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Abstract

Recent learning-based light field (LF) disparity estima-
tion methods construct cost volume by sequentially shifting
each sub-aperture image (SAI) with a series of predefined
offsets. They only use the visual information of SAIs and
lose the geometry of LF. In this paper, we design a simple
network that can cleverly integrate EPI features with cost
volume to estimate the disparity. Firstly, we propose an effi-
cient EPI extraction module to use abundant line character-
istics. Secondly, we offer an EPI-Cost volume construction
module that can create volume guided by the EPI line and
the color consistency of images. Finally, after completing
it, we adopt an intervolume fusion module to considerably
correlate the validity of EPI lines in both directions. Exper-
imental results show the proposed method achieves state-
of-the-art performance in the quantitative and qualitative
evaluation of the UrbanLF-Syn dataset.

1. Introduction

Light field (LF) can record light in different directions
and describe scenes with richer specialties than traditional
images [32]. With so much information, LF images can
capture the concave or convex details and the reflection of
the surface characteristics. It helps achieve more accurate
results in disparity estimation. The development of LF dis-
parity estimation can also improve the performance of com-
puter vision systems [16], the accuracy of object detection,
recognition, classification, and etc.

LF images contain the scene multi-view characteristics,
making disparity estimation one of the most important re-
search and application directions [10]. As Fig. 1 shows, LF
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Figure 1. Horizontal and vertical EPI schematic representation and
an illustration of the relationship between disparity and EPI. On
the left is the 4D LF structure diagram, where (x, y) represents the
pixel coordinate, and (u, v) represents the perspective coordinate.
As shown at the bottom of the figure, when the value of v and y
is fixed, and the EPI structure of the horizontal image is obtained.
In a similar way, when the value of u and x is fixed, and the EPI
structure of the vertical image is obtained. Disparity information
θ can be represented by the slope of EPI: tan θ = ∆x(y)/∆u(v).

is usually represented by two planes that have four para-
metric dimensions: it carries two-dimensional angular res-
olution (u, v) and two-dimensional spatial resolution (x, y)
[12] [29]. EPI can be obtained by simultaneously fixing x
and u dimensions or y and v dimensions. Further, we can
represent disparity θ by the slope in the EPI. Recent meth-
ods based on cost volume construction only use color con-
sistency and can not combine EPI structure with it. In addi-
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tion, the scene contains various image noises and highly re-
flective target objects. The quality of matching will be dis-
turbed by this noise and occlusion. However, EPI has a line
structure that utilizes the relationship between the views,
and it is currently a valid way to deal with noise [9] [20].
Its slope also corresponds to disparity, which is quite a rea-
sonable way to estimate disparity [2]. Besides, compared
with matching pixel points, EPI has the advantage of line
structure, and the matching process is simple and accurate.

In this paper, we use EPI lines to guide the cost vol-
ume construction, which not only takes advantage of the
relationship between EPI but also overcomes the problem
of noise and occlusion during matching to a certain ex-
tent. Firstly, we design an efficient two-branch EPI extrac-
tion module to extract horizontal and vertical line features.
Secondly, guided by these characteristics, we construct two
special cost volumes in a specific order and match them.
Thirdly, the horizontal and vertical volumes are merged us-
ing the intervolume attention mechanism. Finally, we use
the 3D CNN to aggregate and regress it to get the final dis-
parity map.

The contributions of this paper are as follows:

• We combine the EPI line features and the color consis-
tency to construct a cost volume called EPI-Cost, and
it can improve matching quality by using the structure
of simple lines.

• We propose a new basic network architecture based
on the cost volume construction method, it consists of
four parts: EPI extraction module, EPI-Cost construc-
tion module, intervolume fusion module, cost aggre-
gation and regression module.

• The experimental results prove that our approach
achieves state-of-the-art performance in the quan-
titative and qualitative evaluation of UrbanLF-Syn
dataset.

2. Related Work
In this section, we review the major works in LF dis-

parity estimation. And most existing methods are classified
into EPI-based and cost volume-based.

2.1. EPI-Based Methods

The EPI method estimates disparity by analyzing LF
data structure [23]. By analyzing the structural character-
istics of LF, the four-dimensional is projected onto the two-
dimensional EPI image, and disparity estimation is trans-
formed into the problem of finding the line slope by using
the proportional relationship between the gradient and dis-
parity [34] [11].

