
LFNAT 2023 Challenge on Light Field Depth Estimation: Methods and Results

Hao Sheng, Yebin Liu, Jingyi Yu, Gaochang Wu, Wei Xiong, Ruixuan Cong*,
Rongshan Chen*, Longzhao Guo, Yanlin Xie, Shuo Zhang, Song Chang, Youfang Lin,

Wentao Chao, Xuechun Wang, Guanghui Wang, Fuqing Duan, Tun Wang,
Da Yang, Zhenglong Cui, Sizhe Wang, Mingyuan Zhao, Qiong Wang, Qianyu Chen,

Zhengyu Liang, Yingqian Wang, Jungang Yang, Xueting Yang, Junli Deng,

Abstract

This paper reviews the 1st LFNAT challenge on light field
depth estimation, which aims at predicting disparity infor-
mation of central view image in a light field (i.e., pixel off-
set between central view image and adjacent view image).
Compared to multi-view stereo matching, light field depth
estimation emphasizes efficient utilization of the 2D angu-
lar information from multiple regularly varying views. This
challenge specifies UrbanLF [20] light field dataset as the
sole data source. There are two phases in total: submis-
sion phase and final evaluation phase, in which 75 regis-
tered participants successfully submit their predicted results
in the first phase and 7 eligible teams compete in the sec-
ond phase. The performance of all submissions is carefully
reviewed and shown in this paper as a new standard for
the current state-of-the-art in light field depth estimation.
Moreover, the implementation details of these methods are
also provided to stimulate related advanced research.

1. Introduction
Over the past few years, light field (LF) has gradually de-

veloped into one of the mainstream research areas of com-
puter vision. Benefiting from the potential capability of ad-
ditional directional information, LF simultaneously records
both spatial information and angular information of all light
rays. In addition, with the advent of plenoptic cameras, LF
acquisition is greatly simplified and can be obtained in a sin-
gle shot. Therefore, a large variety of research fields try to
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use LF instead of single image or video sequence for supe-
rior performance by mining internal structural information.

As a fundamental and crucial step, LF depth estimation
provides geometric information of the scene and is consid-
ered as a basis for various researches, such as super resolu-
tion [31], view synthesis [11] and image segmentation [35].
Compared to the classical multi-view stereo matching prob-
lem, LF contains dense and regular sampled views, making
it possible to design novel and accurate methods tailored for
depth reconstruction.

However, it is challenging to extract the depth informa-
tion recorded in LF images. Conventional methods mainly
concentrate on exploiting photo-consistency among sub-
aperture images (SAIs) [19, 21], linear structures in epipo-
lar plane images (EPIs) [39] as well as focusness in focal
stacks [17]. They are difficult to be deployed in applications
due to the heavy computation costs. With the emergence of
deep learning technologies, a series of methods [22, 26, 30]
based on convolutional neural network (CNN) have been
proposed to solve this problem. They suffer from occlusion,
texture-less or other regions that do harm to LF structure.

In order to stimulate scientific progress and inspire new
solution for this problem, the 1st light field depth estima-
tion challenge on LFNAT 2023 workshop is held on sched-
ule. This challenge focuses on predicting disparity infor-
mation for central view image, discards the commonly used
LF datasets (i.e., HCIold [34] and HCInew [9]) and chooses
large-scale challenging UrbanLF [20] for training and eval-
uating models. Moreover, this challenge supports detailed
comparisons among different methods and takes a step for-
ward in benchmarking LF depth estimation.

2. Related Work
2.1. Conventional Methods

Conventional methods adopt different attributes of LF to
obtain the depth information of scene, and have different
characteristics and applicable ranges. For instance, EPI-
based methods project the same points into different views
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of LF, forming lines in EPI whose slope has a linear re-
lationship with disparity. Multi-view based methods regard
LF as multi-view image array, using color consistency to es-
timate depth based on multi-view stereo. Focus stack-based
methods apply refocusing technology to generate multiple
refocusing images and obtain depth through the focal length
that makes image clearest.

