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Retrieval Detection

λ VCDB FIVR EVVE VCDB FIVR EVVE

0 89.2 81.6 62.6 80.3 72.3 75.4
1 94.1 85.9 64.7 88.2 80.6 78.5
3 95.2 87.0 65.9 90.1 81.7 78.9
5 95.3 86.3 65.2 90.5 81.3 78.1
7 94.6 85.5 64.5 89.2 79.2 78.1

Table 1. Retrieval mAP (%) and detection µAP (%) for S2VS with
different values for scale factor λ.

Retrieval Detection

τ VCDB FIVR EVVE VCDB FIVR EVVE

0.03 95.2 87.0 65.9 90.1 81.7 78.9
0.05 95.2 86.7 65.4 89.9 80.4 77.5
0.07 95.1 86.0 65.3 89.7 78.8 76.8
0.1 95.1 85.7 65.0 89.5 78.0 75.5

Table 2. Retrieval mAP (%) and detection µAP (%) for S2VS with
different values for temperature τ .

A. Additional ablations
In this section, we continue our ablations studying how

various hyperparameters of the training processes affect the
final performance of the proposed method. We conduct fur-
ther experiments on the same datasets as in the main paper.

Impact of λ hyperparameter: In Table 1, we report the re-
sults of the proposed approach for different values of λ. We
observe that the performance is not significantly affected for
smaller than the default λ = 3 values. However, for larger
values, it steadily decreases as the network focuses more on
the SSHN loss than the InfoNCE one.

Impact of temperature τ : Table 2 presents the perfor-
mance of S2VS trained with different temperature values
in the InfoNCE loss. The performance decreases for values
other than the default τ = 0.03, which is more noticeable
on detection tasks where larger µAP drops are reported. We
do not go lower due to numeric instability and overflow is-
sues during training, causing our network to collapse.

Retrieval Detection

TB VCDB FIVR EVVE VCDB FIVR EVVE

8 86.8 70.1 52.6 78.5 57.0 66.7
16 95.1 86.9 65.2 89.6 82.0 78.8
32 95.2 87.0 65.9 90.1 81.7 78.9

Table 3. Retrieval mAP (%) and detection µAP (%) for S2VS with
different number of TB frames.

Retrieval Detection

Lss Lhn VCDB FIVR EVVE VCDB FIVR EVVE

✗ ✗ 89.2 81.6 62.6 80.3 72.3 75.4
✓ ✗ 91.9 84.0 61.8 79.5 68.1 64.5
✗ ✓ 94.5 84.8 64.6 88.1 78.9 75.1
✓ ✓ 95.2 87.0 65.9 90.1 81.7 78.9

Table 4. Retrieval mAP (%) and detection µAP (%) for S2VS
trained with different configurations for Lsshn loss.

task VCDB FIVR EVVE

retrieval 95.2 ± 0.07 87.0 ± 0.20 65.9 ± 0.18
detection 90.0 ± 0.09 81.8 ± 0.21 78.8 ± 0.51

Table 5. Mean and standard deviation of retrieval mAP (%) and
detection µAP (%) of S2VS.

Impact of the number of TB frames: Table 3 displays the
results of our method trained with different number of TB

frames for the input videos. In almost all tasks, the larger
the size of input videos, the better the performance. Also,
when TB is small, the network fails to learn anything useful.
This is expected as comparing larger videos helps the model
better capture temporal structures in the similarity matrices.

Impact of Lsshn terms: Table 4 illustrates the results of the
proposed approach trained with the different terms of Lsshn
loss, with Lss and Lhn standing for the self-similarity and
hard negative part of the loss (cf. Equation 3, in the main
paper). This highlights that both terms are necessary for the
effective training of the system.
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Figure 1. Illustration of the proposed Temporal Shuffle-Dropout (TSD) augmentation scheme, where an input video is split into short clips
of fixed length ℓ ∼ U{4, · · · , TB/2}, each one of them being shuffled with probability pshuf, or dropped out with probability pdrop (i.e.,
filled with empty frames or Gaussian noise with probability pcont, or entirely discarded with probability 1 − pcont). This guarantees the
preservation of the local (clip-level) temporal order, but alters the global (video-level) temporal structure.

Mean and standard deviation: Table 5 shows the mean
and standard deviation of mAP and µAP for retrieval and
detection, respectively, of S2VS trained and evaluated seven
times with different seeds. Generally, the performance is
steady with small fluctuations, especially for VCDB, where
the standard deviation is less than 0.1%, and with the largest
deviations reported on EVVE.

B. Comparison per video query

In this section, we compare the per query performance of
the proposed approach with ViSiLf [1] and DnS [2]. Fig-
ure 2 illustrates our method’s Average Precision (AP) for
each query on the FIVR-200K dataset and its hard version
in comparison to ViSiLf and DnS. The diagonal line indi-
cates the cases where there is a tie performance between
the two compared approaches. In the normal settings of the
dataset, comparing S2VS with ViSiLf , most of the queries
lie on the part above the diagonal line for all three tasks, in-
dicating that the proposed method achieves better results on
them, while a large number of points appear on the top-right
corner indicating easy queries for all approaches. Addition-
ally, comparing S2VS with DnS, more queries are close to
diagonal, which means that the two approaches have simi-
lar performance. Nevertheless, it is noteworthy that the vast
majority of the queries are very close to one, dominating the
results and making differences in performance less apparent
in the final evaluation.

