
SimDE: A Simple Domain Expansion Approach for
Single-source Domain Generalization: Supplementary

Qinwei Xu1 Ruipeng Zhang1 Yi-Yan Wu3 Ya Zhang1,2 B Ning Liu1 Yanfeng Wang1,2

1 Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, Shanghai, China
2 Shanghai AI Laboratory, Shanghai, China

3 Communications Research Centre, Ottawa, Ontario, Canada
{qinweixu, zhangrp, ya zhang, ningliu, wangyanfeng}@sjtu.edu.cn, yiyan.wu@ieee.org

A. Implementation Details

Here we elaborate the implementation details of the
network architectures and training configurations of our
method on different datasets.

For Digits, we employ the LeNet [4] for the task model
as [6, 7], and the parameters of the convolution layers are
shared across dual task models. We use a single fully-
connected layer with hidden size 128 for the projector. We
resize all the images to 32 × 32, and covert them from
grayscale to RGB by duplicating their channels. We set the
batch size as 32. Both the generators and the task models
are optimized by Adam with learning rate 0.0001, β1 = 0.9
and β2 = 0.999. Follow [6], we set the training steps E0,
E1 and E2 in Algorithm 1 to be 20, 500 and 3000 respec-
tively. The loss weight λsty and λcon are set to be 0.5 and
1.0 respectively.

For CIFAR10-C, the network configurations for the task
models are the same as the Digits dataset except that the
backbone network is WideResNet [9] with 16 layers and
widen factor 4. We resize all the images to 32× 32 and set
the batch size to 128. For the task models, we use the SGD
optimizer with momentum 0.9 and weight decay 0.0005,
and the initial learning rate is 0.1 which is decayed by the
cosine annealing scheduler. For the generators, we use the
Adam optimizer with learning rate fixed as 0.001, β1 = 0.9
and β2 = 0.999. We set E0 to be 9, E1 to be 30 epochs and
E2 to be 10 epochs. The loss weight λsty and λcon are both
set to be 0.5.

For PACS, we employ the ImageNet-pretrained
ResNet18 [3] as the backbone as [8]. We resize all the
images to 224×224 and use batch size 32. We use the SGD
optimizer with momentum 0.9 and weight decay 0.0005 to
train the task models and the generators. The learning rate
for the task models is 0.004 decayed by 0.1 at 80% of the
total epochs, and for the generators is fixed as 0.001. We

set E0 to be 5, E1 to be 5 epochs and E2 to be 20 epochs.
The loss weight λsty and λcon are both set to be 0.5.

For DomainNet, we employ the ImageNet-pretrained
ResNet18 [3] as the backbone as [1]. We resize all the im-
ages to 224 × 224 and use batch size 64. We use the SGD
optimizer with momentum 0.9 and weight decay 0.0005 to
train the task models and the generators. The learning rate
for the task models is 0.004 decayed by 0.1 at 80% of the
total epochs, and for the generators is fixed as 0.001. We set
E0 to be 3, E1 to be 5 epochs and E2 to be 10 epochs. The
loss weight λsty and λcon are both set to be 3.0.

For all the datasets, we instantiate the generator as an
encoder-decoder structure with an AdaIN module inserted
at the bottleneck layer. Follow [6], both the encoders and
decoders are composed of two convolution layers with ker-
nel size 3 × 3 , stride 1 and padding size 1. All the con-
volution layers are followed by the ReLU activation except
a Sigmoid for the last layer. A random Gaussian noise is
mapped to be the scaling and shifting parameter for AdaIN
with a single fully connected layer.

B. Details of Different Domain-invariant Reg-
ularizations

In addition to the contrastive loss, different domain-
invariant regularizations can be incorporated into the
SimDE framework. Here we provide the details of the in-
stantiations involved in Table 5.

MSE loss: By using the MSE loss, we directly minimize
the Euclidean distance between the features from different
domains. Let the features of the original sample xi, gener-
ated sample x̂1

i from generator G1 and x̂2
i from generator

G2 to be fi, f̂1
i and f̂2

i respectively, the loss is formulated
as follows:

Lmse = −
1

2N

∑
i

(
(fi − f̂1

i)
2 + (fi − f̂2

i)
2
)

(1)

1

JSD loss: By using the JSD loss, we minimize the
Jensen–Shannon Divergence between the original source
distributions and the generated source distributions. Let the
output probability of xi, x̂1

i and x̂2
i from task model M1 to

be p1i , p̂11i and p̂21i respectively, and the output probability
p2i , p̂21i and p̂22i are defined correspondingly. The JSD loss
is formulated as follows:

Ljsd = − 1

3N

∑
i

(
KL(p1i ||p̃1i) + KL(p̂11i ||p̃1i) + KL(p̂21i ||p̃1i)

