From the above derivation, we conclude, with
the proper relaxation and assumption, minimizing our loss
is equivalent to minimizing the InfoNCE loss.

Next, we demonstrate that hard negative pair mining
(HNPM) leads to stable training. Without the trade-off fac-
tors α1 and α2, the loss can be written as

L = EIi∼D[(
Ui

∥Ui∥∞
− U ′

i

∥U ′
i∥∞

)2]

− EIi∼D[log
( ∑
Ij∈B̃i

(
Uj

∥Uj∥∞
− U ′

i

∥U ′
i∥∞

)2
)
].

(10)

Without loss of generality, we remove the normalization
constraint and denote Ui

∥Ui∥∞
as Ui.

L = EIi∼D
[
(Ui − U ′

i)
2 − log

( ∑
Ij∈B̃i

(Uj − U ′
i)

2
)]
.

(11)
The hard negative pair mining (HNPM) always explores

negative pairs with L2 distance smaller than 1, which guar-
antees (Uj − U ′

i)
2 is bounded to be smaller than 1. We use

M to denote the upper bound of negative pair loss.

|L| ≤ EIi∼D
[
(Ui − U ′

i)
2
]
+M. (12)

Next, we can further prove that Eq. (12) can be opti-
mized stably, and the first part of Eq. (12), i.e., the loss of
positive pairs, can be decreased consecutively by escaping
undesirable equilibria. If the model stacks into an undesir-
able equilibrium solution, the feature representation of the
teacher sub-network can be denoted as E[U ′

i |Ui] from the

update rule in Eq. (6). The loss of positive pairs LP can be
derived as

LP = EIi∼D
[
(Ui − U ′

i)
2
]

= EIi∼D
[
(E[U ′

i |Ui]− U ′
i)

2
]
= EIi∼D[V ar(U ′

i |Ui)].
(13)

Let Z denote an additional variability induced by stochas-
ticities in the training dynamics. We always have a solution
leading to a lower loss during the training, which escapes
the current equilibrium, because

V ar(U ′
i |Ui, Z) ≤ V ar(U ′

i |Ui). (14)

From the above derivation, the learning is stable with
the benefit of hard negative pair mining and student sub-
network updating rule.

3.6. Implementation Details

Because of our advanced learning strategy, we do not use
any pre-trained model as the backbone of our implementa-
tion. To generate multi-view representations, we employ
data augmentation to model various variations in different
views.

We use residual networks as the student sub-network
S(·, θS) and teacher sub-network T (·, θT ). The two co-
efficients of the loss in Eq. (7), α1 is set to 0.8 and α2 is
set to 0.1. We employ the gradient clipping strategy in the
back-propagation where we set the maximum norm of gra-
dient clipping as 1.0. The Adam optimizer [21] is used to
minimize the loss in Eq. (7). The batch size is 160. The
learning rate is set as 0.1 and we use a cosine annealing
schedule [29] for the learning rate with the maximum num-
ber of iterations as 100. The smoothing coefficient τ in the
update of the student sub-network in Eq. (6) is set as 0.5,
which will be discussed in section 4.4.

We employ data augmentation for teacher sub-network
on-the-fly during training. We first apply color jittering with
the brightness of 0.8, the contrast of 0.8, a saturation of 0.8,
and a hue of 0.2 to random 80% training images in each
batch. Then we convert random 20% images to grayscale
and horizontally flip 50% images. After that, we smooth
random 10% images with a random Gaussian kernel of size
3× 3 and standard deviation of 1.5× 1.5. Finally, we crop
each image with a random crop size of scale range [0.8, 1.0].
We use the mean of [0.485, 0.456, 0.406] and the standard
deviation of [0.229, 0.224, 0.225] to normalize RGB chan-
nels of each image.

