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Overview

This supplementary document is organized as follows:
Section 1 provides detailed structures of frequency scale-up and scale-down blocks.
Section 2 provides detailed structures of the frequency up-projection unit and the frequency down-projection unit.
Section 3 provides more visual results to demonstrate the effectiveness of the frequency decomposition in OFPNet.
Section 4 provides an overview of the content from our collected LytroZoom dataset.
Section 5 provides more visual comparison results.

1. Details of the Frequency Scale-Up/-Down Blocks
The frequency scale-up (FSU) block aims at projecting the extracted frequency feature to corresponding high-resolution

(HR) representation, and the frequency scale-down (FSD) block can back-project the HR representation back to the low-
resolution (LR) one. Detailed structures of both blocks are shown in Figure 1.

Without losing the generality, we omit the superscript and subscript here to explain how the FSU block works. Given the
extracted frequency feature F ∈ R(U×V )×H×W×C , where U × V , H × W , and C denote the angular dimension, spatial
dimension and channel dimension, respectively, we first reshape it to obtain U×V feature with the dimension of H×W×C.
We then concatenate the reshaped feature Fr along the channel dimension and feed it to a convolutional layer followed by a
residual block (CR block) to obtain F , which contains the multi-view information in a light field

F = CR([Fr]), (1)

where CR(·) denotes the convolutional layer followed by a residual block, and [·] is the concatenation operation. F is then
replicated and concatenates with Fr along the channel dimension, followed by the CR block to obtained the fused frequency
feature. The fused frequency feature and Fr are concatenated and fed to the CR block, followed by the residual addition to
obtain Ffuse

Ffuse = CR([CR([F ,Fr]),Fr]) + Fr (2)

To obtain the HR representation U , Ffuse is upsampled by the bilinear interpolation operation followed by a 1× 1 convolu-
tional layer

U = conv(Bi(Ffuse)), (3)

where Bi(·) is the bilinear interpolation operation and conv(·) is the 1 × 1 convolutional layer. U is finally reshaped to Ur,
which is the final output of the FSU block.

As is shown in Figure 1(b), we won’t go into depth of the structure of the FSD block because there are numerous similar-
ities between the FSU block and the FSD block.
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Figure 1. The structure of the frequency scale-up block and the frequency scale-down block.

To analyze the effectiveness of the FSU block and the FDU block, we conduct the following experiment on LytroZoom. We
design the variants shown in Figure 2, and the results are shown in Table 1. Results in the table demonstrate the effectiveness
of the FSU and FSD blocks.
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Figure 2. Structure of the frequency scale-up block variant and the frequency scale-down block variant.

Table 1. Analysis of the FSU block and the FSD block.
Original 30.11
Variant 29.90



2. Details of the Frequency Up-Projection Unit and the Frequency Down-Projection Unit
Detailed structures of the frequency up-projection unit and the frequency down-projection unit are shown in Figure 3.
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Figure 3. Structures of (a) frequency up-projection unit (FUPU) and (b) frequency down-projection unit (FDPU). For a more straightfor-
ward depiction, we omit the subscript from the figure that represents the low, medium, and high frequency features.



3. Investigation of the Frequency Decomposition in OFPNet
To study the influence of the decomposed frequency components in the OFPNet, we visualize the features for three

frequency components in Figure 4.
We first visualize the features for three frequency components in the first line of Figure 4. We see that the feature in the

high-frequency branch contains more details and texture information, and the feature in the low-frequency branch contains
the least details. After we feed the extracted frequency feature components to the frequency projection (FP) operations, we
obtain the enhanced feature representations, which are shown in the second line of Figure 4. It can be seen that more pixels
are activated, indicating that FP operations can effectively enhance the feature representations.

Figure 4. Visualized frequency feature components of the scene of Bangkok2.



4. Overview of LytroZoom
Here we show an overview of the content from our LytroZoom dataset. 94 city scenes printed on postcards and 65 outdoor

static objects are adopted as the subjects. As shown in Figure 5 and Figure 6, images from LytroZoom-P and LytroZoom-O
have diverse colors and contents which facilitate leaning-based light field super-resolution.
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Figure 5. The overview of LytroZoom-P content.

In Table 2, we provide the details of the validation set and the testing set.

Table 2. The validation set and the testing set in LytroZoom-P.
Validation Testing

Bangkok1 Dubai5 Hokkaido1 Hokkaido2 Istanbul6 Bangkok2 Florence6 Istanbul2 London1 London4
London3 London6 Monaco6 NewYork5 Paris5 Monaco2 NewYork4 Paris1 Prague1 Provence4
Prague5 Rome4 Santorini5 Seattle3 Sydney1 Santorini2 Seattle2 Seattle6 Sydney6 Venice5
Venice4 Venice6



Bangkok5 Bangkok6 Dubai1Bangkok1 Bangkok2 Bangkok3 Bangkok4 Dubai2 Dubai3 Dubai4
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Figure 6. The overview of LytroZoom-O content.



5. More Experimental Results
In this section, we provide more visual comparison results on InterNet [3], IINet [1], DPT [2] and our proposed OFPNet

in terms of ×2 and ×4 light field SR.

NewYork4 LR Ground-truth InterNet DPT IINet OFPNet

Prague1 LR Ground-truth InterNet DPT IINet OFPNet

Santorini2 LR Ground-truth InterNet DPT IINet OFPNet

Figure 7. Visual comparisons (×2 SR) of different models on the LytroZoom-P testset.



London1 LR Ground-truth InterNet DPT IINet OFPNet

Provence4 LR Ground-truth InterNet DPT IINet OFPNet

Sydney6 LR Ground-truth InterNet DPT IINet OFPNet

Figure 8. Visual comparisons (×4 SR) of different models on the LytroZoom-P testset.



Wall2 LR Ground-truth InterNet DPT IINet OFPNet

Stair3 LR Ground-truth InterNet DPT IINet OFPNet
Figure 9. Visual comparisons (central views) of different models (fine-tuned on LytroZoom-O) on the LytroZoom-O testset. Top: ×2 SR.
Bottom: ×4 SR. Please zoom in for better visualization and best viewed on the screen.
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