This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

A Data-Driven Approach based on Dynamic Mode Decomposition for Efficient
Encoding of Dynamic Light Fields

Joshitha Ravishankar!

Sally Khaidem!

Mansi Sharma?!

'Department of Electrical Engineering, Indian Institute of Technology Madras, India
*Department of Computer Science and Engineering, Amrita School of Computing,
Coimbatore, Amrita Vishwa Vidyapeetham, India

{ee19d701,ee20d041}@smail.iitm.ac.in, s.mansi@cb.amrita.edu, mansisharma@ee.iitm.ac.in

Abstract

Dynamic light fields provide a richer, more realistic 3D
representation of a moving scene. However, this leads
to higher data rates since excess storage and transmis-
sion requirements are needed. We propose a novel ap-
proach to efficiently represent and encode dynamic light
field data for display applications based on dynamic mode
decomposition (DMD). Acquired images are firstly obtained
through optimized coded aperture patterns for each tempo-
ral frame/camera viewpoint of a dynamic light field. The
underlying spatial, angular, and temporal correlations are
effectively exploited by a data-driven DMD on these ac-
quired images arranged as time snapshots. Next, High Effi-
ciency Video Coding (HEVC) removes redundancies in light
field data, including intra-frame and inter-frame redundan-
cies, while maintaining high reconstruction quality. The
proposed scheme is the first of its kind to treat light field
videos as mathematical dynamical systems, leverage on dy-
namic modes of acquired images, and gain flexible coding
at various bitrates. Experimental results demonstrate our
scheme’s superior compression efficiency and bitrate sav-
ings compared to the direct encoding of acquired images
using HEVC codec.

1. Introduction

Applications of light fields for autostereoscopic or
glasses-free displays have gained interest in the research
community off-late since computational multi-view light
field displays can enhance the viewing experience by pro-
viding a more immersive and realistic experience [7, 10,

,22,24,28]. Light fields have the potential to offer an
optimized solution for simultaneously supporting direction-
dependent outputs, all while maintaining good resolution in
the replication of real-world scenes. Additionally, light field

displays can support many viewing directions, enable con-
tinuous motion parallax, improve depth of field, and offer
an expanded field of view.

A richer, realistic 3D representation of a moving envi-
ronment with more visual information can be obtained from
a dynamic light field or a light field varying over time. How-
ever, unlike conventional videos, working with dynamic
light fields necessitates additional storage and transmission
requirements, and entails longer processing times. Conse-
quently, this results in higher data rates across all devices
and services utilized for light field exchange and display.
The use of light field video is limited by the surge in band-
width. Thus, efficient representation and coding of dynamic
light fields capitalizing on the inherent redundancies in the
spatial, angular, and temporal domains is necessary for dis-
play applications.

Typically, coding approaches for light fields directly
handle the lenslet structure, or operate on sub-aperture
views [3,27,29]. In this paper, we describe a new approach
for efficient representation and coding of dynamic light
fields based on dynamic mode decomposition (DMD) [8,

,21,25]. Since light fields can be computationally con-
structed using images acquired from different aperture pat-
terns [1,5, 19,26], we use such acquired images (which are
the weighted sum of the sub-aperture light field views) at-
tained for each temporal frame of a given dynamic light
field. All the acquired images are then modelled as time
snapshots of a large matrix with a spatio-temporal coherent
structure.

The underlying spatial, angular, and temporal correla-
tions present in the input are next effectively exploited by a
data-driven DMD for various ranks. In addition, High Ef-
ficiency Video Coding (HEVC) [23] removes intra-frame,
inter-frame, and other intrinsic redundancies while main-
taining reconstruction quality across various quantization
parameters. This results in flexible encoding of the dynamic
light field at diverse data rates.
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Figure 1. Overall pipeline of proposed representation and coding scheme for dynamic light fields.