+ KL(p2i ||p̃2i) + KL(p̂12i ||p̃2i) + KL(p̂22i ||p̃2i)
)

(2)

where p̃1i = (p1i+p̂11i +p̂21i)/3 and p̃2i = (p2i+p̂12i +p̂22i)/3.
MMD loss: Bu using the MMD loss, we minimize the

Maximum Mean Discrepancy [2] between the feature dis-
tributions of different domains in the Reproducing kernel
Hilbert space. The loss is formulated as follows:

Lmmd =
1

2

(∣∣∣∣∣∣ 1
N

N∑
i=1

φ(fi)−
1

N

N∑
i=1

φ(f̂1
i)
∣∣∣∣∣∣2

H

+
∣∣∣∣∣∣ 1
N

N∑
i=1

φ(fi)−
1

N

N∑
i=1

φ(f̂2
i)
∣∣∣∣∣∣2

H

) (3)

where φ(·) is the mapping function and k(·, ·) is the kernel
function induced by φ(·). Here we use the RBF kernel, i.e.,
k(f, f ′) = φ(f)Tφ(f ′) = exp(− 1

2σ ||f − f ′||2), where σ
is the bandwidth parameter.

Meta learning: Follow [7], we can implement the
domain-invariant regularization in the manner of meta
learning. Specifically, we choose the original source do-
main S as the meta-train set, and the generated domains S1,
S2 from G1, G2 as the meta-test set. During meta-training,
we compute the updated parameters θ̂ with one step by min-
imizing the task loss on the original source domain:

θ̂ ← θ − η∇θLce(θ;S) (4)

where η is the learning rate. Then during meta-testing, we
update θ by the gradient calculated from a combined loss
on the original and generated domains with θ̂:

θ ← θ − η∇θ

(
Lce(θ;S) +

1

2

2∑
i=1

Lce(θ̂;Si)
)

(5)

According to [5], by using such a meta-learning strategy, we
are implicitly matching the gradients between the original
source domain and the generated domains.

C. Sensitivity of the Loss Weights
We conduct sensitivity analysis about the loss balanc-

ing weight λsty and λcon on the PACS dataset. The initial
value of λsty and λcon is both set to 0.5. The results are
plotted in Figure 1. For the style divergence loss weight
λsty , although accuracy of different source domains fluctu-
ates sightly with respect to different values of λsty , the av-
eraged performance is rather stable. Therefore, our method

(a) λsty (b) λcon

Figure 1. Sensitivity of (a) λsty and (b) λcon on PACS dataset.
“A”, “C”, “P” and “S” represents the corresponding source domain
where the models are trained on, and averaged accuracy on the
remaining target domains are reported.

Figure 2. Visualization of the generated images. The 1st, 2nd, 3rd
row are original images, generated images from generator G1 and
generated images from G2 respectively. Data: Digits.

Figure 3. T-SNE visualization of the distributions of original sam-
ples and generated sample from G1 and G2. Data: Digits.

is not very sensitive to the specific values of λsty . For the
contrastive loss weight λcon, the accuracy of larger values
drops when the source domain is cartoon and sketch, sug-
gesting that an overly strong domain-invariant regulariza-
tion would impede model learning. Nevertheless, the over-
all performance of our method is stable within the range
λcon ∈ [0.1, 2.0]. In general, we suggest (λsty, λcon) =
(0.5, 0.5) to be a good starting point.

D. Visualization of the Generations
We visualize the original images, the generated images

from generator G1 and generated images from generator G2

in Figure 2. It is clear that our method can generate domain-
shifted samples by manipulating the superficial statistics of
the original images without altering the semantics. More-
over, the dual generators in our method can generate sam-
ples from different angles. As shown in Figure 2, generated
images from G1 are mainly composed of green blur digits
and gloomy backgrounds, while those from G2 are com-
posed of black digits and brighter backgrounds. We also
plot the sample distribution of the original images and the
generated images from G1 and G2 with t-SNE in Figure 3.
It is clear that samples from both generators form distinct
distributions from the original ones, and also differs from
each other.

References
[1] Ilke Cugu, Massimiliano Mancini, Yanbei Chen, and Zeynep

Akata. Attention consistency on visual corruptions for
single-source domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4165–4174, 2022. 1

[2] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 1

[5] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales.
Learning to generalize: Meta-learning for domain generaliza-
tion. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32, 2018. 2

[6] Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xi-
aoyue Mi, Zhengze Yu, Xiaoya Li, and Boyang Xia. Progres-
sive domain expansion network for single domain generaliza-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 224–233, 2021.
1

[7] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020. 1, 2

[8] Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa
Baktashmotlagh. Learning to diversify for single domain gen-
eralization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 834–843, 2021. 1

[9] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 1

	. Implementation Details
	. Details of Different Domain-invariant Regularizations
	. Sensitivity of the Loss Weights
	. Visualization of the Generations

