
OTST: A Two-Phase Framework for Joint Denoising and Remosaicing
in RGBW CFA

Zhihao Fan1,2,∗, Xun Wu1,3,∗, Fanqing Meng4, Yaqi Wu1,†, Feng Zhang5,1,†

1 Tetras.AI, 2 University of Shanghai for Science and Technology,
3 Tsinghua University, 4Tongji University, 5Shanghai Artificial Intelligence Laboratory.

203590822@st.usst.edu.cn wuxun21@mails.tsinghua.edu.cn mengfanqing33@gmail.com

wuyaqi@tetras.ai zhangfeng@pjlab.org.cn

Abstract

RGBW, a newly emerged type of Color Filter Array
(CFA), possesses strong low-light photography capabilities.
RGBW CFA shows significant application value when low-
light sensitivity is critical, such as in security cameras and
smartphones. However, the majority of commercial image
signal processors (ISP) are primarily designed for Bayer
CFA, research pertaining to RGBW CFA is very rare. To
address above limitations, in this study, we propose a two-
phase framework named OTST for the RGBW Joint Denois-
ing and Remosaicing (RGBW-JRD) task. For the denois-
ing stage, we propose Omni-dimensional Dynamic Convo-
lution based Half-Shuffle Transformer (ODC-HST) which
can fully utilize image’s long-range dependencies to dynam-
ically remove the noise. For the remosaicing stage, we pro-
pose a Spatial Compressive Transformer (SCT) to efficiently
capture both local and global dependencies across spatial
and channel dimensions. Experimental results demonstrate
that our two-phase RGBW-JRD framework outperforms ex-
isting RGBW denoising and remosaicing solutions across a
wide range of noise levels. In addition, the proposed ap-
proach ranks the 2nd place in MIPI 2023 RGBW Joint
Remosaic and Denoise competition.

1. Introduction
Color filter array (CFA) pattern is a critical component

placed over the complementary metal-oxide-semiconductor
(CMOS) sensor in photographic devices to capture color
information. As shown in Figure 1 (b), the Bayer CFA
pattern is the most common type of pattern employed in
existing photographic equipment due to its simplicity and
ability to produce high-quality images. However, smart-
phone cameras still have notable drawbacks in their abil-
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Figure 1. Illustration of two different CFA patterns. (a) RGBW
CFA pattern. (b) Bayer CFA pattern. Remosaic processing refers
to the conversion of RGBW CFA raw images into Bayer CFA raw
images. process illustration.

ity to deliver professional-grade image quality in stochas-
tic lighting conditions, which affects their overall percep-
tual quality. To address this dilemma, the RGBW CFA pat-
tern has been proposed. As illustrated in Figure 1 (a), dif-
ferent from Bayer CFA pattern, RGBW CFA pattern con-
sists of red, green, blue and white filters arranged in repeat-
ing patterns. Specifically, by capturing all wavelengths of
light with the white filter to provide additional brightness
information, the RGBW CFA pattern demonstrates a sig-
nificant improvement in Signal-to-Noise Ratio (SNR) com-
pared to traditional RGB-only sensors, particularly in low-
light conditions. Moreover, the inclusion of white pixels
does not undermine the integrity of the original RGB color
but rather enhances sensitivity by a factor of 1.7. This
improvement results in brighter images and reduced color
distortion. Notably, several leading Original Equipment
Manufacturers (OEMs), such as Transsion, Vivo and Oppo,
have recently incorporated RGBW sensors into their flag-
ship smartphones to elevate camera image quality [31].

However, conventional camera ISP pipelines can only
work with Bayer raw images, making it impossible to di-
rectly utilize the RGBW raw images. Therefore, an inter-
polation process is necessary to convert the RGBW raw im-
ages into Bayer format. The interpolation process referred
as remosaicing must achieve two objectives: (1) First, it
must obtain the Bayer output with minimal artifacts from
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the RGBW input. (2) Second, it must make full use of
the signal-to-noise ratio and resolution advantages of white
pixels [31]. Moreover, the remosaicing task becomes more
challenging when sensor noise is present, especially in low-
light conditions. Recently, various deep learning models
have been proposed for the remosaicing task [20, 30, 31].
However, most of them do not consider the issue of noisy
data. Since noisy and non-noisy data have different charac-
teristics, the incorporation of both types of data into a net-
work can result in suboptimal denoising outcomes. There-
fore, investigating the Joint Denoising and Remosaicing for
RGBW CFA pattern (RGBW-JDR) task is important for
real-world applications of RGBW CFA pattern.

