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Figure 1: A comparison with existing state-of-the-art methods reveals that TFRgan outperforms them in the
recovery of highly degraded face data, resulting in facial images with superior details and more precise color
representation.
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Figure 1. Visual comparisons with state-of-the-art face restoration methods. The results of proposed TFRGAN contain more texture
details and complete face structures, which are the most natural and realistic. ∗ denotes that the model is fine-tuned in our training set.

Abstract

Blind face restoration aims to recover high-quality face
images from unknown degraded low-quality images. Pre-
vious works that are based on geometric or generative pri-
ors have achieved impressive performance, but the task re-
mains challenging, particularly when it comes to restoring
severely degraded faces. To address this issue, we propose
a novel approach TFRGAN, that leverages textual informa-
tion to improve the restoration of extremely degraded face
images. Specifically, we propose to generate a better and
more accurate latent code for StyleGAN2 prior via fusing
the text and image information in the latent code space. Be-
sides, extracted textual features are used to modulate the
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decoding features to obtain more realistic and natural fa-
cial images with more reasonable details. Experimental re-
sults demonstrate the superiority of the proposed method
for restoring severely degraded face images.

1. Introduction
The goal of blind face restoration is to restore high-

quality face images from corresponding low-quality ones.
Many different degradation factors such as noise [49], blur
[17,31], and downsampling [5,6] cause low-quality face im-
ages. Many different face-specific priors [3, 38, 43, 47, 52]
have been used in previous works. For example, the geo-
metric priors including facial landmarks [2, 3], heat maps
[47], and parsing maps [1,43] provide a general outline and
shape of the face for blind face restoration task. However,
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the accuracy of these geometric priors is greatly affected
by the degradation of low-quality face images, resulting in
unsatisfactory guidance for blind face restoration.

More recently, many works have been proposed for
blind face restoration via leveraging the generative priors
[9, 38, 41, 52] to enhance the quality of generated results.
These approaches typically involve some pre-trained face
generative models, such as StyleGAN2 [15] and VQGAN
[7], to incorporate rich texture details in the recovered faces.
These methods can be divided into two categories: one that
utilizes continuous feature space decoding for image gen-
eration [38], and another that generates faces from fixed,
discrete codebook representations [9, 41, 52]. However, the
discrete codebooks would limit the model’s representational
capability, resulting in less variety in the generated images
compared to those decoded from the continuous space. Sev-
eral works [9, 19, 38, 41] are exploring the projection of in-
formation from degraded images to potential vector repre-
sentation in the latent space.

In cases of facial images with severe degradation, sig-
nificant facial feature information from the original image
may be lost during the degradation process, resulting in the
extracted latent code that may not be sufficient or accurate
for reconstruction of the real image when using generative
priors such as StyleGAN2 [15] or Codebook [7]. Obtaining
a more accurate latent code corresponding to a high-quality
image will lead to a better restoration. Therefore, we pro-
pose a novel approach called TFRGAN that leverages text
information to facilitate the restoration of extremely de-
graded facial images. However, the fusion of image and
text information that belong to different two modalities is
quite challenging due to the differences between these two
modalities. To address this challenge, we process two dif-
ferent approaches to integrate textual information into the
restoration process, both in the latent code space and de-
coding process. Firstly, we map the extracted textual fea-
tures into text latent code and then fuse it with image la-
tent code via the proposed text-image fusion block (TIFB).
This process obtain an improved latent code, comparing to
the original image latent code that is extracted from the ex-
tremely degraded facial image. Additionally, we propose a
text-guided decoder that modulates the image decoding fea-
tures with the extracted text feature maps to produce more
realistic results.

The main contributions of this paper are summarized as
follows:

• To the best of our knowledge, we are the first to use
textual information to facilitating the restoration of ex-
tremely degraded facial images and achieving promis-
ing results.

• We propose two modules to fully leverage textual in-
formation in the restoration of facial images. Specifi-

cally, we propose the text-image fusion block to fuse
text and image information in the latent space and the
text-guided block to fuse them in the feature decoding
space.

• Extensive experiments demonstrate the superiority of
our proposed approach for the task of blind face
restoration, especially in extremely degraded ones.

2. Related Works
2.1. Blind Face Restoration

The current state-of-the-art in face restoration primarily
utilizes various forms of priors, such as geometric prior,
generative prior, facial attributes, and identity information.
These geometric prior include facial landmarks [2, 3], heat
maps [47], and parsing maps [1, 43], which are often dif-
ficult to extract and utilize effectively in highly degraded
facial images.