Bolles et al. [3] first propose the concept and acquisi-
tion method of EPI. In EPI, linear fitting detects edges,

crests, and troughs to reconstruct three-dimensional struc-
tures. Wanner et al. [28] use structure tensor to extract
the direction of lines in EPI images, propose a global con-
sistency labeling algorithm, and obtain disparity through
global optimization. Johannsen et al. [17] present a tech-
nique that uses EPI patches to compose a dictionary with
a corresponding known disparity. Wanner et al. [29] use a
structured tensor to compute the slope of each line in verti-
cal and horizontal EPIs. Zhang et al. [34]locate the optimal
slope of each line segmentation on EPIs using the locally
linear embedding. Shin et al. [21] propose the EPINet, the
first end-to-end network using CNN to extract EPI geome-
try disparity from LF images. Li et al. [13] extract oriented
relation features between the center pixel and its neighbor-
hood from EPI patches. Hassan et al. [7] improve EPINet
and design a lighter and faster network architecture that can
quickly calculate disparity. Li et al. [14] combine EPI fea-
ture extraction with the transformer and propose a valid EPI
extraction network.

2.2. Cost Volume-Based Methods

According to the imaging principle of the LF camera,
SAI can be regarded as the set of scene images taken by the
virtual camera array from different angles [30] [18]. There-
fore, the multi-view stereo matching method can be applied
to LF disparity estimation. The matching cost is to construct
the loss amount on the basis of the difference between the
central and remaining perspectives [6] [33].

Yu et al. [31] explore the geometry of 3D lines in ray
space to improve the triangulation of LF and stereo match-
ing. Since this method uses stereo matching to estimate the
disparity per pixel, it could be more effective on data sets
with a small range of disparities. Liu et al. [15] propose a
method to acquire LF video and image disparity maps based
on stereo matching. Firstly, the LF data is rendered and en-
hanced. Secondly, the local disparity map is obtained based
on the fourier phase shift theory. Finally, the accurate dis-
parity map is obtained based on the multi-label optimiza-
tion algorithm of graph cutting. Tsai et al. [24] first apply
cost volume to deep learning networks and design the pri-
mary four-step backbone network, which can estimate dis-
parity in LF. Chen et al. [5] develop a new way with four
branches and use the attention mechanism to establish the
relationship among cost volumes. Wang et al. [26] [27]
solve the occlusion problem in light field images by mask-
ing and combining the occlusion module with the cost vol-
ume. Meanwhile, it is constructed by means of encoding
and decoding, which significantly reduces time consump-
tion. Chen et al. introduce a disparity before identifying
pixels and propose a pixel-based matching cost function
(PMCF). Chao et al. [4] use a larger memory space to con-
struct a more refined cost volume and propose an elaborate
loss function. Wang et al. [25] divide the light field into
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four regions to build a four-branch cost volume to reduce
computational consumption and get a more accurate result.

The EPI-based approaches take an amount of compu-
tation to acquire disparity information, and their real-time
performance is low. The cost volume-based methods match
pixels, but they only use the feature of color consistency of
LF images. However, our approach uses color consistency
information and employs the EPI line characteristics.

3. Methodology
In this section, the network structure is described in de-

tail. As Fig. 3 shows, it represents the overall network archi-
tecture. Our proposed approach is divided into four parts:
Firstly, the efficient EPI extraction module is designed to
generate EPI line features. Secondly, we use these char-
acteristics to guide the construction of cost volume, which
is matched by simple lines. Thirdly, the intervolume fu-
sion module associates branches of EPI-Cost volume and
learns from each other. Finally, the aggregation and regres-
sion module is used to obtain the final disparity map.

3.1. EPI Extraction Module

For disparity estimation, current methods use the SPP
module to extract features from different scales or SAIs and
provide the hierarchical context information about the re-
gion [8] [35]. But it only depends on the context informa-
tion, and having useful features in large textureless or spec-
ular areas is challenging. Unlike present feature extraction
methods, we utilize the characteristics between perspectives
to overcome these errors. The EPI-based method can miti-
gate the misestimation caused by factors such as illumina-
tion and specular reflection to some extent. So we propose
a module combining visual image information with view
messages to extract line characteristics.