Our proposed scheme prevents the need to store the
complete light field in full and works with a dynami-
cal system consisting of acquired images derived for each
temporal frame or camera view point. In Ravishankar et
al. [16], a hybrid Tucker-TensorSketch-Vector Quantization
based approach was suggested for encoding dynamic light
fields from individual acquired images obtained via coded-
aperture patterns. On the other hand, our current scheme
is a faster algorithm that operates on all acquired images
as vectorized time snapshots directly in a single step, cap-
turing all spatial, angular, and temporal correlations. By
exploiting these correlations in a unified operation, our
method enables efficient representation and coding of the
time-varying light field and is also different from our previ-
ous work [13—15, 17]. The quality of the reconstruction is
also not compromised and compression rates can be tailored
to meet specific bandwidth or storage requirements.

To the best of our knowledge, we are the first to use
the dynamic mode decomposition framework and maxi-
mize its formulation in terms of well established tech-
niques from linear algebra for multi-view images vary-
ing over time. Employing DMD for dynamic light fields
is a novel approach that utilizes a spatial dimensionality-
reduction technique (like proper orthogonal decomposition
(POD)), where spatial modes are also now associated with
a given temporal frequency possibly with a growth or decay
rate [8, 20, 21,25]. On comparison with the direct encod-
ing of acquired images using HEVC codec, our proposed
scheme demonstrates superior compression efficiency and
bitrate savings for input dynamic light fields. The major
contributions of this paper are:

* We propose an efficient representation and coding
scheme for a dynamic light field. It is the first of its
kind to treat light field videos as mathematical dynam-
ical systems and leverage the dynamic mode decompo-
sition framework for multi-view images varying over
time.

* By processing just acquired images (the weighted sum
of light field views) from optimized coded aperture
patterns for each temporal frame or camera viewpoint

of a dynamic light field, we prevent the need to store
the complete input data. The light fields can eventu-
ally be computationally constructed from the approxi-
mated acquired images post dynamic mode decompo-
sition and decoding.

e Underlying spatial, angular as well as temporal cor-
relations present in the dynamic light field are effec-
tively exploited in a unified operation since our algo-
rithm works on all acquired images as vectorized time
snapshots directly in one single step.

¢ Qur scheme provides flexible encoding of the input dy-
namic light field to satisfy diverse data rates for various
approximation ranks and quantization parameters. The
quality of the reconstruction is also not compromised
and compression rates can be tailored to meet specific
storage needs or bandwidths of multi-view autostereo-
scopic platforms.

2. Proposed Scheme

The overall pipeline of proposed representation and cod-
ing scheme for dynamic light fields is depicted in Fig. 1.
Acquired images A} for each camera viewpoint or tem-
poral frame k of the input dynamic light field are gener-
ated through optimized coded aperture patterns in BLOCK
I. These images are vectorized into m time snapshots and
arranged into a high-dimensional matrix. To exploit the
spatio-temporal coherent structure of this matrix, dynamic
mode decomposition (DMD) is performed for various ranks
and intrinsic redundancies in the acquired images are re-
moved. This is followed by HEVC encoding of the low-
rank approximated images in BLOCK II. Lastly, BLOCK
IIT shows the decoding and final reconstruction of the dy-
namic light field. Each block of the proposed scheme is
explained in the following sections.

2.1. BLOCK I: Dynamic Light Fields to Acquired
Images

Our scheme (Fig. 1) begins with generation of acquired
images AT} from optimized coded aperture patterns. Trans-
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Figure 2. CNN architecture modeling a coded aperture camera whose transmittance values for the aperture patterns can be regulated for
each acquisition and position. Aperture patterns A and B are alternated over each k and can be represented as a single layer with 1x1
convolutional kernel that reduces number of channels from 25 to 1 in f;. This generates acquired images Al. In the second half of the
network fs, the layer with the stacked acquired images of m channels is gradually increased to 25 channels, producing an intermediate
reconstruction. Lastly, using the structure of a very deep super resolution network [6] (19 convolution layers with 3 x3 kernels) results in
the light field reconstruction (f2) [19]. The entire network was trained in an end-to-end manner to obtain the best aperture patterns.

mittance values for the aperture patterns can be regulated
for each acquisition and position of a coded aperture cam-
era modeled by the convolutional neural network (CNN)
in Fig. 2 [19]. Consider a dynamic light field L; with
k = 1,2,...,m consecutive time frames or camera view-
points and 5 x 5 views each. Through computational means,
we can construct this dynamic light field using images ac-
quired derived from different aperture patterns [ 1,5, 19,26].

