A. Appendix

A.1. Methodology

The algorithm for the proposed LSFSL approach is provided in Algorithm 1. The sequential distillation and online self-distillation approach to incorporate shape information is illustrated in Algorithm 2 and Algorithm 3.

Algorithm 2 LSFSL-Distill: Training Algorithm

Input: dataset \mathcal{D} , fixed LSFSL-trained RIN model R_t with feature extractor f_t and classifier g_t , randomly initialized student RIN model R_s with feature extractor f_t and classifier g_t , epochs E, softmax operator σ , cross-entropy loss CE, Kullback-Leibler divergence loss KLD, cross-entropy loss factor α , teacher-student decision alignment loss factor β

- 1: for epoch $e \in \{1, 2, ..., E\}$ do
- 2: sample a mini-batch $(x, y) \sim \mathcal{D}$
- 3: $R_t(x) = g_t(f_t(x))$
- 4: $R_s(x) = g_s(f_s(x))$
- 5: $\mathcal{L}_{CER} = CE(R_s(x), y)$
- 6: $\mathcal{L}_{DA} = KLD(R_t(x), R_s(x))$
- 7: $\mathcal{L} = \alpha \mathcal{L}_{CER} + \beta \mathcal{L}_{DA}$
- 8: Update parameters of R_s based on \mathcal{L} using Stochastic Gradient Descent (SGD)
- 9: **end for**
- 10: **return** RIN student model R_s

A.2. Analysis Visualizations

The texture bias, spurious correlation, and statistical regularity analysis are performed by applying different textures by stylization, class-specific tints, and radial low-pass Fourier filters at increasing severities as shown in Figure 5, Figure 6 and Figure 7.

Algorithm 3 LSFSL-Online: Training Algorithm

Input: dataset \mathcal{D} , randomly initialized RIN model Rwith feature extractor f_{Φ} and classifier g_{Θ} , randomly initialized SIN model S with feature extractor f_{ϕ} and classifier g_{ω} , randomly initialized and fixed teacher RIN model R_t with feature extractor $f_{t,\Phi}$ and classifier $g_{t,\Theta}$, epochs E, softmax operator σ , stopgrad operator SG, cross-entropy loss CE, Kullback-Leibler divergence loss KLD, mean square error MSE, Sobel edge operator h, feature alignment loss factors (γ_r, γ_r) , decision alignment loss factor β

- 1: for epoch $e \in \{1, 2, .., E\}$ do
- 2: sample a mini-batch $(x, y) \sim \mathcal{D}$
- 3: $x_{shape} = h(x)$
- 4: $z_{\Phi} = f_{\Phi}(x)$
- 5: $z_{\phi} = f_{\phi}(x_{shape})$
- 6: $R(x) = g_{\Theta}(f_{\Phi}(x))$
- 7: $S(h(x)) = g_{\omega}(f_{\phi}(h(x_{shape})))$
- 8: $R_t(x) = g_{t,\Theta}(f_{t,\Phi}(x))$
- 9: $\mathcal{L}_{CER} = CE(\sigma(R(x)), y)$
- 10: $\mathcal{L}_{CES} = CE(\sigma(S(h(x))), y)$
- 11: $\mathcal{L}_{FAR} = MSE(z_{\Phi}, SG(z_{\phi})) \qquad \triangleright (\text{Eq. 5})$
- 12: $\mathcal{L}_{FAS} = MSE(SG(z_{\Phi}), z_{\phi}) \qquad \triangleright$ (Eq. 6)
- 13: $\mathcal{L}_{FA} = \gamma_r \mathcal{L}_{FAR} + \gamma_s \mathcal{L}_{FAS}$ \triangleright (Eq. 7)
- 14: $\mathcal{L}_{DAR} = KLD(\sigma(R(x))), SG(\sigma(S(h(x)))) \triangleright (Eq. 8)$
- 15: $\mathcal{L}_{DAS} = KLD(SG(\sigma(R(x))), \sigma(S(h(x)))) \triangleright (Eq. 9)$
- 16: $\mathcal{L}_{\mathcal{D}\mathcal{A}} = \lambda_r \mathcal{L}_{DAR} + \lambda_s \mathcal{L}_{DAS}$ \triangleright (Eq. 10)
- 17: $\mathcal{L}_{TS} = KLD(\sigma(R(x)), \sigma(R_t(x)))$
- 18: $\mathcal{L} = \mathcal{L}_{CER} + \mathcal{L}_{CES} + \mathcal{L}_{FA} + \mathcal{L}_{DA} + \beta \mathcal{L}_{TS}$
- 19: Update parameters of R and S based on L using Stochastic Gradient Descent
- 20: Update R_t as EMA of R
- 21: end for
- 22: **return** RIN student model R

Figure 5. An illustration of the various stylized miniImageNet images generated for varying stylization intensities to perform the texture bias analysis in Section 6.1.

Figure 7. An illustration of low-pass filtered images generated for statistical regularity analysis in Section 6.3.

Figure 6. An illustration of class-specific tinted images generated for spurious correlation analysis is provided in Section 6.2.