To address this challenge, we propose a two-phase net-
work named OTST which comprises of a denoising phase
and a remosaicing phase. For the denoising phase, we em-
ployed an Omni dynamic Convolution [22] to dynamically
capture the noise distribution, followed by the Half-Shuffle
Transformer (HST) [8] to efficiently capture both local and
global spatial-wise similarities and inter-channel correla-
tions. For the remosaicing phase, we propose a Spatial
Compressive Transformer (SCT) to efficiently capture both
local and global spatial-wise similaries. Our key innovation
is the design of a Dual-Spatial MSA (DS-MSA) module that
captures local high-frequency details and long-range global
dependencies simultaneously. Our proposed framework ef-
fectively addresses the challenge of mixed noisy and non-
noisy data in a joint manner and outperforms existing meth-
ods in both denoising and remosaicing performance. The
main contributions of this work are listed as follows:

• We propose a novel two-phase framework to tackle
Joint Denoising and Remosaicing for RGBW CFA pat-
tern (RGBW-JDR) task. By this step-by-step manner,
our framework outperforms state-of-the-art methods
across a wide range of noise levels.

• For remosaicing, we propose a novel Spatial Com-
pressive Transformer (SCT) to capture both local and
global spatial dependencies in an efficient manner.

• Our proposed framework achieves the second place
in the “RGBW Joint Remosaic and Denoise 2023
@MIPI-challenge” competition.

2. Related Work

2.1. Denoise Raw Images

The denoising of images is a fundamental task in the
field of image processing and computer vision. Traditional
techniques rely on prior information, such as non-local
mean [5], sparse coding [2, 15, 24], BM3D [12], among
others. Recently, with the advent of convolutional neu-
ral networks, there has been an increased focus on devel-
oping end-to-end denoising networks. Advanced network

architectures have led to a plethora of CNN-based denois-
ing methods, which are primarily applied in the RGB do-
main [11, 19, 21]. However, when these methods are di-
rectly applied to RAW images, performance suffers be-
cause the shape and distribution of noise differ signifi-
cantly between the RAW and RGB domains. Several pub-
lic datasets have been proposed for image denoising in the
RAW domain [1, 3, 9], and some convolutional neural net-
works [9, 17, 19] have shown promising results in these
datasets. However, obtaining pairs of noise and real im-
ages is a laborious task, and thus, generating more realis-
tic RAW domain noise data has become a crucial research
topic. Several approaches have been proposed, including
Gauss-Poisson distribution noise [16,28], Gaussian mixture
models [34], and in-camera process simulation. Wang et
al. [28] proposed a method for constructing a Gauss-Poisson
noise model and a network to achieve denoising.

2.2. Joint Remosaicing and Denoising

In recent years, denoising and remosaicing have emerged
as critical tasks in the field of image processing, attracting
significant attention from researchers. Deep learning tech-
niques have enabled researchers to propose various mod-
els that achieve state-of-the-art performance in diverse sce-
narios. Notably, the DRUNet [13] proposed by the “op-
summer-Po” team emerged as the top performer in the first
“MIPI 2022 Challenge on RGBW Sensor Re-Mosaic” [31].
While this model delivers satisfactory denoising quality and
speed, it requires a large amount of high-quality training
data to attain optimal performance and may exhibit subop-
timal performance in the presence of Poisson noise, which
requires specific techniques for elimination to avoid arti-
facts or distortions.In contrast, the second 2nd team “HIT-
IIL” employed the NAFNet [10] model, which can han-
dle various types of noise. However, this model uses a
computationally expensive non-local attention mechanism
that may be high hardware overhead. The third-place team
utilized the Transformer-based Unet network structure and
employed the Multi-ResTransformer (MResT) block for
each layer of the encoding and decoder instead of the resid-
ual convolutional block. However, this method involves a
large number of network parameters and takes a long time
to train and inference.

3. Method
In this section, we provide a description of the formu-

lation for our two-phase framework OTST. Following this,
we present detailed explanations of the key components en-
compassed within these two phases.