2.1.1 EPI-Based Methods

Bolles et al. [1] first propose the concept of EPI, and de-
tecte edge, crest and trough through linear fitting in EPI.
Wanner et al. [33] propose a globally consistent labeling al-
gorithm, which uses structure tensor to extract direction of
lines in EPI and obtains depth through global optimization.
Inspired by this, Li et al. [14] use iterative conjugate gradi-
ent method to build a sparse linear system, getting depth in-
formation in EPI. Kim et al. [12] carry out sparse represen-
tation of LF, and utilize a fine-to-coarse depth propagation
strategy. Zhang et al. [39] propose a spinning parallelogram
operator to calculate the slope of line in EPI by distance.
Zhang et al. [40] select optimal slope of line from EPI, and
divide pixels into reliable and unreliable category, in which
the latter is filled via disparity propagation of the former.

2.1.2 Multi-View-Based Methods

Yu et al. [38] explore geometric structure of 3D lines in
ray space to improve the triangulation and stereo matching
of LF. Heber et al. [8] construct a matching item of prin-
cipal component analysis for multi-view stereo reconstruc-
tion, assuming that the matrix is low-rank if each SAI is
projected to the same center and each projected image is re-
garded as a row. Chen et al. [4] model 3D point angular ra-
diosity distribution, and introduce bilateral consistency met-
ric. Jeon et al. [10] propose a phase shift theory based on
Fourier transform to solve small disparity situation. They
innovate subpixel-level offset into phase shift in frequency
domain. Liu et al. [18] acquire LF video and depth map
through Fourier phase shift and graph cutting.

2.1.3 Focus Stack-Based Methods

Tao et al. [23] integrate defocusing clues and consistency
clues to get depth maps for the first time. They [24] further
use color, depth and shadow consistency to correct results.
Wang et al. [28] propose a occlusion perception method by
ensuring imaging consistency restricted in occluded view
regions. Williem et al. [36] use angular entropy and adap-
tive defocusing to improve the robustness and noise sensi-
tivity based on occlusion model. Zhu et al. [41] extend the
above method to the case of multiple occlusions. Tian et
al. [25] propose three-clue fusion methods including defo-

cusing, correspondence and propagation, thus eliminating
the influence of light backscattering and attenuation.

2.2. Learining Methods

With the wide application of deep learning in advanced
computer vision tasks such as image classification, segmen-
tation and recognition, LF depth estimation method based
on deep learning comes into being. Different from conven-
tional methods, deep learning methods are mainly divided
into two mainstreams: EPI-based methods and cost volume-
based methods.

2.2.1 EPI-Based Methods

Shin et al. [22] propose EPINet, the first end-to-end net-
work using CNN to extract EPI geometry disparity. They
also come up with data augmentation methods tailored for
LF. Leistner et al. [13] design EPI-shift to virtually shift LF
stack which enables to retain a small receptive field to be ef-
fective in the case of wide-baseline. Li et al. [15] construct
an oriented relation module to extract oriented relation fea-
tures between center pixel and its neighborhood from EPI
patches. Hassan et al. [6] improve a light-weight epinet ar-
chitecture that can quickly calculate disparity. It greatly im-
proves the speed and reduces calculation consumption. Li et
al. [16] introduce the transformer [27] into LF depth estima-
tion. They combine EPI feature extraction with transformer
to establish global features.

2.2.2 Cost Volume-Based Methods

Tsai et al. [26] first implement cost volume with CNN by
sequentially shifting each SAI with a series of predefined
disparity. Chen et al. [5] develop a new solution with four
branches and use attention mechanism to establish relation-
ship among cost volumes. Wang et al. [32] design a class
of domain-specific convolutions to disentangle LF from dif-
ferent dimensions, and then leverage these features to con-
struct cost volume. They [30] further propose an occlusion-
aware cost constructor to handle occlusions by modulating
pixels from different views. Chao et al. [3] construct a more
refined cost volume at the sub-pixel level and propose an
elaborate loss function. Wang et al. [29] divide the LF into
four regions to build a four-branch cost volume to reduce
computational consumption and get a more accurate result.

