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In this supplementary material, we provide a pseudo-code for ZUTIS (in Sec. A) and further details about our experiments
(in Sec. B). Then, we describe additional ablation studies with regards to copy-paste augmentation [5] and a hyperparamter
choice for temperature used to compute a mask confindence score (in Sec. C). Lastly, we show additional visualisations
including common failure cases (in Sec. D).

A. Pseudo-code
In Algorithm 1, we describe a pseudo-code for a forward pass of ZUTIS. For readability, we omit operations for bilinear

upsampling, which is applied to image features from an image encoder, and non-maximum suppression, which is applied to
mask proposals.

B. Experiment details
Here, we detail the network architectures used for ReCo [10] and NamedMask [11] and their differences from ZUTIS.

Next, we describe the details of data augmentations used to train our model.

B.1. Architecture details for ReCo and NamedMask

In Sec. 4.3, we compare ZUTIS to previous methods for unsupervised semantic segmentation with language-image pre-
training. Here, we describe in more detail the differences between ZUTIS and ReCo [10], as well as the concurrent work
NamedMask [11].
ReCo. ReCo is composed of two different image encoders and a text encoder. For the former, it adopts DeiT-S/16 [7]
pretrained on Stylised-ImageNet [4] in a supervised manner and ResNet50x16 from CLIP [8], which is used for language-
guided co-segmentation [10] together with the text encoder. Unlike ReCo, ZUTIS involves a single image encoder from
CLIP (ViT-B/32 or ViT-B/16) and a corresponding text encoder streamlining the inference process.
NamedMask. NamedMask consists of an image encoder, which is ResNet50 [6] pretrained on the ImageNet1K dataset in
an unsupervised manner [1], and an image decoder, which is DeepLabv3+ [2]. It is worth noting that NamedMask follows
a conventional semantic segmentation architecture which can only predict a pre-fixed set of classes that the model has seen
during training. In contrast, due to the use of a text encoder as a classifier, ZUTIS can readily predicts categories beyond
seen ones after training for a set of concepts.

B.2. Data augmentation

For geometric transformations, we use random horizontal flipping with a probability of 0.5, random rescaling with a range
of [0.1, 1.0], and random cropping with a size of 384×384. For photometric transformations, we use random colour jittering
and gray scaling with a probability of 0.8 and 0.2, respectively. We also use a random gaussian blurring with a kernel size
of 10% of a shorter side of an image. Lastly, we apply copy-paste augmentations to a set of augmented images so as to
synthesise a complex image containing multiple objects. We set the maximum number of possible objects in an image as 10,
which means that we randomly pick from 1 to 10 images and copy-paste an object region of each image represented by its
pseudo-mask (obtained by SelfMask [9]).
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Algorithm 1 Pseudo-code for ZUTIS (using PyTorch-like syntax)
Input. a CLIP image encoder ψenc

I , a transformer decoder ψdec
I , a CLIP text encoder ψT , two feed-forward networks FFN,

a projection matrix W ∈ Ret×ev , an image x ∈ R3×H×W , a set of concepts C, queries Q ∈ Rnq×ev , threshold t,
temperature τ
Output. predictions for semantic segmentation and instance segmentation

# extract dense image features
img feat = ψenc

I (x) # hxwxev

# extract text features
text emb = l2 normalize(ψT (C), dim=1) # |C|xet

# mask proposals
V = FFN(img feat.detach()) # hxwxev
Q = l2 normalize(FFN(ψdec

I (Q, V )), dim=1) # nqxev
M = sigmoid(mm(Q, V .permute(2, 0, 1))) # nqxhxw

# inference for semantic segmentation
# project image features into the text space
semantic img feat = layer norm(mm(W, img feat.permute(2, 0, 1))) # etxhxw
semantic img feat = l2 normalize(semantic img feat, dim=0)
semantic prediction = argmax(mm(text emb, semantic img feat), dim=0) # hxw

# inference for instance segmentation
B = M > t # binary masks, nqxhxw
mask sizes = sum(B, dim=(1, 2)) # nq
obj scores = sum(B ∗M, dim=(1, 2))/mask sizes # objectness scores, nq
avg feat = sum(

semantic img feat.unsqueeze(dim=0)∗B.unsqueeze(dim=1), dim=(2, 3)
)/mask sizes.unsqueeze(dim=1) # nqxet
avg feat = l2 normalize(avg feat, dim=1)
logits = mm(avg feat, text emb.t()) # nqx|C|
conf scores = max(sigmoid(logits∗τ), dim=1)∗obj scores # confidence scores, nq
mask classes = argmax(logits, dim=1) # a category label for each mask, nq

mm:matrix multiplication, ev: a dimension of image features, et: a dimension of text embeddings,
nq: the number of queries

C. Additional ablation studies
In this section, we conduct further ablation studies about the influence of using copy-paste augmentation and a hyperpa-

rameter choice for temperature, which is used to compute a confidence score of a mask proposal. As in the main paper, we
use the VOC2012 [3] tranval split for the ablation studies.

C.1. Effect of copy-paste

As mentioned in Sec. 4.1, we apply copy-paste augmentation to synthesise an image with multiple objects following [11].
In Tab. 1, we show that it improves performance of ZUTIS by a large margin with regards to both mIoU (semantic segmen-
tation) and APmk

50 (instance segmentation).

C.2. Effect of temperature

We compute a confidence score of the mask as a multiplication between the average value of the mask regions and the
maximum class probability (see Algorithm 1). For the latter, we consider a temperature parameter τ multiplied to logits for
the following sigmoid. In Tab. 2, we evaluate our model with different values for τ and observe that setting τ as 5 yields the



Figure 1. Successful cases of ZUTIS for instance segmentation on COCO-20K. Confident predictions are shown. Zoom in for details.

Figure 2. Typical failure cases of ZUTIS on COCO-20K. (Left half) The model fails to distinguish instances of a same category. (Right
half) It struggles to differentiate a category from another which is likely to appear together.

copy-paste mIoU APmk
50

✗ 56.1 28.2
✓ 63.7 (+7.6) 30.9 (+2.7)

Table 1. Using copy-paste augmentation allows better performance in terms of both mIoU (for semantic segmentation) and APmk
50 (for

instance segmentaton) on VOC2012 trainval.

best performance. For this reason, we use τ = 5 throughout our experiments in the main paper.

τ 0.1 0.5 1 5 10
APmk

50 29.4 30.3 30.8 30.9 30.1

Table 2. Effect of temperature τ on instance segmentation performance of ZUTIS.

D. Additional visualisations
We visualise additional instance segmentation results of ZUTIS for successful cases in Fig. 1 and common failure cases

in Fig. 2. We note that our model tends to fail in two situations when (i) an image retrieved for a concept is likely to contain
multiple instances for the concept (e.g., bananas), or (ii) a given concept is inclined to appear with another category (e.g., a
“baseball glove” with a “person” wearing it). We conjecture that this is caused by a lack of high purity images (i.e. ones that
only contain an object of a single category) for each concept in an image index dataset and/or a use of prompt engineering
which is not geared towards curating high purity images from the index dataset.
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