In recent years, advances in blind face restoration [7,
14, 15, 28] have been made by leveraging the high-quality
face generative priors that contains ample facial texture in-
formation. These methods [9, 21, 23, 38, 41, 52] map the
low-quality face images into the latent space of the genera-
tive model such as StyleGAN2 [15] to realize high-quality
facial images reconstruction. GFPGAN [38] aims to ex-
ploit the high-quality image generation capability of Syle-
GAN2 [15] and use spatial information to modulate the fea-
tures of StyleGAN2 at multiple scales, recovering the facial
images with more fidelity. The RestoreFormer [41] uses
a pre-trained HQ image feature dictionary [21, 35, 45] as a
correspondingly high-quality image generator to train a cor-
responding encoder to map the network from low-quality
image features to high-quality image dictionary locations.
VQFR [9] introduces high-quality codebooks in it to obtain
better restoration results. CodeFormer [52] uses a trans-
former network to predict the index of high-quality code-
books from low-quality image features to improve face im-
age quality.

However, these methods rely solely on the high-quality
images priors, which may not be sufficient for extremely
degraded images. To address this issue, we propose to use
textual information to improve the restoration results with
extreme degradation in this paper. A more comprehensive
understanding of the severely degraded images can be ob-
tained by incorporating additional textual information that
is extracted from a short text description, leading to better
restoration results.

2.2. Multi Modalities Learning

Recently, there has been a growing body of researches in
the field of multi-modality in image-text matching and text-
image generation [25–27, 37, 46]. One notable approach,
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Figure 2. Overview of TFRGAN: The TFRGAN model’s architecture includes an image encoder, a text encoder, a text-guided U-net
decoder, and a StyleGAN2-based decoder. In the latent code space, we fuse the Text Latent Code and Image Latent Code using the
text-image fusion block. This fused latent code is then passed to the StyleGAN2-based decoder to recover the final face image. To further
enhance the quality of the generated image, a text-guided decoder is proposed to leverage the extracted text features to provide text guidance
information to the StyleGAN2-based decoder.

CLIP [25], utilizes different encoders for texts and images
respectively to create feature vectors that have high similar-
ity for paired text and images, and low similarity between
images and unpaired text by encoding both the text and im-
ages into the same feature space. Derivative works, such as
DALLE [27] and DALLE 2 [26], have also been developed
via utilizing the powerful capabilities of CLIP.

Another direction in this field involves utilizing a sin-
gle encoder for both text and image modalities, which al-
lows the same model to process data from both modalities.
Examples of this approach include VL-BERT [33], which
employs a unified transformer [36] encoder to process data
from both visual and textual modalities. Additionally, there
are models that integrate the features of both modalities,
such as ALBEF [20]. ALBEF first encodes the visual and
textual information separately using separate transformer
encoders and then performs alignment operations on the
outputs. The outputs from the first stage models are then
concatenated and fed into a unified transformer encoder for
feature fusion.

Although the application of multi-modal techniques into

the task of image restoration is an area that has yet to be ex-
plored, incorporating text information as prior knowledge
into the restoration networks through multi-modal fusion
has the potential to improve the quality of restored images.

3. Method

In this paper, we propose a novel method called TFR-
GAN that leverages the text information to boost the
restoration of extremely degraded facial images. As shown
in Fig. 2, the TFRGAN mainly consists of an image en-
coder, a text encoder, a text-image fusion block, a text-
guided U-net decoder, and a StyleGAN2-based decoder.
Specifically, we utilize a U-net [29] like network as im-
age encoder to extract facial feature maps from low-quality
facial images, a BERT [4] like network as text encoder to
embedding text descriptions which are paired with the low-
quality images. Then, the extracted image and text fea-
ture maps are mapped into image and text latent code via
two different mapping networks respectively. The proposed
text-image fusion block fuse extracted image and text latent
code to generate an improved latent code, which will be il-
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lustrated in Sec. 3.2. In the decoding part of the TFRGAN
model, we employ two decoders: a pre-trained StyleGAN2
[15] decoder and a text-guided U-net decoder as shown in
Fig. 2. The fused latent code is passed to the StyleGAN2-
based decoder to recover the final face image. To further
enhance the quality of the generated image, a text-guided
decoder is proposed to provide text guidance information to
the StyleGAN2-based decoder by leveraging the extracted
text features.

