
Impact of Pseudo Depth on Open World Object Segmentation with Minimal
User Guidance

(Supplementary Material)

Robin Schön Katja Ludwig Rainer Lienhart
Chair for Machine Learning and Computer Vision, University of Augsburg

{robin.schoen, katja.ludwig, rainer.lienhart}@uni-a.de

1. Unsupervised Monocular Depth Estimation
from Video Data

This section aims at acquainting the reader with the
general idea of unsupervised monocular depth estimation.
This task consists in the utilization of unannotated video
data with the purpose of training a network for the task of
monocular depth estimation. It should be explicitly men-
tioned, that despite the necessity of video data during train-
ing, the resulting depth estimation network will be trained
to predict depth maps for single images. This renders the
depth estimator useful for downstream tasks on images,
which is especially useful for our purposes. Although we
mention the existence of a considerable amount of literature
(see [1–3, 5–9]), we will specifically use the MonodepthV2
framework as described in [2].

Despite certain specific differences, most of these train-
ing strategies are based on the same principle:

• In a video sequence, we assume frames which are tem-
porally close to each other to display the same scene.

• We predict the depth map of one of the two frames, as
well as their relative camera pose.

• We use these predictions and the intrinsic camera pa-
rameters to project one image onto the other.

• In order to train the depth prediction network and the
pose prediction network, we compute a simple photo-
metric loss between the warped and the target image.

This training strategy is visualized in Figure 1 and more
closely explained in the following text.

Let t and t′ be two close points in time in a video (e.g.
at 3 frames distance). We assume that the corresponding
frames It and It′ display the same partially static scene,
from two slightly different points of view. In order to warp
the image It′ onto It, we will need the relative pose be-
tween the images. Since we only have single camera at our

Figure 1. The pose network computes the relative pose Tt→t′ be-
tween the images It and It′ . The depth network computes the
depth map Dt. Together with the intrinsic camera parameters K,
we can use these estimates to warp It′ onto It obtaining It→t′ .
The two images It and It→t′ are then compared by the means of
a photometric loss (L1 loss and SSIM).

disposal (instead of two cameras with a fixed known dis-
tance), we will have to guess the relative camera position in
the form of a rotation and a translation. This subtask is car-
ried out by the means of a relative pose estimation network
which outputs the transformation

Tt→t′ = g(It, It′) (1)



between the two frames. More specifically, Tt→t′ denotes
the rotation and subsequent translation which are necessary
to get from a point in It to the corresponding point in It′ .

The second piece of information necessary for warping
task will be the depth map

Dt = h(It) (2)

which is predicted by the depth network h. As can be ob-
served, the depth prediction only ever happens on single
images, rendering the resulting trained network viable for
single image input. Both networks, g and h, will be trained
jointly. The third necessary ingredient are the intrinsic cam-
era parameters K, which are assumed to be known before-
hand.

We can then warp the image It′ onto It, obtaining

It′→t = It′ ⟨Projection(Dt, Tt→t′ ,K)⟩ (3)

where ⟨·⟩ denotes a differentiable sampling operator and
It′→t is the result of warping the image It′ onto It. In order
for the sampling operation to be differentiable (see [4, 9]),
the pixel values are a linear interpolation of the four closest
pixels at integer positions in the image from which we sam-
ple. The projection operation effectively allows us to com-
pute for each coordinate pt in It the corresponding pixel
position pt→t′ in It′ . This transformation of coordinates
can be formulated (see [9]) as

pt→t′ ∼ KTt→t′DtK
−1pt. (4)

We now compare the two images It→t′ and It by the
means of photometric loss, that expresses their difference.
Minimizing this difference during training will imply the
improvement of the two network-predicted components in
this computation: the depth map and the relative pose. In
our case of MonodepthV2 the image difference is expressed
as

LPhotometric =
α

2
(1− SSIM(It, It′→t))

+ (1− α)||It − It′→t||1,
(5)

where SSIM denotes the structural similarity index measure
and || · ||1 is a simple L1 loss. The authors of [2] set the
relative loss weight α to 0.85. MonodepthV2 specifically
uses an additional gradient based smoothing loss, multiple
neighbouring frames, and a masking scheme for pixel posi-
tions on which the feedback is deemed to be of insufficient
quality. A detailed explanation of these auxiliary techniques
would, however, go beyond the scope of conveying the gen-
eral training idea.

After training, the depth network is used in isolation for
the purpose of obtaining pseudo depth maps on new images.
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