The input is horizontal and vertical center images of the
SAI, the size of which is B × H × W × C × U(V ) af-
ter data preprocessing. Firstly, to take advantage of the
relationship between perspective and structure, we convert
input images Iinput to Ih and Iv , which are shaped as
(B × H) × C × W × U and (B × W ) × C × H × V .
Secondly, we design a two-branch feature extraction struc-
ture, and the horizontal and vertical images are convolved
separately. This module can effectively use the correlation
between perspectives and color consistency to learn the EPI
characteristics. Finally, the residual training method is used
to thoroughly combine the initial, intermediate, and final
features, which steadily improves the effect of the model by
deepening the number of layers. Each network layer is com-
posed of Conv2d−BatchNorm2d−Softplus−Tanh−
Conv2d−BatchNorm2d−Softplus−Tanh labeled as
C2

f , and the number of channels is respectively 16, 32, and
64 [25]. Because data is zero-centered and a zigzag path
is not easy to occur when updating parameters, Tanh can

help to speed up training [22] and Softplus can also solve
the dead ReLU problem [1]. After the above steps, we can
get accurate EPI line characteristics Fh(v). The specific for-
mula is as follows:

Fh(Fv) = C2
f (Ih(Iv)) + C2

f (C
2
f (Ih(Iv))) (1)

where, Ih and Iv are horizontal and vertical images, C2
f is

network layer.

3.2. EPI-Cost Volume Construction Module

Traditional methods construct matching cost using the
warp-and-concat approach. Given a disparity range, they
warp features according to their view coordinate and con-
catenate all warped features to generate cost volumes [26].
However, current methods only use the information of pix-
els for matching without using the structure of lines. Be-
cause the line structures are simple and efficient, the vol-
umes easily match. In addition, with the relationship be-
tween EPI slope and disparity, the results are accurate and
reasonable. As Fig. 3 shows, compared with the previous
methods, our approach combines the EPI line and color con-
sistency to guide the surrounding views to warp to the center
and the cost volume is easy to match under the guide of EPI
line.

Specific steps are as follows: Firstly, because all
disparity values of adjacent views in the UrbanLF-Syn
dataset are [−0.47, 1.55], we select nine equally spaced
disparity values from the range. Values respectively
are [−0.47,−0.22, 0.03, 0.28, 0.54, 0.79, 1.04, 1.29, 1.55]
labeled as d. Secondly, we manually shift the horizontal
EPI lines along the v direction with different disparity lev-
els to get the Fh

EPI . Similarly, vertical EPI lines are carried
out to get the F v

EPI . After this operation, the later part of
the network can directly study EPI line information at dif-
ferent spatial positions by using a relatively small receptive
field. The specific formula is as follows:

Fh
EPI = condmax

d=dmin
Fh(0, (vc–v)× d) (2)

F v
EPI = condmax

d=dmin
Fv((uc–u)× d, 0) (3)

where con is concatenating operation, dmin = −0.47 is the
smallest disparity value and dmax = 1.55 is the biggest.
We shift horizontal and vertical EPI lines according to their
offset vc–v(uc–u) and disparity ranges d. Secondly, we
concatenate the shifted EPI lines in the feature dimension
into 5D cost volume, which includes color consistency, EPI
line characteristics, and disparity information. Finally, we
get the cost volume CosthEPI and CostvEPI are both sized
B × (N × C) × H × W × 9. The specific formula is as
follows:

Cost
h(v)
EPI = conN

0 (F
h(v)
EPI) (4)
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Figure 2. The EPI-Guided cost construction network. There are four steps in our network, including EPI extraction module, EPI-Cost
volume construction module, the intervolume fusion module and the aggregation and regression module.
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Figure 3. An illustration of how to construct EPI-Cost volume.
We shift the horizontal EPI features with different disparity levels
and concatenate them in order of disparity from smallest to largest.
The same goes for vertical EPI.

3.3. Intervolume Fusion Module

After the EPI-Cost volume construction module,
Cost

h(v)
EPI from horizontal and vertical are obtained. Both

horizontal and vertical cost volumes contain essential dis-
parity information, and they need to complement each other.
In this module, we further fuse them to integrate informa-

tion effectively. Especially if the slope feature of EPI line
in the horizontal direction is not apparent but is evident in
the vertical, it needs to be supplemented by the other direc-
tion information. Previous method [5] proposes an inter-
branch fusion module that can fuse the features from dif-
ferent branches. Inspired by this, we design an intervolume
fusion module that facilitates their interactions.