3. LFNAT Depth Estimation Challenge
The objectives of LFNAT 2023 challenge on LF depth

estimation are: (1) measure and compare the state-of-the-
art methods in related research field. (2) push new solutions
with high efficiency as well as accurate performance. (3)
promote a novel benchmark to replace the widely used one1

1http://www.lightfield-analysis.net
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Center View Image Disparity Image

Figure 1. Example central view images and corresponding ground truth disparity images from UrbanLF-Syn.

for further advanced research.

3.1. Dataset

This challenge takes UrbanLF [20] as sole data source.
As a high-quality and challenging urban scene dataset, Ur-
banLF aims at understanding complex urban scenes through
the rich information in 4D LF to improve the practical sys-
tem performance and reliability. Since there is no available
ground truth disparity information for real-world sample,
all experiments are only performed on UrbanLF-Syn sub-
set created by Blender2 software. Specifically, there are
170 synthetic samples for training, 30 samples for valida-
tion and 30 samples for test. Each sample is composed of
81 sub-aperture images with an angular resolution of 9 × 9
and a spatial resolution of 640 × 480, as well as ground truth
depth image and disparity image of all views. In addition,
UrbanLF-Syn subset contains densely sampled LF with a
minimum disparity range [-0.47,1.55] pixels between adja-
cent views. Fig. 1 shows some representative samples in
UrbanLF-Syn. For detailed description, please refer to the
official repository3.

3.2. Timeline

This challenge starts at January 24, 2023, ends at April
6, 2023, lasting for 73 days in total. It is divided into the
following two phases:

1. Submission phase (1.24 ∼ 3.28): The participants can
download UrbanLF-Syn subset to develop models for
generating predict disparity results. Specifically, train-
ing and validation samples are fully publicly available
to participants while ground truth depth and disparity
information for 30 test samples remains confidential

2https://www.blender.org/
3https://github.com/HAWKEYE-Group/UrbanLF

to equally evaluate submitted works. It is worth not-
ing that disparity range of each test sample is also re-
leased. The participants should organize their predic-
tion files according to the official instruction for sub-
mission and evaluation. A performance leaderboard is
available online to compare the submitted methods de-
veloped by different participants. In order to have ac-
cess to submit prediction files to the challenge evalua-
tion server, each participant should register an account
on http://www.lfchallenge.com/main/.

2. Final evaluation phase (3.28 ∼ 4.6): All methods in
the submission phase are first compared with several
baseline models [3, 22, 26, 30, 32] (provided by chal-
lenge organizer), and only methods with higher perfor-
mance than baseline models can enter the final evalu-
ation phase. All participants of the methods that meet
the condition are required to resubmit their prediction
files (must be the same as the prediction files in the
submission phase), and a 2-page extended abstract
which should include a short description of their meth-
ods and resulting insights about performance. Partici-
pants that do not submit the method description before
deadline will not be counted in final ranking.

3.3. Evaluation Metrics

The evaluation method only needs to predict disparity re-
sults of central view rather than all views. The mean square
disparity error (MSE) and the bad pixel ratio (BP) with three
thresholds (0.01, 0.03 and 0.07 pixels) are the quantitative
measures. The calculation formulas are as follows:

MSE =

n∑
i

(pre(i)− gt(i))2 (1)

BP (σ) =
1

n

n∑
i

(|pre(i)− gt(i)| ≥ σ) (2)
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Rank Team Method MSE BP Params.
BP(0.01) BP(0.03) BP(0.07)

1 INSIS1 CBPP 0.394 / 2 27.385 / 2 12.628 / 1 5.907 / 1 5.00M
2 INSIS2 LRDE 0.368 / 1 27.802 / 3 12.825 / 3 6.205 / 2 0.16M
3 BNU-AI-TRY SF-Net 0.416 / 3 24.681 / 1 12.649 / 2 6.750 / 3 5.06M
4 HawkeyeGroup EPI-Cost 0.738 / 4 57.946 / 6 27.041 / 5 14.327 / 5 5.51M
5 eker MTLF 1.156 / 6 46.933 / 4 22.852 / 4 13.518 / 4 0.32M
6 AnsLab301 ConvCC 0.953 / 5 53.926 / 5 28.211 / 6 15.582 / 6 5.02M
7 CUC001team Hybrid CV 5.989 / 7 90.850 / 7 77.411 / 7 59.738 / 7 5.11M