A static 4D light field L(s, t,u,v) [4, | 1] can be written
as a dynamic light field with 5 dimensions as L(s, ¢, u, v, k),
where scene motions occur over time k. The acquired image
ag(u,v), is a result of the coded aperture’s transmittance
r(s,t, k) at the specific coordinates (s, t) and k.

ar(u,v) =

1
7/// r(s,t, K)L(s,t,u,v, K)dsdtdK (1)
‘Ek| EpxSxT

where, FEj denotes exposure time around %k and S X
T is the effective aperture area. At constant exposure
time, L(s,t,u,v,K) = Lg(s,t,u,v) = lsx(u,v) and
r(s,t, K) = rg(s,t) and Eq. 1 can be re-written as

ag(u,v) = Zrk(s,t)ls,tyk(u, v). 2)
s,t

where, I 5 (u,v) denotes the dynamic light field. Each
resulting acquired image corresponds to each camera view-
point or temporal frame, and it is formed by the weighted
sum of the light field sub-aperture images [19].

In order to optimize the aperture patterns for best recon-
struction of the light field, we can formulate the problem in
terms of a CNN. The imaging process of the coded aperture
camera can be represented as

Ji: Ly = Ay, 3)

where L, represents a tensor containing all pixels of
ls+k(u,v), and Ay is the tensor containing all pixels of
ax(u,v) at a particular time k. By considering L}, as the
estimation of light field Ly, we can map the reconstruction
as

fo: {AEU%GK,C} = L )

where K denotes the local temporal window around k.
Thus the composite mapping fa(f1(Lx)) can be imple-
mented as a CNN using 2D convolutional layers that can
be trained in an end-to-end manner [19]. The network in
Fig. 2 thus has the optimization goal

®)

‘ 2

f1, fo = argmin HLk — Ly,
fi,f2
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The learnt optimal transmittance of aperture patterns
ri(s,t) can generate required acquired images for dynamic
light field. Fig. 2 shows the neural network to derive the op-
timal coded aperture patterns, and thereby the best acquired
images for each temporal frame of the dynamic light field.

Next, in BLOCK II, the best acquired images Alj, pro-
duced for every camera viewpoint/temporal frame k of the
dynamic light field are vectorized into time snapshots and
arranged into a high-dimensional matrix. To exploit the co-
herent structure of this matrix, dynamic mode decomposi-
tion (DMD) is performed for various ranks and the spatial,
angular and temporal redundancies are removed from the
input light field data.

2.2. BLOCK II: Dynamic Mode Decomposition of
Acquired Images

In Dynamic mode decomposition (DMD) [8,20,21,25],
snapshots of data zj, from a dynamical system are collected
over time frames k = 1, 2, ..., m. The data is then regressed
onto local linear dynamics x;.; = Gxy, where G is cho-
sen to minimize ||Xx4; — Gx¢|| over k = 1,2,....,m — 1
snapshots.

In our context of a dynamic light field, the acquired im-
ages Al produced for every camera viewpoint/temporal
frame k are vectorized into time snapshots x; to x,, and
the following matrices are constructed:

X = X7 X2 ... Xyl (63)

| |
X' =|x X3 .. Xnm (6b)

It is important to note that all snapshots xj (vectorized
form of acquired image AI}) are high dimensional, result-
ing in tall and skinny matrices X and X’. By definition in
[25], DMD computes the leading eigendecomposition of the
best-fit linear operator G, relating the data X’ ~ GX. The
DMD modes, also called dynamic modes, are the eigenvec-
tors of G, and each DMD mode corresponds to a particular
eigenvalue of G, where rank of G is at most m — 1.
Since dimension n of vector xy, is usually large, matrix
G may be intractable to analyze directly. DMD circum-
vents the eigendecomposition of G by considering a rank-
reduced representation in terms of a proper orthogonal de-
composition (POD)-projected matrix G. In the DMD algo-
rithm [25], the rank-r singular value decomposition (SVD)
is first computed
X ~UXV* @)

where U € R"*" are the POD Modes, ¥ € R"™*" contain
singular values and V € R"*". This SVD reduction in (7)
performs low-rank truncation of the data.