The specific steps are as follows: Firstly, we extract local
and global attention weights for two cost volumes. We use
3D conv + bn with the kernel size is 1 × 1 × 1 to extract
local attention and use the adaptive average pooling layer to
get global attention. The cost map labeled as Cost

h(v)
map can

be calculated by using 3D convolution written as C3
att with

the kernel size is 3× 3× 3. The formula is as follows:

Costh(v)map = C3
att(Hatt(Cost

h(v)
EPI)) (5)

where, Hatt represents local and global attention. Secondly,
we concatenate the cost map of two branches and use a 2D
convolution written as C2

att with the kernel size is 3 × 3 to
fuse information. The formula is as follows:

Att = C2
att(con(Costhmap, Costvmap))) (6)

where Att represents the horizontal and vertical attention
weights, and the channel is 2. Finally, the two EPI-Cost
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volumes are multiplied by attention maps and concatenated.
The specific is as follows:

Costatt = con(Atth ⊙ CosthEPI , Attv ⊙ CostvEPI) (7)

where Costatt is the final EPI-Cost volume, Atth is the first
dimension of Att and Attv is the second dimension.

3.4. Cost Aggregation and Regression

Obtained the EPI-Cost volume Costatt, spatial atten-
tion [5] is adopted to enhance the features of the cost vol-
ume further. Firstly, we use one 1 × 1 × 1 convolution to
extract the attention map and reduce the channel numbers
from views × C to 4 × C. Secondly, we cascade three
convolution modules with a kernel size of 3 × 3 × 3 for
cost aggregation and obtain the normalized probability of
each disparity value. Each convolution module comprises
Conv3d−BatchNorm3d−Softplus−Tanh−Conv3d−
BatchNorm3d − Softplus − Tanh named C3

f , and the
number of channels is respectively 128, 128, and 1. Fi-
nally, we calculate the final predicted disparity by the sum
of each disparity with its normalized probability and re-
gressing. The specific calculation formula is as follows:

Dfinal =

dmax∑
d=dmin

d× (softmax(C3
f (Costatt))) (8)

where Dfinal reprents final disparity map, d is disparity
range from the smallest disparity value dmin = −0.47 to
the biggest dmax = 1.55.

4. Experiments
In this section, firstly, we introduce the UrbanLF-Syn

dataset and describe the implementation details. Secondly,
we compare our EPI-Cost to several state-of-the-art meth-
ods in Sec.4.3. Finally, more experiments are conducted to
testify to the effectiveness of our model. Including 1)ab-
lation experiments are performed in Sec.4.4 to verify the
validity of each module used. 2)We do a cross-data set test
in Sec.4.5 to demonstrate the universality and robustness of
our model.

4.1. Datasets

To validate the effectiveness of our method, we con-
duct experiments on a synthetic dataset: the UrbanLF-Syn
dataset [19].

UrbanLF-Syn dataset is a publicly available synthetic
LF dataset, partitioned into three sub-sets: ’Train,’ ’Val,’
and ’Test.’ It contains 230 scenes with LF resolution
480×640×9×9, and the ground truth is provided. 480×640
is the spatial resolution, and 9×9 represents the angular res-
olution. Its ground truth disparity range from -0.47 to 1.55
pixels between adjacent views. We use 170 training images

for training the network and choose the 30 validation im-
ages for validating.

4.2. Implementation Details

We exploit the patch-wise training by randomly sam-
pling patches of size 32 × 32 from the 170 training im-
ages. In addition to this operation, we also take other data
enhancement operations, such as converting the image to
grayscale, scale enhancement, transposing, rotating, color
transformation, brightness and contrast adjustment, etc.

During the training phase, we select the batch size of 16.
So after we process the initial images, the shape of each in-
put is 16 × 32 × 32 × 9 × 2, and the last dimension value
represents horizontal and vertical. Our network is trained in
a supervised manner with an L1 loss and is optimized using
the Adam method with β1 = 0.9, β2 = 0.999. The learning
rate is set to 1×10−3. We save a model every 2000 epochs.
And finally, the training is stopped after 1 × 105 iterations
and takes about 14 days. Our model is implemented in Py-
Torch and trained on Nvidia RTX 1080Ti GPU.

For performance evaluation, we use the standard evalua-
tion metrics in LF disparity estimation, including the mean
square error (MSE×100) and bad pixel ratio (BadPix(α)).
BadPix(α) measures the percentage of incorrectly estimated
pixels whose absolute errors exceed a predefined threshold
(e.g.,α = 0.07, 0.03, 0.01). The metrics (MSE, BP) are cal-
culated only on the central view image with a cropping of
15 pixels at each border. The specific calculation formula is
as follows:

MSE × 100 = 100× 1

h× w

h×w∑
p=1

(Dp −Dgt
p )2 (9)

BadPix(α) = 100× 1

h× w

h×w∑
p=1

(|Dp −Dgt
p | > α) (10)

where, h and w respectively represent the length and width
of the image, p represents pixel coordinates, Dp is predicted
pixel p disparity value and Dgt

p is ground truth.