4. Experiments
We conduct experiments to validate the performance of

the proposed method on the ILSVRC-2012 dataset [39].
We compare our method with other self-supervised learn-
ing (SSL) approaches with the same encoder based on linear
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Method Top-1 Top-5
CPCv2 [16] 63.8 85.3
CMC [44] 66.2 87.0

SimCLR [5] 69.3 89.0
MoCov2 [7] 71.1 N/A

SimCLRv2 [6] 71.7 N/A
InfoMin Aug. [45] 73.0 91.1

BYOL [11] 74.3 91.6
SwAV [3] 71.8 N/A

SimSiam [8] 71.3 N/A
Ours 77.1 93.7

Table 1. The accuracy comparison of self-supervised learning
(SSL) approaches with the ResNet-50 encoder based on linear
evaluation on the ImageNet dataset. The boldface denotes the best
accuracy.

Method Dep. Wid. Top-1 Top-5
CMC [44] 50 2× 70.6 89.7

SimCLRv2 [6] 50 2× 75.6 N/A
BYOL [11] 50 2× 77.4 93.6

Ours 50 2× 79.4 94.5
SimCL [5]R 50 4× 76.5 93.2
BYOL [11] 50 4× 78.6 94.2

Ours 50 4× 80.3 95.1
BYOL [11] 200 2× 79.6 94.8

Ours 200 2× 81.9 96.4

Table 2. The accuracy (%) comparison of SSL methods with other
ResNet encoders based on the linear evaluation on the ImageNet
dataset.

evaluation, semi-supervised learning, and transfer learning.
We also conduct a systematical ablation study to validate
each component of our method.

4.1. Linear Evaluation

The linear evaluation can be used to evaluate the accu-
racy of self-supervised learning (SSL) by freezing the SSL
model and training a separate linear classifier after the SSL
model [11, 22, 50]. We compare our method with previous
state-of-the-art approaches with the ResNet-50 encoder and
other ResNet encoders on ImageNet in Table 1 and Table 2,
respectively. The top-1 and top-5 accuracy are listed. With
the standard ResNet-50 encoder [15], our method obtains
77.1% top-1 accuracy and 93.7% top-5 accuracy, which
outperform previous ResNet-50-based state-of-the-art top-
1 and top-5 results by 2.8% and 2.1%, respectively. Most
surprisingly, our method achieves 0.6% better accuracy than
the accuracy, 76.5%, of the supervised baseline from Sim-
CLR [5].

Table 2 reports the accuracy of self-supervised learning
methods using deeper and wider ResNet encoders based on
the linear evaluation. Our method with ResNet-200 (2×)
obtains 81.9% top-1 and 96.4% top-5 accuracy which in-
creases previous ResNet-based best top-1 and top-5 accu-
racy by 2.3% and 1.6%, respectively. With ResNet-50 (2×)
and ResNet-50 (4×) encoders, our method also achieves
better accuracy than those of CMC [44], SimCLRv2 [6] and
BYOL [11] with the same encoder.

4.2. Semi-Supervised Learning

Semi-supervised learning can also be used to evaluate
the accuracy of self-supervised learning (SSL) by fine-
tuning representation with a small subset of the training
set [11]. In this experiment, we use the fixed data splits
of 1% and 10% of the training set in ImageNet, which are
the same as [11]. We also use the top-1 and top-5 accuracy
as the evaluation metric for semi-supervised learning. The
comparison using the ResNet-50 encoder and deeper and
wider ResNet encoders are listed in Table 3 and Table 4,
respectively. Our method achieves 80.2% top-5 accuracy
based on a ResNet-50 encoder which improves the previous
ResNet-based best result by 1.8% using only 1% training
labels in Table 3. Using 10% training labels, our method
achieves 73.4% and 92.5% for the top-1 and top-5 accu-
racy, which improves the previous ResNet-based best top-1
and top-5 accuracy by 4.6% and 3.5%.

The result with ResNet of various depths, widths, and
selective kernel convolution [26] configurations are listed in
Table 4. Our method achieves the best top-1 and top-5 ac-
curacy for all the experimental configurations. Specifically,
based on ResNet-50 (2×) encoder, our method achieves
65.7% and 78.6% top-1 accuracy using 1% training labels
and 10% training labels, which improves the previous best
top-1 accuracy by 3.5% and 5.1%. Based on ResNet-200
(2×), our method obtains 76.5% and 80.7% top-1 accuracy
using 1% training labels and 10% training labels, which im-
proves the accuracy of BYOL [11] by 5.3% and 3.0%.