3.1. Two-Phase Framework Formulation

In this work, our framework aims to address the RGBW-
JDR task in a step-by-step manner. To achieve this, as
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Figure 2. (a) Illustration of our proposed two-phase RGBW-JDR framework OTST. The full framework consists of two sequential
phases, i.e., the denoising phase and remosaicing phase. Each phase contains a U-shaped structure Transformer. (b) HSAB consists
of an FFN, an HS-MSA, and two layer normalization. (c) SCB consists of an FFN, two layer normalization, parallel-connected L-MSA
and G-MSA. (d) Components of FFN.

shown in Figure 2 (a), we have designed two sequential
phases within our OTST. The first phase named denois-
ing phase focuses on eliminating the noise present in the
RGBW raw images, while the second phase named re-
mosaicing phase is concerned with converting the cleaned
RGBW raw images into Bayer raw images.

In detail, for denoising phase, given a noisy RGBW raw
image Yσ ∈ RH×W , a denoising method noted as Fγ is
employed to eliminate the noise and further restore the clean
RGBW raw image X∗ ∈ RH×W from Yσ , i.e.,

X∗ = Fγ (Xr) . (1)

After that, X∗ is took as the input of remosaicing phase
and a remosaicing method F⊙ is adopted to reconstruct the
corresponding Bayer CFA from it. The ensuing expression
is given as follows:

X = F⊙ (X∗) . (2)

Finally, we get the clean Bayer CFA raw image X ∈
RH×W . The whole two-phase framework can be formu-
lated as:

X = F⊙

(
Fγ

(
Y +N

(
0, Y · σ2

s + σ2
c

)
|θγ
)
|θ⊙
)
. (3)

Here θ⊙, θγ denote the learnable parameters in F⊙ and Fγ .
By the designed step-by-step manner, our OTST achieves
outstanding performance.

3.2. Denoising Phase (ODC-HST)

We propose ODC-HST to play the role of Fγ , which
consists of two sequential modules: an Omni-dimensional
Dynamic Convolution (ODC) [22] to obtain the noise dis-
tribution of the entire raw image, and a Half-Shffle Trans-
former (HST) [8] to eliminates the noise. In this section,
we present the detailed structures of these two modules in
Section 3.2.1 and Section 3.2.2.

3.2.1 Omni-dimensional Dynamic Convolution (ODC)

The initial module plays an important role on low-level re-
covery task and can significant influence the reconstruction
quality. Nonetheless, most existing denoising methods typ-
ically employ traditional convolution to extract initial fea-
tures, which exhibits limited representation power due to its
static computational manner.

To address this problem, we utilize Omni-dimensional
Dynamic Convolution (ODC) [22] to play the role of the
initial module in our framework. By leveraging the multi-
dimensional attentions along all four dimensions of the ker-
nel space present in ODC, our framework achieves a more
generalized dynamic convolution and obtains stronger de-
noising capabilities.

In detail, taking the noisy RGBW raw image Yσ ∈
RH×W as input, for i-th convolutional kernel Wi ∈ Rk×k,
ODC predicts four types of attention scalars for it, i.e.,
kernel-wise scalar αwi ∈ R, spatial-wise scalar αsi ∈
Rk×k, input channel-wise scalar αci ∈ R and output
channel-wise scalar αfi ∈ Rλ. Mathematically, the gen-

2835



𝒎

𝒏
×
(𝒎

×
𝒌
)

𝒎

𝒎 × 𝒌

𝑥 †,1,2

𝒌

𝑥 †,2,1

𝑥 †,2,2

𝑥 †,1,1

(b) Splitting process

X

L
in

ea
r 

L
a

ye
r Q

K

(c) Intra-MSA within 𝑥 †,1,1

V

Matrix Multiplication

A

Matrix Multiplication

𝑥𝑜

𝑥 †,1,1
Position

Embedding

L
in

ea
r 

L
a

ye
r

L
in

ea
r 

L
a

ye
r

Q

K

(d) Inter-MSA between 𝑥 †,1,1 and 𝑥 †,2,2

V

Matrix Multiplication

A

Matrix Multiplication

𝑥𝑜

𝑥 †,1,1

𝑥 †,2,2

Position

Embedding

X

UpSample

Splitting

process

C

𝑥 †,1,1 𝑥 †,2,2 𝑥 †,2,1 𝑥 †,1,2

Inner & Inter

MSA

(a) Illustration of G-MSA

𝑋𝑜

Figure 3. (a) Visual illustration of G-MSA (b) Splitting process:
G-MSA first samples k visual tokens from input X with a dilation
rate of n = 2. Tokens with the same color borders belong to the
same partition x†,i,j . (c) Illustration of intra-MSA for x†,1,1. (d)
Illustration of inter-MSA between x†,1,1 and x†,2,2.