4.3. Comparison with State-of-the-Arts

To prove the advancement of our method for LF disparity
estimation, we compare EPI-Cost with other state-of-the-art
methods, including EPINet [21], LFattNet [5], AttMLFNet
[5], OACC-Net [26], SubFocal [4]. To ensure the experi-
ment’s fairness and validity, we train on RTX 1080Ti GPU
for two weeks and select the best MSE model during the
training phases.

Quantitative Results. Tab. 1 shows our proposed
method achieves state-of-the-art performance in the quan-
titative and qualitative evaluation of the UrbanLF-Syn
dataset. We pick the first eight images of the verification
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Method Image11 Image27 Image34
MSE BP7 BP3 BP1 MSE BP7 BP3 BP1 MSE BP7 BP3 BP1

EPINet [21] 0.94 26.88 37.87 71.31 1.10 19.18 43.46 79.55 2.01 28.38 43.04 69.89
LFattNet [5] 0.93 12.63 23.96 59.78 0.46 12.83 26.47 69.43 1.76 19.37 33.36 67.84

AttMLFNet [5] 0.80 14.33 35.99 77.06 0.43 14.20 28.85 66.42 1.32 18.43 32.73 66.93
OACC-Net [26] 0.84 13.07 24.34 58.37 0.83 14.87 29.54 74.42 1.87 18.30 32.62 67.16

SubFocal [4] 0.91 13.37 27.08 68.84 1.65 19.12 31.37 68.99 1.91 30.21 40.90 64.71
Ours 0.74 11.04 22.04 59.77 0.30 12.57 21.56 50.47 1.21 13.37 28.81 56.35

Image50 Image54 Image68
MSE BP7 BP3 BP1 MSE BP7 BP3 BP1 MSE BP7 BP3 BP1

EPINet 2.43 19.68 31.78 65.99 1.75 16.82 27.98 64.37 1.43 14.89 39.62 76.91
LFattNet 1.47 14.06 30.98 65.64 0.97 20.05 36.61 71.43 0.73 14.08 21.24 53.90

AttMLFNet 0.99 16.73 29.12 66.51 0.89 17.15 27.98 64.49 1.09 14.16 39.34 73.46
OACC-Net 1.19 16.93 27.73 65.86 0.94 16.76 29.35 65.91 1.15 13.65 37.78 74.52
SubFocal 0.85 17.45 25.34 70.15 0.88 16.11 29.64 53.38 0.64 13.41 37.52 73.17

Ours 0.83 16.64 26.62 56.35 0.60 15.61 26.59 54.49 0.48 11.63 24.16 59.91
Image69 Image70 Average

MSE BP7 BP3 BP1 MSE BP7 BP3 BP1 MSE BP7 BP3 BP1
EPINet 0.65 17.75 26.87 65.53 1.38 22.10 37.74 61.66 1.77 25.83 36.41 64.40

LFattNet 1.04 13.69 24.02 63.36 1.09 17.72 34.60 66.89 1.33 19.28 30.00 59.27
AttMLFNet 1.45 18.65 26.88 68.39 1.56 22.23 36.81 60.87 1.79 14.61 36.83 63.71
OACC-Net 0.63 17.81 26.95 65.78 0.90 14.94 27.12 62.63 0.90 14.68 39.26 64.75
SubFocal 0.61 12.20 27.54 65.92 0.91 13.41 27.29 65.64 0.88 13.27 27.92 58.82

Ours 0.60 11.15 24.01 55.50 0.83 13.18 24.39 58.67 0.81 12.51 23.65 55.39

Table 1. Quantitative results on UrbanLF-Syn dataset. We calculate mean square errors (MSE × 100) and BadPix(0.07, 0.03, 0.01) by
different methods on UrbanLF-Syn. The best results are shown in bold.
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Figure 4. Qualitative results on UrbanLF-Syn dataset.
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Figure 5. Cross dataset test results on UrbanLF-Syn dataset. The models are trained on HCI 4D Light Field Dataset.