3.1. Text Encoder

To leverage the text information to facilitate the restora-
tion of facial images that are extremely degraded, the text
information will first be encoded and then mapped into the
same latent space as the face images. In this paper, we
propose to utilize DistilBERT [30] as the backbone of Text
Encoder. The DistilBERT [30] is a distilled version of the
BERT [4] model, which has been trained to maintain the
majority of its original performance while being signifi-
cantly smaller and faster than BERT [4]. This allows for
the efficient encoding of text features, making it suitable for
our image restoration task.

The DistilBERT [30] model encodes each word in an im-
age caption into a text vector Vword ∈ R768. With a maxi-
mum caption length of 30 words, the final caption features
are represented as Vcaption ∈ R768×30. To extract the most
relevant information for blind face restoration, we introduce
a mapping network to condense the caption features into a
single vector, which can be denoted as z′text ∈ R512×1. To
keep the same size of image latent code zimg , the final text
latent code ztext ∈ R512×16 is obtained by concatenating
the condensed text features z′text from multiple captions or
random copy from z′text when the captions are less than 16.
It should be noted that only the parameters of the mapping
network are trained during the training process, while the
parameters of the DistilBERT model remain frozen.

3.2. Text-Image Fusion Block

The quality of the recovered facial images is heavily in-
fluenced by the representation of the latent code. After map-
ping the extracted text feature maps into the text latent code,
we propose a novel module called the text-image fusion
block (TIFB) to fuse the text latent code with image latent
code to generate an improved latent code. The overview of
the text-image fusion block is shown in Fig. 3a. To effec-
tively leverage the extracted text and image latent code, we
first adopt separate embedding layers before seeding them
into the transformer layers as shown in Fig. 3a. Let zimg

and ztext denote image latent code and text latent code re-
spectively. Then, the latent code that is fed into transformer
layers, which can be formulated as

zconcat = Concat(Emi(zimg),Emt(ztext)), (1)

where Emi and Emt denote the image and text embedding
layers, respectively. Then, the latent code that is fused via
multiple transformer layers can be represented as ztrans.
The transformer block can effectively fuse two domain la-
tent codes and extract the better latent code ztrans. The out-
put ztrans of this block is then seamlessly integrated into the
StyleGAN2-based decoder to restore the final face images
with significant improvement via improved latent code.

3.3. Text Guided U-net Decoder

The text-guided U-net decoder is a modified U-net ar-
chitecture, which takes the text feature maps Ftext and ex-
tracted multi-scale image feature maps F l

img as input, where
l denotes scale index. The text information is incorporated
into the decoder via modulating the corresponding feature
maps of the U-net decoder. This allows the network to focus
on restoring facial details that correspond to the encoded
text descriptions. As shown in Fig. 2, the basic unit of a
text-guided U-net decoder is U-net convolution layers and a
text-guided block.

The architecture of text-guided block (TGB) is shown
in Fig. 3b. The TGB takes the smallest scale text fea-
ture maps Ftext and the multi-scale image feature maps
F k
img ∈ RCk×Hk×Wk

as input, where k denotes scale in-
dex. In order to better preserve facial characters, we pro-
pose to use spatial feature transform (SFT) [39] to modu-
late the text information into the image decoding features
for better restoration of facial images within the decoding
process.

In each text-guided block, we generate a pair of affine
transformation parameters Tsc, Tsh for U-net convolution
layers from input text features via mapping network, which
consist of several convolution layers. Specifically, the mod-
ulation process of U-net convolution layers can be formu-
lated as

Tsc, Tsh = MappingNet(Ftext),

FU−SFT = Tsc × Fimg + Tsh,
(2)

where Tsc, Tsh denote scale and shift parameters respec-
tively. By incorporating text information in the image
restoration process, the proposed method aims to produce
higher-quality results that are more consistent with the
given textual input. It is worth to mention that we generate
images Ikout Unet at each resolution scale of the text-guided
U-net decoder and constrain them to closely resemble the
pyramid of the ground-truth image.