erated dynamic kernel W †
i can be formulated as:

W †
i = αwi ⊙ αfi ⊙ αci ⊙ αsi ⊙Wi (4)

Then the full dynamic convolution operations can be de-
fined as:

Xr =

(
N∑
i=1

W †
i

)
⊗ Yσ. (5)

where N denotes the number of kernels contained in ODC.
By employing attention mechanisms across the four dimen-
sions of the kernel space, we are able to dynamically model
the distribution of noise and consequently acquire superior
features.

3.2.2 Half-Shuffle Transformer (HST)

Existing CNN-based denoising methods have achieved im-
pressive results [4, 6, 28]. However, these approaches
demonstrate deficiencies in modeling long-range dependen-
cies and non-local similarities. In contrast, Transformer has
shown exceptional ability over the past few years in model-
ing long-range dependencies with great efficacy [14,23,27].
However, applying Transformer directly to denoising tasks
may pose two challenges: limited receptive fields and sig-
nificant computational costs.

To address this problem, we introduce Half-Shuffle
Transformer (HST) [8]. As shown in Figure 2 (a) and
(b), HST consists of a three-level U-shaped structure con-
structed using the Half-Shuffle Attention Block (HSAB)
as its basic unit. Based on the Half-Shuffle Multi-
head Self-Attention (HS-MSA) which contains two paral-
lel branches, i.e., local Branch and non-local Branch, HST
combines the advantages of global MSA [14] and local
window-based MSA [23] in an efficient manner.

In detail, the input rough noisy feature Xr ∈ RH×W×λ

is first projected into query Q ∈ RH×W×λ, key K ∈

RH×W×λ, and value V ∈ RH×W×λ. After that, these three
elements are splitted along channel dimension, i.e.,

Q = [QL,QN ], K = [KL,KN ], V = [VL,VN ], (6)

Here QL,KL,VL ∈ RH×W×λ
2 are fed into the local

branch to capture local contents, while QN ,KN ,VN ∈
RH×W×λ

2 pass through the non-local branch to model non-
local dependencies.
Local Branch. Inspired by [23], the local branch uti-
lizes non-overlapping shifted k × k window to split spa-
tial patches Q†

L,K
†
L,V

†
L ∈ R

HW
k2 ×k2×λ

2 , and then employs
typical channel-wise MSA [7] within these patches to cap-
ture local high-frequency details.
Non-local Branch. Inspired by ShuffleNet [33], the non-
local branch employs shuffling operation to capture cross-
window interactions. Specifically, non-local branch uti-
lizes non-overlapping shifted local k×k window to capture
spatial patches Q†

N ,K†
N ,V†

N ∈ R
HW
k2 ×k2×λ

2 . Then their
shapes are transformed to Q‡

N ,K‡
N ,V‡

N ∈ Rk2×HW
k2 ×λ

2 .
By this way, the positions of tokens are shuffled and inter-
window dependencies are established. Finally, non-local
branch computes typical channel-wise MSA [7] within
these transformed patches.

By fusing the outputs from the local and non-local
branches, HS-MSA achieves both local and global feature
integration with reducing computational cost, thus enhanc-
ing the modeling abilities in a cost-effective manner.

3.3. Remosaicing Phase (SCT)

After obtaining the clean RGBW raw image X1, we em-
ploy the remosaicing phase F⊙ to convert the RGBW raw
image to the Bayer pattern. However, similar to denois-
ing methods, previous remosaicing methods exhibit limita-
tions in capturing long-range dependencies and non-local
similarities. Besides, these methods also have some limi-
tations in modeling inter-channel corrections: (1) First, the
computational cost of typical channel-wise MSA [7] is rel-
atively high. (2) Second, traditional channel attention ( e.g.,
SENet [18]) has been proved losing high-frequency de-
tails [26].