4.3. Transfer Learning

Transfer learning is another widely used task to evalu-
ate the accuracy of self-supervised learning (SSL) methods.
Transfer learning can be used to evaluate the generaliza-
tion ability of the learned SSL model. Practically, both
linear evaluation, i.e., only training the last classification
layer, and fine-tuning the whole network based on the tar-
get dataset can be employed for the evaluation of transfer
learning. The comparison of transfer learning with linear
evaluation and fine-tuning are listed in Table 5 and Table 6.

For the linear evaluation of the transfer learning task,
our method achieves better accuracy than previous ResNet-
based state-of-the-art approaches on six out of seven widely
used transfer learning datasets in Table 5. We provide the
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Method Top-1 (1%) Top-5 (1%) Top-1 (10%) Top-5 (10%)
SimCLR [5] 48.3 75.5 65.6 87.8

SimCLRv2 [6] 57.9 N/A 68.4 N/A
BYOL [11] 53.2 78.4 68.8 89.0

Ours 56.7 80.2 (1.8↑) 73.4 (4.6↑) 92.5 (3.5↑)

Table 3. The accuracy (%) comparison of SSL methods with the ResNet-50 encoder based on semi-supervised learning on ImageNet
dataset.

Method Dep. Wid. SK Para. Top-1 Top-5 Top-1 (10%) Top-5 (10%)
SimCLR [5] 50 2× ✗ 94M 58.5 83.0 71.7 91.2
BYOL [11] 50 2× ✗ 94M 62.2 84.1 73.5 91.7

Ours 50 2× ✗ 94M 65.7 86.2 78.6 (5.1↑) 93.2 (1.5↑)
SimCLR [5] 50 4× ✗ 375M 63.0 85.8 74.4 92.6
BYOL [11] 50 4× ✗ 375M 69.1 87.9 75.7 92.5

Ours 50 4× ✗ 375M 70.3 89.9 78.9 (3.2↑) 95.5 (2.9↑)
BYOL [11] 200 2× ✗ 250M 71.2 87.9 77.7 92.5

Ours 200 2× ✗ 250M 76.5 90.3 80.7 (3.0↑) 95.4 (2.9↑)
SimCLRv2 distilled [6] 50 1× ✗ N/A 73.9 91.5 77.5 93.4
SimCLRv2 distilled [6] 50 2× ✓ N/A 75.9 93.0 80.2 95.0

SimCLRv2 self-distilled [6] 152 3× ✓ N/A 76.6 93.4 80.9 95.5
Ours 152 3× ✓ N/A 77.6 94.2 81.3 95.7

Table 4. The accuracy (%) comparison of SSL approaches with other ResNet encoders including selective kernel convolution (SK) [26]
based on semi-supervised learning on the ImageNet dataset.

accuracy improvement in Table 5, and our method improves
2.3%, 3.5%, 4.5%, 2.7%, 4.9% and 0.9% on Flood101,
SUN397, Cars, Pets, VOC 2007 and Flowers datasets re-
spectively. On average, the transfer learning accuracy of our
method is 2.5% higher than the previous best results based
on the linear evaluation. For the transfer learning with a
fine-tuning task, our method achieves the best accuracy on
four out of seven tasks in Table 6.

4.4. Ablation Study

Coefficient τ in the update of student sub-network We
investigate the accuracy of our method with linear evalua-
tion based on the ResNet-50 encoder with respective to the
smoothing coefficient τ of the exponential moving average
(EMA) in Table 7. The bigger the τ is, the smaller update
the student sub-network performs. When the τ is 0, it means
that we copy the weights of the teacher sub-network to up-
date the student sub-network completely in each step. When
the τ is 1, it means that the student sub-network is never up-
dated. We find that at a moving average coefficient value of
0.5, we obtain the best top-1 accuracy, 77.1%, based on the
linear evaluation. Neither the moving average coefficient τ
of 0 nor 1 generates good performance.