- baseline LFattNet [26] 1.723 86.592 63.847 39.320 5.06M
- baseline EPINet [22] 1.948 90.809 73.352 34.004 5.12M
- baseline SPO [39] 8.617 68.952 42.276 30.123 -

Table 1. LFNAT 2023 Light Field Depth Estimation Challenge results, final rankings and network parameters on UrbanLF-Syn test set.
Note that column MSE and column BP are displayed in a form like value / ranking. The best results are in bold and the second results are
underlined. The comprehensive ranking is determined by averaging MSE ranking and BP ranking, in which BP ranking result is calculated
by averaging BP(0.01), BP(0.03) and BP(0.07) ranking result.

where i is a single pixel. n is the total number of pixels. σ is
the threshold value. pre and gt denote the predict result and
ground truth, respectively. For these metrics, they are com-
puted by averaging over all test samples and small value sig-
nifies good performance. The submitted results are finally
ranked by averaging MSE ranking result and BP ranking re-
sult, in which BP ranking result is calculated by averaging
BP(0.01), BP(0.03) and BP(0.07) ranking result.

4. Challenge Results

From 75 registered participants, 7 teams successfully en-
ter in the final evaluation phase and submit results, codes
and extended abstract. Tab. 1 reports the final ranking of the
challenge, as well as single evaluation metric results (MSE
and BP) and network parameters. The methods are briefly
described in Sec. 5 and the corresponding teams and affili-
ations are listed in Sec. 7.

Architectures and main ideas. All competition meth-
ods apply deep learning techniques and extend the stereo-
matching framework based on cost volume. Among them, 3
participants explore the computational element of matching
cost, and enhance its robustness by introducing the unique
LF features; 3 methods focuse on the way of cost construc-
tion, such as faster convolutional constructor and finer sub-
pixel constructor; 1 solution is to study the post-processing
technology for cost volume refinement. And by better han-
dling the texture-less areas, the INSIS team wins the cham-
pionship and runner-up in this challenge.

Forecast Accuracy. From Tab. 1, it can be observed that
the INSIS team achieve the 1st and 2nd ranking by well han-

dling the non-texture problem in UrbanLF, and the proposed
LRDE exceed the 3rd solution 0.048 in terms of MSE with
only about 3% network parameters, which is competitively
competitive in all participation methods. Additionally, the
top of 6 solutions surpass the state-of-the-art method LFat-
tNet, and 4 of them double the accuracy of MSE compared
to previous works on UrbanLF, which significantly boosts
the performance on light field depth estimation.

Data Preprocessing and Augmentation. Similar to pre-
vious learning-based methods, all participating teams adopt
numerous data augmentation strategies, such as scale en-
hancement, transposing, rotating, and color transformation.
However, the view augmentation approach is not used here
and most methods take all 9 × 9 LF as input. Additionally,
3 teams explicitly remove texture-less regions to reduce in-
terference; 3 teams adjust the predefined disparity range ac-
cording to the characteristics of UrbanLF; and 1 participant
rearrange the training and validation subset for more train-
able data.

Conclusions. By analyzing the experimental settings, the
proposed methods and their results, we can conclude that:

• The competition methods significantly boost the per-
formance in LF depth estimation.

• The stereo matching theory of cost volume is still pop-
ular and useful in LF depth estimation, and there still
exists a large room for exploration, such as cost con-
structor, post-processing.

• It seems that more attention needs to be paid to the han-
dling of texture-less regions in LF, only 2 participants

3476



Figure 2. INSIS1 Team: The network architecture of the proposed CBPP.

give some solutions for it except completely removing.