To address above problems, we propose the Spatial
Compressive Transformer (SCT), which aims to efficiently
model both local-global spatial self-similarities and inter-
channel correlation. As shown in Figure 2 (c), to achieve
this, the basic unit of SCT, named Spatial Compressive
Block (SCB), a Local-Global Dual Spatial-wise MSA (DS-
MSA) module to capture both local high-frequency details
and long-range global dependencies at the same time. In
this section, we present the detailed structures of proposed
DS-MSA in Section 3.3.1.
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3.3.1 Dual Spatial-wise MSA (DS-MSA)

Our Dual Spatial-wise MSA (DS-MSA) consists of two par-
allel MSA branches, i.e., Local-wise spatial MSA branch
(L-MSA) and Global-wise spatial MSA branch (G-MSA),
which can efficiently capture both local and non-local de-
pendencies at the same time.
Local-wise spatial MSA branch. Similar to the local
branch presented in Section 3.2.2, we adopt shifted local
windows self-attention proposed in [23] to capture fine-
gained local details. Specifically, as shown in Figure 3 (a),
by using k × k local window to limit spatial attention com-
putation in m×m local patches, L-MSA achieves capturing
local high-frequency details with linear computational com-
plexity ΩL = 4NC2 + 2Nm2C where N = H×W

k2 . ΩL

is linear when m is fixed, which means the computational
complexity of L-MSA is scalable and affordable.
Global-wise spatial MSA branch. To capture global spa-
tial dependencies, there are two methods: (1) The stan-
dard spatial-wise MSA [14] has superior ability to build
long-range dependencies but suffers from high computa-
tional costs on high-resolution images. (2) Pooling op-
erations [25] are usually utilized as efficient methods on
the spatial dimension to capture global features. How-
ever, pooling operations are not suitable for the demosaicing
problem due to the loss of high-frequency information [26].
So, one problem is how to capture global spatial details
while saving computational costs.

To achieve this, we propose an efficient Global-wise spa-
tial MSA (simplified as G-MSA). The overall processes of
G-MSA is shown in Figure 3 (a). Generally speaking, G-
MSA first splits input features into several dilated partitions
along spatial dimension. As shown in Figure 3 (b), it is
worth nothing that pixels in each partition are not from a
local region but subsampled from the whole input feature
with a dilation rate. Then G-MSA computes both intra-
MSA and inter-MSA between each pairs of partitions to
capture global dependencies. Figure 3 (c) ∼ (d) provide
examples by computing intra-MSA and inter-MSA, respec-
tively. After that, G-MSA concatenates these outputs along
channel dimension. Finally, a upsample×2 module is em-
ployed to scale up the acquired features to match the spatial
dimensionality of the original input.

By aggregating the outputs of the L-MSA and G-MSA
branches, our DS-MSA achieves the ability to efficiently
capture both local and global spatial information simultane-
ously.

3.4. Loss Function

In many image reconstruction and enhancement tasks,
the mean absolute error (MAE) loss is widely used. In
this work, we denoise and remosaic the loss function using
MAE loss:

{
LD = ∥X∗ −X0∥1

LR = ∥X − Igt∥1 + λ∥Xrgb − Irgb∥1
(7)

Where X∗ and X0 denotes the clean output of denose
phase and 0dB RGBW. X and Igt represent the recon-
structed Bayer of remosaic model and ground truth Bayer
respectively. Xrgb and Irgb indicates X and Igt after the
official ISP to obtain RGB images. λ is a hyper-parameter
tuning LR.

Figure 4. Visualization of MIPI 2023 Challenge on RGBW Joint
Remosaic and Denoise dataset. This dataset contains multiple
scenes (i.e., natural scene, dark scene).

4. Experiment
4.1. Datasets

In this study, we evaluated our proposed framework us-
ing a dataset of high-quality RGBW and Bayer image pairs
provided by the “MIPI 2023-RGBW Joint Remosaic and
Denoise” competition. The dataset consists of 100 sce-
narios, of which 70 were used for training, 15 for valida-
tion, and the remaining 15 for testing. All images in the
dataset have a fixed resolution of 1200 × 1800 pixels, and
each RGBW data piece contains three different noise levels:
0dB, 24dB, and 42dB. Sample images from various scenar-
ios are depicted in Figure 4.