Method Average
MSE BP7 BP3 BP1

HRDE 0.388 6.717 13.970 30.492
CBPP 0.394 5.907 12.628 27.385
MS3D 0.559 7.917 14.664 31.066
SF-Net 0.712 8.311 14.595 28.007

EPI-Cost 0.738 14.327 27.041 57.946
UOAC 0.915 17.294 31.194 58.458
MTLF 1.156 13.518 22.852 46.933

MultiBranch 2.776 43.402 64.915 86.350

Table 2. The benchmark in the average comparison of the whole
validation and testing images in the 3rd workshop on the light field
for computer vision LFNAT. The best results are shown in bold.

set to display and calculate the average of 30 images. Our
approach achieves state-of-the-art performance in terms of
MSE×100 and a relatively high ranking in terms of Bad-
Pix(0.07, 0.03, 0.01). Tab. 2 shows the average comparison
of the whole testing images in the 3rd workshop on the light
field for computer vision LFNAT.

Visual Comparison. Fig. 4 shows some visual results
of predicted disparity. Compared with other methods, it can
be observed that the disparities estimated by our approach

Method Average
MSE BP7 BP3 BP1

Use ReLU 0.87 12.98 24.45 55.67
Previous Cost 1.33 19.28 30.00 59.27
No Attention 1.54 15.32 24.75 63.40
No Horizontal 1.05 14.05 23.93 64.43

No Vertical 1.16 14.91 24.33 63.85
Ours 0.81 12.51 23.65 55.39

Table 3. Ablation results on UrbanLF-Syn dataset. The first is our
feature extraction network architecture is replaced with the previ-
ous SPP module, which is composed of Conv2d-BatchNorm2d-
ReLU-Conv2d-BatchNorm2d-ReLU. The second is we use the
previous method of cost volume construction. The third is we re-
moved the interaction module. The fourth and fifth are removing
a branch. The best results are shown in bold.

are more precise to textured regions, and our model can pre-
serve more details. For example, the fence and the complex
background can be estimated more accurately. In addition,
the prediction results for the untextured region are also close
to the true value.
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Method Average
MSE BP7 BP3 BP1

EPINet [21] 12.826 41.268 49.164 66.439
LFattNet [5] 15.679 51.449 60.947 75.333

DistgDisp [27] 15.185 46.569 59.266 78.954
OACC-Net [26] 16.215 52.395 62.930 79.566

SubFocal [4] 17.326 54.127 62.904 76.288
Ours 12.753 39.732 47.286 70.149

Table 4. Cross dataset test results on UrbanLF-Syn dataset. We
compare in UrbanLF-Syn about the training in HCInew. The best
results are shown in bold.

4.4. Ablation Study

To verify the validity of our experiment, we design
several comparative experiments to prove it. We replace
each module to demonstrate the significance of every part
of our approach. Firstly, the EPI extraction module is
replaced with the previous SPP module, which is com-
posed of Conv2d−BatchNorm2d−ReLU −Conv2d−
BatchNorm2d − ReLU . Secondly, we use the previous
method of cost volume construction instead of EPI-Cost.
Finally, to prove that horizontal and vertical EPI branches
can interact, we also use a single-branch EPI feature extrac-
tion method or remove the interaction module.

As Tab. 3 shows, we calculate the average 30 valida-
tion set. Each module in our model is very effective. If
we replace any module, the results of both MSE and Bad-
Pix(0,07, 0.03, 0.01) are higher than our approach.

4.5. Cross Dataset Test Results

To prove that EPI-Cost also works well in big dispar-
ity images, we train our model on the HCI 4D Light Field
Dataset and test it on the UrbanLF-Syn dataset. We com-
pare our model with other state-of-the-art methods, includ-
ing EPINet [21], LFattNet [5], DistgDisp [27], OACC-Net
[26], SubFocal [4]. All of these open-source models are
completely trained on HCI 4D Light Field Dataset. Fig. 5
shows our model preserves more details and works well in
big disparity images. Tab. 4 shows, our approach achieves
1st place in terms of MSE×100 and BadPix(0.03, 0.01) and
2nd place in terms of BadPix(0.07).

5. Conclusion

In this paper, we propose a method called EPI-Cost
which can let EPI line information guide to construct cost
volumes and improve matching quality. It overcomes the
shortcoming that cost volume only uses the color consis-
tency of the image. Experimental results show the proposed
method achieves state-of-the-art performance in the quanti-
tative and qualitative evaluation on UrbanLF-Syn dataset.
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