3.4. StyleGAN2 based Decoder

StyleGAN2 [15] is an impressive generative model that
has proven to be highly effective in producing high-quality
images of human faces with realistic details and textures.
StyleGAN2 first generates a latent code from a given ran-
dom noise via a mapping network. Then the latent code is
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Figure 3. (a) The overview of Text-Image Fusion Block. (b) The overview of Text-Guided Block.

used to generate the final facial image via the trained Style-
GAN2 network. StyleGAN2 also incorporates an adaptive
instance normalization (AdaIN) operation, which provides
fine-grained control over the generated images via changing
the latent code.

In the proposed method, we utilize StyleGAN2 as a gen-
erative prior to produce high-quality restored images. The
output of the text-image fusion block ztrans which fuses
the text and image information, is used as the latent code
to generate the final images. By leveraging the pre-trained
generator prior, we are able to generate realistic and high-
quality images with improved latent code ztrans. In order to
better modulate the features of StyleGAN2 FGAN with text
information, we use the CS-SFT module proposed in GFP-
GAN [38] model. Unlike GFPGAN which only use spatial
features to obtain affine transformation parameters, we use
the features FU−SFT that incorporate the text and image
before to obtain the modulation parameters. This process
can be formulated as:

Ssc, Ssh = MappingNet(FU−SFT ),

FGAN−SFT = Ssc × FGAN + Ssh,
(3)

where Ssc, Ssh denote scale and shift parameters respec-
tively, and the mapping networks consist of several convo-
lution layers. This modulation enables our model to better
capture the underlying features of the input image with the
hint of text description and effectively restore the facial de-
tails. With these techniques, we are able to produce highly
realistic and visually pleasing restored facial images.

3.5. Training Loss

To restore realistic facial images with fidelity, multiple
loss functions are used to train the proposed network. The
overall loss functions consist of reconstruction loss, adver-
sarial loss [8, 15], perceptual loss [12, 50], identity preserv-
ing loss [11], and Pyramid Restoration Loss. Let Iout de-
note the output of the StyleGAN network and Igt denotes
the target images.

We adopt L1 as our reconstruction loss to measure the
difference between the restored facial images and the target
images.

Lrec = λrec∥Iout − Igt∥1, (4)

where λrec represents the weight of reconstruction loss.
In addition to the reconstruction loss, we also incorporate

a perceptual loss, which is calculated using a pre-trained
VGG [32] network, which can be formulated as

Lper = λper

N∑
i

||gi(Iout)− gi(Igt)||1, (5)

where gi denotes the i-th layer feature maps of a pre-trained
VGG network, λper represents the weight of perceptual
loss. In our implementation, we compute the perceptual loss
using the first five layers of VGG feature maps.

To further improve the visual realism of the restored im-
age, we incorporate an adversarial loss, similar to the loss
that are used in StyleGAN2. This loss function encourages
the model to produce perceptually realistic images that are
indistinguishable from high-quality images.

Ladv = −λadvEIout softplus(D(Iout)), (6)

where λadv represents the weight of adversarial loss, and D
represents discriminator.

The Pyramid Restoration Loss (PRL) is also used. In
this loss function, the ground-truth (GT) image is first
down-sampled into several scales Ikgt, and then the images
Ikout Unet are generated from each resolution scale of the
text-guided U-net decoder. A reconstruction loss is com-
puted at each scale to measure the similarity between the
generated images and the corresponding down-sampled GT
image. By evaluating the difference at different levels of
resolution, the PRL aims to provide a more comprehensive
and robust evaluation of the generated image quality. Math-
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Figure 4. Qualitative comparison on the CelebAMask-Test for blind face restoration. Our TFRGAN recovers better results with more
details in hair, skin, mouth, and eyes. The symbol ∗ denotes that the model is fine-tuned in our training set.

ematically, the PRL can be formulated as:

LPRL = λPRL

K∑
k=1

λk||(Ikgt, Ikout Unet)||1, (7)

where λk is a weighting factor that controls the contribution
of each scale to the final loss, and K is the total number of
scales.

In the end, the total loss can be formulated as :

L = Lrec + Lper + Ladv + LPRL (8)

4. Experiments
4.1. Datasets, Settings, and Metrics

Training Datasets: In our training set, we utilize 24000
images from the CelebAMask-HQ dataset [18], where text
captions of both CelebAText-HQ [34] and Multi-Modal
CelebA-HQ [42] are used. During the training process, the
input image size is 512 × 512. We use a multi-step degra-
dation function to attain extreme degradation, which can be
formulated as:

Ideg = Deg(Deg(Igt)), (9)

where Igt means Ground-Truth Image, Ideg means de-
graded Image, Deg is formulated in Eq. (10).