4.2. Evaluation Metrics

The evaluation of our algorithm was conducted in two
parts: firstly, the comparison of the restored Bayer image
with the ground truth Bayer image, and secondly, the com-
parison of the RGB results generated from the Bayer image
using a simple ISP. To measure the former, we employed
the KLD as the evaluation metrics, while for the latter, we
utilized the PSNR, SSIM [29], and LIPIS [32] as evaluation
metrics. To provide an intuitive measure of the effective-
ness of our algorithm and overall image quality, we follow
the approach of MIPI challenge and used M4 scores as the
comprehensive evaluation metrics. The calculation method
of M4 is shown in Equation 8.

M4 = PSNR× SSIM × 21−LPIPS−KLD (8)
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Figure 5. Valid the images visualized in the set, with 075 on the
left and 076 on the right

Table 1. The final testing results of MIPI 2023 Challenge on
RGBW Joint Remosaic and Denoise. The maximum value is in
bold and our results are highlighted in gray.

Rank Team PSNR↑ SSIM↑ LPIPS↓ KLD↓ M4↑

1 ChongQB 38.55 0.98 0.07 0.06 69.047
2 fanzhihao(Ours) 38.724 0.9739 0.0804 0.0662 68.139
3 CD luo 38 0.96 0.07 0.07 66.213
4 Legless bird 37.78 0.97 0.09 0.07 65.599
5 blindbox 37.71 0.96 0.08 0.07 65.253
6 jiangchengzhi 36.69 0.96 0.09 0.07 63.050
7 Senta 36.25 0.97 0.12 0.07 61.647
8 VLAB 35.78 0.96 0.12 0.07 60.221
9 xiajiyuan 35.8 0.96 0.13 0.07 59.838

10 gymlab 35.13 0.96 0.13 0.07 58.718

The M4 evaluation metrics ranges from 0 to 100, with a
higher scores indicating a higher image quality.

4.3. Implementation Details

The training details are presented as follows: the model
is implemented in Pytorch and performed on 8 Titan XP
graphical processing units (GPUs). The model is optimized
using an Adam optimizer with parameters β1 = 0.9, β2 =
0.99, learning rate = 1e − 4 with a batch size of 4 and a
patch size of 128. To substantiate the efficacy of our two-
phase approach, we first compare the results of processing
all data directly. Then we evaluate the pertinent benchmark
models in comparison to our proposed two-phase model.

In this paper, we compared our proposed model with the
OPPO team in the “MIPI 2022 Challenge on RGBW Sensor
Re-mosaic” [31] challenge and some other state-of-the-art
methods in other fields. Specifically, we benchmarked our
proposed model against the MSTP [7] which is the winning
solution in the NTIRE-CVPR hyperspectral reconstruction
competition and the HST [8] which has shown exceptional
performance in spectral compression. To ensure a fair com-
parison, all models are optimized and evaluated in the same
training strategy.

4.4. Experimental Results

4.4.1 Testing Results of MIPI 2023 Challenge on
RGBW Joint Remosaic and Denoise

The proposed two-phase framework OTST ranked 2nd in
“MIPI 2023 Challenge on RGBW Joint Remosaic and De-

Table 2. Ablation study for RGBW-JDR approaches. Our two-
phase framework OTST outperforms in most cases the four end-
to-end competitors SCT, HST, MSTP, OPPO, where SCT is the
model we designed for remosaic, and we highlight our approach
in gray.

σ HST MSTP OPPO SCT OTST

PSNR↑

0 37.299 39.125 36.975 39.464 41.897
24 34.841 34.547 34.353 35.648 36.727
42 31.445 31.357 30.805 31.638 32.440

AVG 34.528 35.010 34.044 35.583 37.022

SSIM↑

0 0.9800 0.9822 0.9768 0.9824 0.9852
24 0.9606 0.9588 0.9566 0.9619 0.9650
42 0.9248 0.9280 0.9167 0.9272 0.9273

AVG 0.9551 0.9564 0.9500 0.9572 0.9591

LPIPS↓

0 0.0403 0.0290 0.0458 0.0267 0.0211
24 0.1328 0.1342 0.1379 0.1217 0.1221
42 0.2091 0.2120 0.2367 0.2206 0.1731

AVG 0.1274 0.1251 0.1401 0.1230 0.1054

KLD↓

0 0.0237 0.0412 0.0587 0.0582 0.0858
24 0.0289 0.0328 0.0533 0.0325 0.0451
42 0.0336 0.0591 0.0698 0.0329 0.0552

AVG 0.0287 0.0444 0.0606 0.0412 0.0620

M4↑ 59.7007 60.2490 56.9413 61.4066 63.8079

Table 3. Ablation study for denoising performance comparison
between four methods: ODC-HST, MSTP, HST and SCT. The
maximum value is shown in bold and the results of our denois-
ing method are highlighted in gray.