5. Teams and Methods
In this section, all methods are described in order of final

ranking from top to bottom. For simplicity, we uniformly
specify U×V and H×W as the angular resolution and spa-
tial resolution of the input LF, respectively.

5.1. INSIS1: CBPP

Most recent deep learning methods for LF depth estima-
tion generate results by constructing 3D cost volume. Due
to memory and time limitation, they use small patches for
training instead of entire images. However, such strategy
poses difficulty to generate final depth map using informa-
tion from entire image. As a result, the model may perform
poorly in some areas, especially large texture-less regions.

To address this issue, this team proposes a Confidence-
Based Post-Processing (CBPP) method. They derive con-
fidence from probability volume generated by cost volume
and optimize depth values in low confidence regions. Their
method effectively improves results in texture-less regions
without introducing any additional parameters.

Theoretically speaking, their post processing method is
applicable to all networks that build 3D cost volume, such
as [2, 26]. Here, they adopt a basic network shared by these
methods, named Cost Volume Regression Network (CVR-
Net). The overall network architecture is shown in 2. They
use the same feature extraction structure and 3D disparity
regression strategy as [2].

Neighboring Maximum Probability. Methods that gen-
erate depth by constructing 3D cost volume usually perform
3D convolution operations on cost volume to obtain prob-
ability volume P ∈ RD×H×W , where D represents dis-
parity levels. Given a certain pixel p(h,w), the probabil-
ity distribution P (:, h, w) of the pixel p must be centralized
at one disparity level when the estimated depth value of p
is correct. Conversely, if the probability of one pixel p is

dispersed, it suggests an inaccurate estimated depth value.
Therefore, they define the confidence C ∈ RH×W :

C(h,w) = max(σ(

1∑
i=0

P (di, h, w), ...,

D−1∑
i=D−2

P (di, h, w)))

(3)
where σ denotes the softmax operation.

Algorithm 1: Confidence Based Post-Processing

Input: Confidence map C, initial depth map Dinit,
center image I , window Wi, three thresholds
σl, σh, σc

Output: Optimized depth map Dopt

for p in Wi do
if Cp < σl then

for q in Wi do
if Cq > σh&&|Iq − Ip| < σc then

Listp.append(Dinit
q )

end
end
avg(Listp) → Dopt

p

else
Dinit

p → Dopt
p

end
end

Low Confidence Optimization. After obtaining the con-
fidence of each point, they seek to improve results in low
confidence regions (mainly texture-less regions). Texture-
less areas typically exhibit similar color and continuous sur-
face. Thus they define a window in which the depth with
low confidence is approximately consistent, then refine it
with depth values from high confidence regions. Moreover,
to improve depth results on entire map, the window must
be global, not limited to a small patch. Specifically, they
divide entire map of size 480×640 into several windows of
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Figure 3. INSIS2 Team: The network architecture of the proposed LRDE.

size 1×640. Also, to distinguish between high confidence
and low confidence, they set two thresholds (σl and σh). For
each window Wi, they compute average depth di of pixels
with high confidence, and assign di to pixels with low con-
fidence in Wi. The processing is shown in Tab. 1. During
training, thresholds σl, σh, σc are set as 0.227, 1.231, 16.

5.2. INSIS2: LRDE

This team proposes a novel Layered Refined Depth Es-
timation (LRDE) method for LF depth estimation, follow-
ing their previous method [2] for LF image super-resolution
with the hybrid lenses LF images. For weak texture regions
in the depth estimation, the results may be wrong due to the
lack of rich texture information for matching. Therefore,
they downsample the original LF to reduce the influence of
weak texture regions. At the same time, the high-resolution
(HR) LF images are used to supplement the high-frequency
information to refine rich texture regions for better details.

The overall network architecture is shown in Fig. 3. It in-
cludes two modules: Layered Module and Refine Module.
In Layered Module, they firstly use the downsampled LF
images and HR focal stack to generate two sets of coarse
alpha maps of multi-plane images (MPI). Then, in Refine
Module, two sets of alpha maps are fused and combined
with HR central view to generate refined counterparts. Fi-
nally, the refined alpha maps are used to generate the dis-
parity map of central view.