Figure 3. Creating a pseudo dynamic light field data set from a
static light field through pseudo motions.

Matrix G may be obtained using the pseudoinverse of
X, but it is more computationally efficient to calculate G,
the r x r projection of full matrix G onto POD modes:

G=UuxvVvxy! 8)

This G defines a low-dimensional linear model of the dy-
namical system. Next, eigendecomposition of G is per-
formed:

GW = WA )

resulting in eigenvectors as columns of W and diagonal
matrix A with corresponding eigenvalues Ak, which can
thereby reconstruct eigendecomposition of . Particularly,
eigen values of G are given by A, and eigenvectors of G or
the DMD modes, are the columns of P :

=XV 1w (10)

To perform the DMD reconstruction Xpasp, the
continuous-time DMD eigen values wy, = In(\g)/At
are first computed. The time step in advancing from X to
X' is given by At and discrete-time DMD eigen values are
Ak. Diagonal matrix €2 whose entries are eigenvalues wy,
is also formed. The vector b = ®x; contains initial am-
plitudes of each mode and is used to find the approximate
solution at all times:

Xi ~ Y prexp(wit)by = Pexp(Q)b, (1)
k=1

which are nothing but the columns of reconstructed matrix
Xpmp fort =1,2,...,m — 1. Further, these reconstructed
snapshots are transformed/reshaped back into low-rank ap-
proximations of the acquired images Al and compressed
into a bitstream using HEVC [23] with different quantiza-
tion parameters.
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2.3. BLOCK III: Reconstruction of Dynamic Light
field

The acquired images obtained through our DMD low-
rank approximation are decoded from the bitstream and in-
put to the second half of the network in Fig. 2 (reconstruc-
tion network f5) for computational reconstruction of the dy-
namic light field. Although there are many possible config-
urations for the reconstruction network, we chose to use the
model in [19], which uses multiple convolutional layers to
gradually increase the number of channels to 25. This gen-
erates a temporary dynamic light field output that is subse-
quently enhanced using another deep CNN [6]. Thus, an
efficient encoding of dynamic light fields is achieved from
the dynamic mode decomposition of acquired images gen-
erated from optimized coded aperture patterns.

3. Results and Analysis

In our proposed scheme, we have assigned pseudo mo-
tions to 5 x 5 static light fields Bikes and Fountain from
the EPFL Lightfield JPEG Pleno database [18], by clip-
ping out 9 slightly different regions (hence 9 time frames)
from each of the 25 views (Fig. 3). This produces a
pseudo-dynamic light field. Another dynamic light field
dataset was computer generated from a video and extracted
at 199 time frames as Planets, with again 25 views each.
Fig. 4 illustrates the central light field views of the cho-
sen datasets. Once the acquired images are obtained at each
time frame, DMD is performed for various ranks followed
by HEVC [23].

3.1. Implementation Details

We implemented our algorithm on a system with In-
tel i7-8700 CPU, 32 GB RAM, NVIDIA GeForce GT730
GPU and Ubuntu 22.04 operating system. The initial seg-
ment of the network, as illustrated in Fig. 2, represents the
process of capturing an image by a coded aperture cam-
era [5, 19]. The Chainer framework was employed to im-
plement the model for extracting the acquired images from
the dynamic light fields. The network was trained using
training data consisting of 64 x64 pixel 2D image blocks
captured from identical viewpoints across diverse light field
datasets. Overall, the CNN underwent 20 epochs of training
with a batch size of 15, utilizing zero-mean Gaussian noise
with a standard deviation of o = 0.005.

Acquired images produced for each time frame of the
dynamic light fields were vectorized as time snapshots and
dynamic mode decomposition was carried out as defined
in section 2.2. Low ranks 8,7,6,5,4,3,2,1 were used
for DMD of the 9 acquired images of Bikes and Fountain.
For the 199 acquired images of Planets, we experimented
with ranks 196,190, 180, 150, 120, 90, 60, 30. Once DMD
reconstruction was done, the low-rank approximated ac-

Figure 4. Central light field views of the datasets Planets, Bikes
and Fountain.