PSNR↑
σ 24 42

SCT 42.8605 37.2287
HST 42.9075 37.3695

MSTP 42.3355 36.858
ODC-HST 43.2459 37.8719

noise”. The final comparison results on testing set are sum-
marized in Table 1. It is worth nothing that our OTST
achieves the best performance in term of PSNR. Besides,
Our OTST exhibits very similar performance to the first-
place method in term of SSIM and KLD. These results
demonstrate that our OTST can be considered as a com-
mendable solution for RGBW-JDR task.

4.4.2 Ablation Study

In this section, we perform ablation studies to verify the
effectiveness of our proposed two-phase manner and main
components in OTST.
Two-phase Manner To verify the effectiveness of our pro-
posed two-stage approach, we compared it with four other
end-to-end RGBW-JDR methods (i.e. SCT, HST, MSTP
and OPPO), while HST and SCT are denoising and remo-
saicing stages in OTST respectively. The corresponding
results shown in Table 2 indicate that from the compari-
son of the results for SCT, HST, MSTP and OPPO we can
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(d) SCT(a) HST (b) MSTP (c) OPPO (f) GT(e) OTST

Figure 6. Comparison of images recovered at 42dB. The first row is the local picture in the red box in the image 074, and the second row
is the local picture in the blue box in the image 075. From left to right, we represent (a) SCT, (b) HST, (c) MSTP, (d) OPPO, (e) OTST,
(f) GT.

ODC-HST MSTP MSTP-L SCT SCT-L GT

0dB

24dB

42dB

Figure 7. The figure shows a partial enlarged view of the position of the color pen in 075. the first line is the comparison of 0dB, the second
line is the comparison of 24dB, and the third line is the comparison of 42dB. The left-to-right methods of each row are ODC-HST, MSTP,
MSTP-L, SCT, SCT-L, GT.

find that our designed SCT has better performance in end-
to-end. In addition to this, the OTST in the table repre-
sents our proposed two-stage approach, which can be seen
to outperform other end-to-end approaches in most settings.
Furthermore, as shown in Figure 6, we provide a quanti-
tative comparison to demonstrate the effectiveness of our
two-phase approach. We observe that our OTST can re-
cover better high-frequency information (such as texture de-
tails) and fine-grained structural information than the other
competitors. Both qualitative and quantitative comparison
results demonstrate the effectiveness of our proposed two-

phase manner.

Denoising. To validate the effectiveness of our denoising
method ODC-HST, we compare it with several other mod-
els, including HST [8], MSTP [7], and SCT. Table 3 shows
that our ODC-HST model achieves best denoising perfor-
mance in term of PSNR scores, demonstrating the effec-
tiveness of our designed denoising module ODC-HST.

Remosaicing. We compare the remosaicing performance
of our proposed SCT with other different models, includ-
ing ODC-HST and MSTP, while MSTP-L and SCT-L refer
to the versions of MSTP and SCT with larger parameters.
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Table 4. Ablation study for remosaicing performance compari-
son between five methods: ODC-HST, MSTP, MSTP-L, SCT and
SCT-L. The maximum value is shown in bold, and the results of
our remosaicing method are highlighted in gray.