Layered Module. The original LFs are firstly downsam-
pled or refocused to obtain low-resolusion (LR) LF images
and focal stack. For LR LF images, they shift every view
toward central view according to a set of disparity values
and obtain view stacks, in which every stack contains U×V
views. Then, they design Layered Network to calculate the

coarse alpha maps. Specifically, for every view stack, they
first concatenate all views in channel dimension, then feed
them into LR Layered Network, which has multiple cas-
caded 2D CNN residual blocks and a 2D deconvolutional
layer with one output channel in the last. To ensure that the
most appropriate alpha map is selected, they apply a soft-
max normalization to generate coarse alpha maps. Note,
for every view stack, the parameters of Layered Network
are shared. For focal stack, they feed it into an HR Layered
Network, which is similar to LR Layered Network, just re-
placing 2D CNN with 3D CNN and removing deconvolu-
tional layer to obtain coarse alpha maps from focal stack.

Refined Module. The two sets of coarse alpha maps and
HR central view are fed into Refine Network, which follows
U-net structure, to interact with high and low-frequency in-
formation for refinement. Especially, they introduce HR
central view with the corresponding scale only in the en-
coding stage of U-Net. It can not only adequately explore
and provide the high-frequency information in HR central
view, but also not interfere the final output during decod-
ing stage. Besides, the average pooling layer is replaced by
convolutional layer and the refined alpha maps are obtained
after a softmax normalization. Similar to Layered Network,
the parameters of Refine Network are also shared in every
alpha map. Finally, they use the refined alpha maps and a
set of disparity values to synthesize disparity map.

5.3. BNU-AI-TRY: SF-Net

This team proposes a novel yet effective method called
SF-Net based on SubFocal [3] to learn multi-scale features
of extensive texture-less regions for LF depth estimation.
The overall network architecture is shown in Fig. 4. First,
the features of each SAI are extracted using a shared fea-
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ture extraction based on dilated convolution [37] and spatial
pyramid pooling (SPP) module [7]. Second, the sub-pixel
view shift is performed to construct sub-pixel cost volume.
Third, the cost aggregation module is used to aggregate cost
volume information. The predicted disparity map is pro-
duced by attaching a disparity regression module.

Feature Extraction and SPP Module. After getting ini-
tial feature, they use a feature extraction module based on
dilated convolution and SPP to extract features of SAI. Con-
cretely, it contains four stages with 1, 2, 4, and 8 dilation
rate. Different from previous methods [3,26], an extra aver-
age pooling with 32×32 size is inserted into SPP, resulting
in five pooling operations at different scales to compress the
features. Bilinear interpolation is adopted to upsample low-
dimensional features. Finally, features of different stages
are concatenated to improve discrimination by skip connec-
tion, and the channel dimension is reduced via convolution.
In this way, The output feature contains multi-scale discrim-
inative context information and incorporates additional in-
formation from neighboring regions for challenging scenar-
ios, such as texture-less and reflection areas.

Sub-pixel Cost Volume. In order to handle narrow base-
line of LF, different from previous method [10] using phase
shift theorem to construct image level cost volume, they fol-
low [3] to form a sub-pixel feature level cost volume within
predefined disparity via bilinear interpolation. After shift-
ing features, they concatenate them into a 4D cost volume
RD×H×W×C . Considering that a smaller sampling inter-
val can generate a finer sub-pixel cost volume but increase

computation and slow down inference, they adopt 22 dis-
parity levels ranging from -0.5 to 1.6, where the sub-pixel
interval is 0.1 to trade off accuracy and speed.

Cost Aggregation and Disparity Regression. Following
[3, 26], eight 3×3×3 3D convolutional layers and two resid-
ual blocks are used to cost aggregation for final cost volume
Cf ∈ RD×H×W . Then, they normalize Cf with softmax
operation and calculate output disparity of central view d̂:

d̂ =

Dmax∑
dk=Dmin

dk × softmax(−Cdk
), (4)

where Dmin and Dmax stand for disparity range. dk is the
specific sampling value.