Table 1. Comparison of encoded bitstream size (in kilobytes) be-
tween the proposed scheme and ‘HEVCacq’ method.

Dataset Rank l(gt;tzream Sézle, ;l;B)
HEVCacq | 32107 7448

190 27068 5872

Planets 150 23520 5369
120 22322 5045

60 18982 4015

HEVCacq 1138 330

. 8 707 120
Bikes 6 475 51
4 367 44

HEVCacq 1092 292

Fountain 8 710 15
6 552 60

4 365 45

quired images were encoded using HEVC. We used quan-
tization parameters 2,6, 10, 18,26, 38,44 to test different
data rates and later performed decoding and reconstruction
of the dynamic light fields.

3.2. Comparative Analysis

In order to perform a comparison against our proposed
scheme, we opted for a method in which the acquired im-
ages were simply encoded using HEVC codec. The same
experimental settings chosen and results for this are labelled
as the ‘HEVCacq’ approach.

Figs. 5 illustrates the bits per pixel (bpp) vs YUV-PSNR
curves for datasets Planets, Bikes and Fountain datasets.
At lower ranks of DMD of time snapshots of acquired im-
ages, there is a significantly better rate-distortion perfor-
mance. As seen in Table 1, our approach also yields a com-
paratively smaller encoded bitstream size in total.

We also analyzed the bitrate reduction of the proposed
scheme with respect direct HEVC application on acquired
images using Bjontgaard metric [2]. Table 2 shows the per-
centage of bitrate savings achieved by our scheme with re-
spect to the ‘HEVCacq’ method. The evaluation was con-
ducted by estimating the average percent difference in rate
change over the range of selected quantization parameters
for chosen DMD ranks.
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Figure 5. Comparison of the bits per pixel (bpp) vs YUV-PSNR curves for the proposed scheme and ‘HEVCacq’ method at various ranks.

Table 2. The Bjontegaard percentage rate savings of the proposed
scheme, compared to applying HEVC directly on acquired images
(‘HEVCacq’ ). Negative values indicate the achieved gains in bi-
trate efficiency.

Dataset | Ranks | Bitrate Savings
190 -31.734705
Planets 150 -41.283242
120 -46.779727
60 -64.16564
8 -77.424248
Bikes 6 -92.568577
4 -94.508677
8 -74.724665
Fountain 6 -89.159706
4 -93.391707

4. Conclusion

In this paper, we have described a new data-driven ap-
proach for efficient representation and coding of dynamic
light fields using dynamic mode decomposition (DMD) [8,

,21,25]. The best acquired images to represent each tem-
poral frame or camera viewpoint of a dynamic light field
were derived through optimized coded aperture patterns us-
ing a CNN [19]. Underlying spatial, angular, and tempo-
ral correlations were effectively exploited by a data-driven
DMD on these acquired images arranged as time snapshots.
Subsequently, HEVC [23] on the approximated acquired
images eliminated the intra-frame and inter-frame redun-
dancies, as well as other inherent intrinsic redundancies in
the light field data, without compromising reconstruction
quality.

On comparison with the direct encoding of acquired im-
ages using HEVC codec, our proposed scheme demon-
strates superior compression efficiency and bitrate savings
for dynamic light fields. Our scheme provides flexible en-
coding of the input dynamic light field to satisfy diverse

data rates tailored to meet specific storage needs or band-
widths of multi-view autostereoscopic platforms.

Moving forward, our objective is to expand the capa-
bilities of DMD to accommodate invariances in dynamic
light field data. DMD’s potential applications extend be-
yond low-rank approximation, including the ability to sep-
arate video frames into low-rank background and sparse
foreground components in real time [9, 25]. Our goal is
to build upon this feature to enable multiple-target track-
ing and detection in dynamic light fields. Moreover, we
intend to leverage the dynamic modes, or characteristic fea-
tures, obtained during the decomposition for further light
field video processing.
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