Hard negative pair mining (HNPM) We conduct an
ablation study on hard negative pair mining (HNPM) based

Figure 2. The loss comparison w.r.t. different epochs for ablation
study of hard negative pair mining (HNPM) and blocking gradi-
ent in the student sub-network based on linear evaluation with the
ResNet-200 (2×) encoder on ImageNet.

on a linear evaluation task using the ResNet-200 (2×) en-
coder on the ImageNet dataset. Training with all nega-
tive pairs, i.e., without HNPM, is denoted as “w/o HNPM
+ block student gradient”, and our method is trained with
HNPM, which is denoted as “w/ HNPM + block student
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Method Food101 CIFAR-10 SUN397 Cars Pets VOC 2007 Flowers
BYOL [11] 75.3 91.3 60.6 67.8 90.4 82.5 96.1
SimCLR [5] 68.4 90.6 58.8 50.3 83.6 80.5 91.2

Supervised-IN [5] 72.3 93.6 61.9 66.7 91.5 82.8 94.7
Ours 77.6 92.4 65.4 72.3 94.2 87.7 97.0

Table 5. The transfer learning accuracy (%) comparison of SSL approaches with ResNet-50 encoder based on linear evaluation on Ima-
geNet.

Method Food101 CIFAR-10 SUN397 Cars Pets VOC 2007 Flowers
BYOL [11] 88.5 97.8 63.7 91.6 91.7 85.4 97.0
SimCLR [5] 88.2 97.7 63.5 91.3 89.2 84.1 97.0

Supervised-IN [5] 88.3 97.5 64.3 92.1 92.1 85.0 97.6
Ours 89.1 98.0 64.1 92.1 92.8 85.3 97.5

Table 6. The transfer learning accuracy (%) comparison of SSL approaches with the ResNet-50 encoder based on fine-tuning on ImageNet.

Figure 3. The accuracy comparison w.r.t. different epochs for
ablation study of hard negative pair mining (HNPM) and blocking
gradient in the student sub-network based on linear evaluation with
the ResNet-200 (2×) encoder on the ImageNet dataset.

τ 1.0 0.999 0.5 0.0
Top-1 (%) 24 73.4 77.1 49.1

Table 7. The effect of the smoothing coefficient τ in the expo-
nential moving average with ResNet-50 encoder based on linear
evaluation on the ImageNet dataset.

gradient”. The loss comparison w.r.t. the training epochs
for the two methods is visualized in Fig. 2, and the ac-
curacy comparison w.r.t. the training epochs for the two
methods are shown in Fig. 3. With hard negative pair min-
ing, the training of our method is much more stable and it
achieves lower loss and higher accuracy than that without
hard negative pair mining, which validates the conclusion

in section 3.5.

Blocking gradient of student sub-network We also
conduct an ablation study on the blocking gradient of stu-
dent sub-network in Fig. 2. Training without blocking
the gradient of the student sub-network is denoted as “w/
HNPM + student gradient”. Our method achieves lower
loss and higher accuracy than that with gradient updating
of student sub-network, which draws the same conclusion
with SimSiam [8].

5. Conclusion

In this work, we introduce a self-supervised learning
framework in a student-teacher network with contrastive
loss. To increase the training efficiency, we add the hard
negative image pairs into the contrastive self-supervised
learning paradigm, named HNSSL. To stabilize the train-
ing and avoid a collapsing solution, we block the gradient
of the student sub-network and update the parameters of the
student sub-network using an exponential moving average.
We also conduct an ablation study to validate the effective-
ness of each component. Extensive experiments demon-
strate that our method achieves better performance than pre-
vious state-of-the-art approaches based on linear evaluation,
semi-supervised learning, and transfer learning on the Im-
ageNet dataset in the HNSSL when compared based on
the same backbone network. In the future, applying vari-
ous advanced augmentations and the latest image and video
encoding Transformer architectures, such as video Trans-
former [49], audio Transformer [55], multimodal Trans-
formers [51, 56], etc., to the HNSSL framework is an in-
teresting direction to explore.
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