5.4. HawkeyeGroup: EPI-Cost

This team uses EPI lines to guide cost volume construc-
tion, which not only takes advantage of the relationship be-
tween EPI but also overcomes the problem of noise and oc-
clusion during matching to a certain extent. The overall net-
work architecture is shown in Fig. 5. Firstly, they design an
efficient two-branch EPI extraction module to extract hori-
zontal and vertical line features. Secondly, guided by these
characteristics, they construct two special cost volumes in a
specific order and match them. Thirdly, the horizontal and
vertical volumes are merged using the intervolume attention
mechanism. Finally, they use the 3D CNN to aggregate and
regress it to get the final disparity map.

EPI Extraction Module. The input is horizontal and ver-
tical center images of the SAI. They design a two-branch
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feature extraction structure, and the horizontal and vertical
images are convolved separately. Then, the residual training
method is used to thoroughly combine the initial, interme-
diate, and final features.

EPI-Cost Volume Construction Module. Firstly, they
select nine equally spaced disparity values from the range.
Secondly, they manually shift the horizontal EPI lines along
the vertical direction according to their offset and disparity
ranges. Similarly, vertical EPI lines are carried out. Then,
they concatenate the shifted EPI lines in the feature dimen-
sion into 5D cost volume, which includes color consistency,
EPI line characteristics, and disparity information.

Intervolume Fusion Module. Firstly, they extract local
attention weights by using 3D conv + bn, and global atten-
tion weights by using the adaptive average pooling layer for
two cost volumes. Secondly, they concatenate the cost map
of two branches and use a 2D convolution to fuse informa-
tion. Finally, the two EPI-Cost volumes are multiplied by
attention maps and concatenated.

5.5. eker: MTLF

In order to be implemented on resource-constrained de-
vices, memory consumption is an important aspect of de-
ploying efficient depth estimation models for LF images.
This team is motivated to design a memory-efficient net-
work. The overall pipeline is illustrated in Fig. 6. The pro-
posed MTLF consists of several prominent components, i.e.

Figure 6. eker Team: The network pipeline of the proposed MTLF.

“Feature Extraction”, “Sub-pixel Cost Volume Construc-
tion” and “Cost Aggregation and Disparity Regression”.

The proposed MTLF is implemented based on [3]. Com-
pared with the baseline, the center 5×5 SAIs are extracted
from the given LF image, and then fed into the network. In
“Feature Extraction”, the Spatial Pyramid Pooling module
adopts 2d convolutional layer to compress the features. In
“Cost Aggregation”, the input sizes of “Conv3D 2”, “Res-
Block3D 2”, “Conv3D 3” “Cost”, and the output sizes of
“Conv3D 1”, “Conv3D 2”, “ResBlock3D 2” “Conv3D 3”
are set as RD×H×W×32, where D represents disparity lev-
els. Note that the texture-less regions are excluded from the
training data.
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Figure 7. AnsLab301 Team: The network architecture of the proposed ConvCC.

5.6. AnsLab301: ConvCC

The method of ConvCC is inspired by recent OACC-
Net [30] for LF depth estimation, in which the predefined
disparities can be integrated without performing the shift-
ing operation. The overall network architecture is shown
in Fig. 7. Following the pipeline of OACC-Net, they de-
sign a Convolutional Cost Constructor cascading a series of
dilated convolutions according to the disparity range, and
construct an improved model with better convergence.

Feature Extraction. The proposed ConvCC takes U ×V
SAIs as inputs and adopts a spatial convolution for initial
feature extraction. The feature is then fed into deep feature
extraction cascading 8 residual blocks. After 3 spatial con-
volutions, it generates final features for cost construction.

Cost Construction. Their cost constructor is designed as
a sequence of convolutions whose kernel size is consistent
with angular dimension (i.e., U×V ), and dilation rate is de-
pendent on spatial dimension (i.e., H ×W ) and predefined
disparity (i.e., d). The dilation rate is formulated as:

dila(d) = [H − d,W − d] (5)

This formula shows that object with larger disparity corre-
sponds to a smaller atrous rate, which is consistent with the
shift-and-concatenate situation.

