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Overview
We provide comparative per-activity quantitative results on Human3.6M (section 1); and additional qualitative results for

Human3.6M [3] (section 2), MPI-INF-3DHP [9] (section 3), and HandDB [10] (section 4) datasets. Moreover, we include
more details about the implementation and structure of the networks (section 5).

1. Quantitative Results on Human3.6M

Method Assumptions Dir. Disc. Eat Greet Phon. Photo Pose Purch. Sit SitD. Smoke Wait Walk WalkD WalkT Avg.(#)
Chen [1] Full-3D 89.8 97.6 89.9 107.9 107.3 139.2 93.6 136.1 133.1 240.1 106.6 106.2 87.0 114.0 90.6 114.2
Kundu [7] 3D Kin. 80.2 81.3 86.0 86.7 94.1 83.4 87.5 84.2 101.2 110.9 86.0 87.8 86.9 94.3 90.9 89.4
Ours Unp. 2D 84.4 77.8 89.0 99.2 100.6 101.8 77.2 86.5 112.2 144.4 97.3 80.4 93.6 103.3 102.5 96.7

Table 1. Extended quantitative results on the Human3.6M dataset. The P-MPJPE for each activity on the Human3.6M test set (subjects
9 and 11). The performance is compared with two state-of-the-art approaches for which per-activity data is available. Note that by only
using unpaired 2D poses, we outperform methods that rely on paired 3D annotations [1]. We perform similarly; and even better for some
activities (in bold) than methods relying on 3D kinematic constraints [7].

Figure 1. Distribution of P-MPJPE scores for each activity on the Human3.6M dataset. We achieve superior performance with only an
unpaired prior on 2D poses than [1]. Our method also outperforms [7] (which assumes 3D kinematic constraints) in 20% of the activities.
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2. Qualitative Results on Human3.6M

Figure 2. 3D pose predictions on images corresponding to subject 9 (S9) from Human3.6M dataset. The first and fifth columns show
the input image, and the following columns (second and sixth) display the actual 3D pose from the dataset (coloured in green) aligned with
the 3D pose predicted by our model (coloured in red). The remaining columns show novel views of the predicted 3D pose.



Qualitative Results on Human3.6M (Continue)

Figure 3. 3D pose predictions on images corresponding to subject 11 (S11) from Human3.6M dataset. The first and fifth columns
show the input image, and the following columns (second and sixth) display the actual 3D pose from the dataset (coloured in green) aligned
with the 3D pose predicted by our model (coloured in red). The remaining columns show novel views of the predicted 3D pose.



3. Qualitative Results on MPI-INF-3DHP

Figure 4. 3D pose predictions on images corresponding to subjects 1 and 2 from MPI-INF-3DHP dataset. The first and fifth columns
show the input image, and the following columns (second and sixth) display the actual 3D pose from the dataset (coloured in green) aligned
with the 3D pose predicted by our model (coloured in red). The remaining columns show novel views of the predicted 3D pose.



Qualitative Results on MPI-INF-3DHP (Continue)

Figure 5. 3D pose predictions on images corresponding to subjects 3,4,5, and 6 from MPI-INF-3DHP dataset. The first and fifth
columns show the input image, and the following columns (second and sixth) display the actual 3D pose from the dataset (coloured in
green) aligned with the 3D pose predicted by our model (coloured in red). The remaining columns show novel views of the predicted 3D
pose.



4. Qualitative Results on HandDB

Figure 6. 3D hand pose predictions on synthetic hand images from HandDB dataset. The first and sixth columns show the input image
with its corresponding 2D ground-truth superimposed. The remaining columns show novel views of the predicted 3D hand pose.



5. Implementation details
Training details: We train the networks �,⌦,⇤ and D, from scratch according to the loss function (Equation 12) from

the main paper. We use the Adam optimiser [6] with learning rate of 2 ⇥ 10�4, and �1 = 0.5,�2 = 0.999. Each batch is
formed by sampling from the images and randomly sampling from the prior of unpaired 2D poses (which is then transformed
to a skeleton image). The batch size is 96. Our model was trained for around 40 hours using one GPU from a NVIDIA
DGX-MAX-Q server. The NF is pre-trained in line with [11] as shown on the next section.

Model components: This section shows the details of the networks used in our model. We include a pictorial represen-
tation of all the networks shown in Figure 2 from the main paper. The upper part of Figure 7 displays the networks needed
for the mapping from image x to 3D pose v. The lower part shows the discriminator D needed during training to evaluate
the skeleton images. In particular, � and ⌦ are based on [4, 5], the discriminator D on [5, 12], and the lifting network ⇤
on [8, 11].

Following [5], with respect to the discriminator D, we use three identical convolutional architectures, inputting different
scales of the image: the original image and its downsized versions by 1

2 and 1
4 , respectively. We take the mean of the

patchwise outputs from the three network, as indicated in Figure 7. The normalising flow network is shown in the following
subsection since it requires a more detailed explanation.

Convolution layer Upsampling Linear layer Residual connections

Figure 7. Pictorial representation of the networks that integrate our model. Blue rectangles represent convolutional layers, and the
orange ones the linear layers. Note that to keep the diagrams as simple as possible, we omit some components, such as the size of layers,
normalisation layers, and activation functions; we include these elements in Table 2, Table 3, Table 4, and Table 5 of the next section.