However, in the hard version of the dataset, the query
APs are more spread out in the off-diagonal area, highlight-
ing that the methods’ performance is less correlated than
in the initial settings. In comparison with ViSiLf , more
queries lie on the upper left part of the figure, indicating

that our S2VS performs better on them. Such queries dom-
inate the mAP and result in a significant performance gap
between the two approaches. On the other hand, in compar-
ison with DnS, the queries appear more equally distributed
in the off-diagonal areas, resulting in very similar mAP
scores. Hence, one method is more effective than the other
on a different set of queries. This highlights that there is still
much room for improvement, e.g., selecting the appropriate
method for the corresponding queries.

C. Temporal Shuffle Dropout visualization

For a better understanding of the proposed Temporal
Shuffle Dropout (TSD) transformation scheme, in Figure 1,
we illustrate the various augmentation operations applied
in an input video. In this example, the input video is first
split into four clips (each being highlighted in a different
colour) of ℓ ∼ U{4, · · · , TB/2} frames, as described in
Section 3 of the main paper. Then, a separate operation
is applied on each clip, with certain probabilities as shown
in Figure 1, in order to form the augmented video that is
then used during the training of our approach: (i) the red
one is shuffled, i.e., it is moved between the green and the
blue clips (shuffling phase), (ii) the yellow one is discarded
entirely and it is not part of the augmented video (dropout
phase), (iii) the content of the green clip is replaced with
Gaussian noise (dropout phase), and (iv) the frames of the
blue clip are replaced with empty frames in the augmented
video (dropout phase). The proposed TSD encourages this
way, the preservation of some local (clip-level) information
and provides certain variations in the global temporal struc-
ture of the video, which is beneficial to the generalisation
ability of the proposed framework.
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(a) ViSiLf – S2VS
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(b) DnS – S2VS

Figure 2. Average Precision (AP) per query for the proposed S2VS in comparison with the ViSiLf [1], and DnS [2] on the three subtasks
of FIVR-200K and on its hard subset FIVR-200KH (cf. Section 5.1, in the main paper).



D. Additional implementation details
All of our models are implemented with the PyTorch [3]

library. Table 6 displays all hyperparameters used for the
network training and augmentations.

For global transformations, we use NRAug = 2 con-
secutive transformations with MRAug = 9 magnitude in
RandAugment. The frame transformations are applied with
probability poverlay = 0.3 for each text and emoji over-
lay and with pblur = 0.5 for blurring. For the temporal
transformations, we select TSD with probability ptsd = 0.5
and the rest transformations with probability 0.1 each. For
TSD, shuffling and dropout are applied with probabilities
pshuf = 0.5 and pdrop = 0.3, respectively, with the latter
discarding clips or removing their content with pcont = 0.5.
Finally, the video-in-video transformation is applied with
probability pviv = 0.5, and the donor video is down-
sampled with a factor λviv ranging in (0.3, 0.7).

To enable vectorization during training and facilitate
augmentations, we load the original videos with 1 fps, re-
sized to 256 pixels according to their smaller side. Also,
to assert that the two augmentation versions overlap, we se-
lect a clip of consecutive frames equal to 2TB . If the ini-
tial video is shorter, it is repeated in the time axis until it
reaches the necessary length. We follow the literature and
resize/crop the videos to 256/224 pixels.

All experiments were conducted on a Linux machine
with an Intel i9-7900X CPU and two Nvidia 3090 GPUs.
Times and storage requirements are the same as the fine-
grained attention student reported on the DnS paper [2].
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Parameter Notation Value
Training process
Iterations - 30,000
Batch size - 64
Optimizer - AdamW
Learning rate - 5 · 10−5

Learning rate decay - cosine
Warmup iterations - 1,000
Weight decay - 0.01
# of input frames in batch TB 32
Frame size in batch HB ,WB 224
InfoNCE temperature τ 0.07
SSHN loss factor λ 3
Sim. regularization factor r 1
Global transformations
RandAug., # of transf. NRAug 2
RandAug., magnitude MRAug 9
Frame transformations
Overlay prob. poverlay 0.3
Blur prob. pblur 0.5
Temporal transformations
TSD prob. ptsd 0.5
Fast forward prob. pff 0.1
Slow motion prob. psm 0.1
Reverse prob. prev 0.1
Pause prob. ppau 0.1
TSD shuffle prob. pshuf 0.5
TSD dropout prob. pdrop 0.3
TSD content drop prob. pcont 0.5
Video-in-video
ViV prob. pviv 0.3
ViV factor range λviv (0.3, 0.7)

Table 6. Implementation details of the training process and the
augmentations parameters.
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