To reduce the matching aliasing, a zero-padding strategy
is introduced to each SAI, whose vertical padding value ηh
and horizontal padding value ηw are defined as:

ηh =
U − 1

2
× d̃, ηw =

V − 1

2
× d̃ (6)

where d̃ = max{|dmax|, |dmin|}. The dilation rates are re-
calculated on padded SAIs and the output size of cost con-
structor is (H + (U − 1)(d + d̃),W + (V − 1)(d + d̃)).
Therefore, cropping is required to adjust spatial resolution
to original (H,W ). The vertical and horizontal cropping
values ch(d) and cw(d) are defined as

ch(d) =
U − 1

2
× (d+ d̃), cw(d) =

V − 1

2
× (d+ d̃) (7)

Cost Aggregation and Regression. After getting match-
ing cost, the channel number is first reduced through a 3D
convolution. Several 3D convolutions and channel attention
mechanism are then applied to generate final pixel-wise dis-
parity cost volume Ffinal ∈ RD×H×W on center view.

D̂c =

dmax∑
dk=dmin

dk × Softmax(Ffinal) (8)

D̂c refers to estimated disparity of center view.

5.7. CUC001team: Hybrid CV

This team utilizes SAIs based on cost volume for LF
depth estimation. The overall network architecture is shown
in Fig. 8. Their method comprises four modules that col-
laborate to achieve accurate and robust disparity estimation.
The first module is a shared feature extractor, which extracts
features from each SAI. These features are then utilized to
construct cost volume through pixel view shift in the sec-
ond module. Notably, they propose a hybrid cost volume
network with two sub-modules that separately focus on 3D
local matching information and 2D global context informa-
tion. The third step uses cost aggregation module to synthe-
size hybrid cost volume data. Lastly, a disparity regression
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Figure 8. CUC001team Team: The network architecture of the proposed Hybrid CV.

module predicts disparity map with the supervision of the
proposed occlusion-aware loss.

Hybrid Cost Volume. Firstly, they warp the feature map
of each SAI into all virtual disparities to generate a feature
volume with dimensions RC×D×H×W , which is termed as
Matching Cost Volume that serves the purpose of exclu-
sively learning local features for matching. Then, they uti-
lize ContextNet to learn global context information and pro-
duces a volume with dimensions RD×H×W . Finally, they
concatenate the regularized matching cost volume with the
expanded context volume to obtain a hybrid cost volume,
with dimensions R(C+1)×D×H×W . They repeat this hybrid
cost volume generation procedure for each SAI.

Occlusion-aware loss. They propose an occlusion-aware
loss in regards to occluded regions by aggregating occlusion
masks from source views. Specifically, they compute occlu-
sion mask of center view by warping other source views us-
ing predicted disparity. Based on photometric consistency,
the projected view Ik→c possesses identical values to cen-
ter view Ic at non-occluded regions. Therefore, occlusion
mask Mk→c is determined by calculating absolute residuals
between projected view Ik→c and center view Ic:

Mk→c = |Ik→c − Ic| (9)

They also present a view-attention network to predict a
occlusion mask Mc from occlusion masks of all SAIs. The
insight is that occlusion areas of central view are also re-
lated to surrounding views by causing corresponding pixels
to be unmatched. Firstly, raw occlusion masks are concate-
nated into R1×M∗M×H×W and processed by two 2D con-
volution layers, reducing dimensions to R1×1×H×W . Next,
a view average pooling operation aggregates information

across SAIs, resulting in a single aggregated occlusion mask
for central view, namely Mc. Finally, occlusion-aware loss
Locc supervises predicted disparity as follows:

Locc = ∥Mc∥β ⊙ ∥d− d̂∥1, (10)

where d̂ and d represents predicted disparity and ground
truth. β serves as coefficient factor regulating the dynamic
weight assignment ratio. When β = 0, the occlusion loss is
equivalent to the standard L1 loss.
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