Implementation details
Normalising flow: Following [11], we use the network in [2] to represent f(ȳ) from Equation 7 in the main paper. This

network consists of consecutive affine coupling blocks like the one shown in Figure 8. Each coupling block applies a random
permutation of the input. In our case, the input ȳ is the image in the PCA subspace of the 2D pose ŷ. After the permutation,
it splits the vector into two parts, m1 and m2. The first part m1, is used to predict a scale s and a translation t to deform m2.
In the end, w1 (or m1 since it remains unchanged) is concatenated with the deformed m2 represented as w2.

Split

Fi
x 

pe
rm

ut
at

io
n

Linear Layer ReLU

Affine Coupling Block

+

concat

Figure 8. Affine coupling block. Multiple consecutive coupling blocks integrates the normalising flow. Diagram adapted from the
supplemental material of [11].

During the forward pass the scale s and translation t are calculated as a function of m1, and then used to deform m2 as
follow

w2 = exp(s(m1))m2 + t(m1) & w1 = m1 (1)

Similarly, the backward part is defined by

m1 = w1 & m2 = (w2 � t(w1)) exp(�s(w1)) (2)

The determinant of the Jacobian is given by
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Since the Jacobian of f does not need to calculate the Jacobian of the scale s and translation t functions, these could be
complex.



Implementation details
Networks Structure

Layer Out.Shape Act. Norm.
Conv2d 32⇥ 128⇥ 128 ReLU Batch
Conv2d 32⇥ 128⇥ 128 ReLU Batch
Conv2d 64⇥ 64⇥ 64 ReLU Batch
Conv2d 64⇥ 64⇥ 64 ReLU Batch
Conv2d 128⇥ 32⇥ 32 ReLU Batch
Conv2d 128⇥ 32⇥ 32 ReLU Batch
Conv2d 256⇥ 16⇥ 16 ReLU Batch
Conv2d 256⇥ 16⇥ 16 ReLU Batch
Conv2d 256⇥ 16⇥ 16 - -
Conv2d 256⇥ 16⇥ 16 ReLU Batch
Conv2d 256⇥ 16⇥ 16 ReLU Batch
Upsampling 128⇥ 32⇥ 32 - -
Conv2d 128⇥ 32⇥ 32 ReLU Batch
Conv2d 128⇥ 32⇥ 32 ReLU Batch
Upsampling 64⇥ 64⇥ 64 - -
Conv2d 64⇥ 64⇥ 64 ReLU Batch
Conv2d 64⇥ 64⇥ 64 ReLU Batch
Upsampling 32⇥ 128⇥ 128 - -
Conv2d 32⇥ 128⇥ 128 ReLU Batch
Conv2d 1⇥ 128⇥ 128 - -
Final output shape: 1⇥ 128⇥ 128

Table 2. Structure of network �.

Layer Out.Shape Params Act. Norm.
Conv2d 32⇥ 128⇥ 128 1,600 ReLU Inst.
Conv2d 32⇥ 128⇥ 128 9,248 ReLU Inst.
Conv2d 64⇥ 64⇥ 64 18,496 ReLU Inst.
Conv2d 64⇥ 64⇥ 64 36,928 ReLU Inst.
Conv2d 128⇥ 32⇥ 32 73,856 ReLU Inst.
Conv2d 128⇥ 32⇥ 32 147,584 ReLU Inst.
Conv2d 256⇥ 16⇥ 16 295,168 ReLU Inst.
Conv2d 256⇥ 16⇥ 16 590,080 ReLU Inst.
Conv2d 17⇥ 16⇥ 16 4,369 None None
Final output shape: 17⇥ 16⇥ 16
Total params: 1,177,329

Table 3. Structure of network ⌦.

Layer Out.Shape Params Act. Norm.
Linear 1⇥ 1024 35,840 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 17 17,425 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 yReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1024 1,049,600 LReLU None
Linear 1⇥ 1 1,025 LReLU None
Final output shape: [[1⇥ 17], [1⇥ 1]]
Total params: 10,550,290

Table 4. Structure of network ⇤.

Layer Out.Shape Params Act. Norm.
Conv2d 64⇥ 64⇥ 64 1,088 LReLU None
Conv2d 128⇥ 32⇥ 32 131,200 LReLU Inst.
Conv2d 256⇥ 16⇥ 16 524,544 LReLU Inst.
Conv2d 512⇥ 15⇥ 15 2,097,664 LReLU Inst.
Conv2d 1⇥ 14⇥ 14 8,193 None None
Conv2d 64⇥ 32⇥ 32 1,088 LReLU None
Conv2d 128⇥ 16⇥ 16 131,200 LReLU Inst.
Conv2d 256⇥ 8⇥ 8 524,544 LReLU Inst.
Conv2d 512⇥ 7⇥ 7 2,097,664 LReLU Inst.
Conv2d 1⇥ 6⇥ 6 8,193 None None
Conv2d 64⇥ 16⇥ 16 1,088 LReLU None
Conv2d 128⇥ 8⇥ 8 131,200 LReLU Inst.
Conv2d 256⇥ 4⇥ 4 524,544 LReLU Inst.
Conv2d 512⇥ 3⇥ 3 2,097,664 LReLU Inst.
Conv2d 1⇥ 2⇥ 2 8,193 None None
Final output shape: [[1⇥ 14⇥ 14], [1⇥ 6⇥ 6], [1⇥ 2⇥ 2]]
Total params: 8,288,067

Table 5. Structure of network D.
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