σ ODC-HST MSTP MSTP-L SCT SCT-L

PSNR↑

0 40.373 41.118 41.696 41.897 42.120
24 36.211 36.537 36.619 36.727 36.702
42 32.231 32.421 32.337 32.440 32.343

AVG 36.272 36.692 36.884 37.022 37.053

SSIM↑

0 0.984 0.985 0.985 0.985 0.985
24 0.964 0.965 0.965 0.965 0.965
42 0.926 0.928 0.927 0.927 0.927

AVG 0.958 0.959 0.959 0.959 0.959

LPIPS↓

0 0.025 0.023 0.022 0.021 0.021
24 0.125 0.123 0.123 0.122 0.123
42 0.177 0.174 0.176 0.173 0.176

AVG 0.109 0.107 0.107 0.105 0.107

KLD↓

0 0.020 0.047 0.065 0.086 0.048
24 0.032 0.037 0.039 0.045 0.037
42 0.039 0.050 0.053 0.055 0.049

AVG 0.030 0.045 0.052 0.062 0.044

M4↑ 63.749 63.984 63.950 63.808 64.644

Table 5. Ablation study of dilation rate n in G-MSA for remo-
saicing performance. Without loss of generality, we keep local-
window size m = 8 in L-MSA. The MACs is computed only for
G-MSA module. The maximum value is in bold.

n MACs PSNR↑ SSIM↑ LPIPS↓ KLD↓ M4↑
1 844.28M 37.187 0.966 0.086 0.051 65.330
2 211.13M 37.022 0.959 0.105 0.062 63.808
4 52.79M 36.848 0.945 0.111 0.073 61.304

To ensure a fair comparison, we employ two-phase man-
ner for all the remosaicing methods and select ODC-HST
as denoising module due to it’s strong denoising abilities.
Among the evaluated methods, our SCT achieves the best
performance across a wide range of noise levels. Further-
more, we also offer qualitative comparison at the color pen
below number 075 in the valid datasets (as shown in Fig-
ure 7). The diagram reveals that our SCT slightly outper-
forms the others in letter position at 24 dB and 42 dB. Both
qualitative and quantitative comparison results demonstrate
the effectiveness of our proposed remosaicing method SCT.
Besides, we also validate the effectiveness of proposed G-
MSA for capturing long-range dependencies. As we can see
in Table 5, by adopting specifically designed feature sub-
sampling mode and cross-scale feature conversion to ob-
tain whole information, our G-MSA achieves better effi-
ciency (75% and 94% computation cost reduction for n = 2
and 4, respectively) with a slightly performance drop when
dilation rate n increasing.

4.5. Ensemble

As discussed above, each individual model demonstrates
promising performance. To generate more robust and ac-
curate results, we introduce ensemble learning. Ensemble
learning is a powerful and flexible approach that can im-
prove the performance and reliability of prediction models
in a wide range of applications

In our final submission, similar to [7], we adopt two dif-
ferent ensemble strategies. Our approach consists of two
main ensemble strategies. First, we utilize a multi-scale
ensemble, which involves training the same type of model
with different patch sizes (e.g., SCT and SCT-L) and then
averaging the outputs to enhance the restoration quality.
Second, we employ a top-k multi-model ensemble, which
involves training different types of models (e.g., SCT and
MSTP) and then averaging their outputs. These ensemble
strategies offer several advantages. The multi-scale ensem-
ble can improve the robustness of the model by incorpo-
rating multiple patch sizes and leveraging their respective
strengths. The top-k multi-model ensemble can enhance
the diversity and generalizability of the model by combin-
ing different types of models and generating a more com-
prehensive representation of the underlying patterns in the
data. Together, these strategies provide a powerful and flex-
ible approach for improving the performance and reliability
of restoration models.

In the final test phase, based on above two ensemble
strategies, our approach achieved a marked improvement
from M4: 65.913 to 68.139, which reflects the effectiveness
of our ensemble strategies.

5. Conclusion
In this paper, we introduce a two-phase framework aim-

ing to solve Joint Denoisng and Remosaicing for the RGBW
CFA pattern (RGBW-JDR) task, which consists of a de-
noising phase and a remosaicing phase. For the denois-
ing phase, we utilize a Half-Shuffle Transformer with an
Omni dynamic Convolution to accurately capture the noise
distribution and then eliminate it. For remosaicing phase,
we propose a Spatial Compressive Transformer (SCT)
to efficiently capture both local and global dependencies
across spatial and channel dimensions. Experimental re-
sults demonstrate that our two-phase RGBW-JDR frame-
work OTST significantly outperforms existing RGBW de-
noising and remosaicing solutions across a wide range of
noise levels. These results highlight the effectiveness of our
approach in producing high-quality images with reduced
noise levels, making it a valuable tool in the field of image
processing.
Acknowledgements: This work is partially sup-
ported by the National Key RD Program of China
(NO.2022ZD0160100).
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