The Deg function comprises several operations to de-
grade an image. Firstly, a Gaussian blur kernel is applied
to create a blurred image, which is then down-sampled r
times. Next, Gaussian white noise nδ and JPEG compres-
sion with a quality factor of j are added to the image, and
a random color dithering process is applied. Finally, the
BSRGAN [48] degradation function [22, 44] is applied for
an additional two image degradation operations. The full
formula is expressed as follows:

Deg(Igt) = M(B(B(

{[
(Igt ⊗ kG)↓r + nδ

]
JPEGj

}
↑r

+ C)))

(10)
where kG represents the Gaussian blur kernel, r represents
the downsampling scale, n represents the added Gaussian
noise, JPEGj represents the JPEG compression quality fac-
tor, C represents the color jittering factor, and B denotes
BSRGAN [48] degradation. We randomly sample G, r, δ, j
from {0.1,10}, {4,5}, {20,40}, {30,50}. We implement
the M by first downsampling the image to a resolution of
{15,20} and then upsampling it back to 512 × 512, using
nearest neighbor sampling for both the downsampling and
upsampling operations.
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Testing Datasets: In order to test the effectiveness of
the proposed method that uses textual prior, a dataset con-
sisting of degraded images and corresponding captions is
used. The test dataset is CelebAMask-HQ Test, which
contains 6000 high-quality face images selected from the
CelebA [13] dataset. To generate the degraded images,
the same image degradation function used in the training
dataset is applied to the test dataset. The corresponding
textual tags are obtained by combining the text descrip-
tions from CelebAText-HQ [34] and Multi-Modal CelebA-
HQ [42] for each image. It is important to note that there is
no overlap between the test dataset and the training dataset
to prevent any data leakage.

Settings: In the proposed method, a U-net like frame-
work is utilized for image restoration, consisting of a seven-
layer down-sampling and seven-layer up-sampling. The up-
sampling layer includes two additional convolution layers
that serve as guiding biases for text information, while the
prior spatial information is extracted from the up-sample
feature map by two convolution layers. The employed gen-
erative model is StyleGAN2 [15], which takes advantage of
the rich face information of StyleGAN2 to generate high-
quality images. The parameters of the generative network
and DistilBERT are fixed while other parameters of the
proposed TFRGAN are trained. The batch size is set to
8, using the Adam [16] optimizer and the learning rate is
1e−4, which is halved every 10k iterations. In our exper-
iments, the loss weight is λrec = 0.1, λper = 1, λadv =
0.1, λPRL = 1 The experiments are conducted using four
NVIDIA RTX 3090 Ti GPUs.

Metrics: To evaluate the performance of the proposed
method, we will use non-reference and reference metrics.
The non-reference metrics include the Frechet Inception
Distance (FID) [10] and the Natural Image Quality Eval-
uator (NIQE) [24]. The reference metrics include the Peak
Signal-to-Noise Ratio (PSNR), the structural similarity in-
dex (SSIM) [40] and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [51].

4.2. Comparisons with State-of-the Art Methods

We have compared the proposed TFRGAN with sev-
eral current state-of-the-art blind face restoration methods:
VQFR [9], CodeFormer [52], RestoreFormer [41], and GF-
PGAN [38]. Officially released pre-trained models of these
methods are used to restore final results. In order to ob-
tain a more fair comparison, the RestoreFormer [41] and
GFPGAN [38] are fine-tuned on our training dataset. The
results are shown in Tab. 1, Fig. 1 and Fig. 4 with sym-
bol ∗. Due to the training code of CodeFormer [52] has not
been released, we just used officially released pre-trained
model for inference. It should be noted that although the
proposed method utilizes text information, the size of the
training set used is smaller than these of the state-of-the-art

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓ NIQE↓

Input 12.55 0.3829 274.8 0.7679 7.927
GFPGAN 13.58 0.4101 122.1 0.6228 3.016
GFPGAN* 14.90 0.4649 86.6 0.5262 4.322
CodeFormer 13.63 0.3717 102.3 0.6881 4.507
RestoreForm. 13.57 0.3417 152.7 0.6885 4.004
RestoreForm.* 15.12 0.4396 61.2 0.5277 3.509
VQFR 12.09 0.3021 148.1 0.7023 3.268

TFRGAN 15.36 0.4856 69.8 0.2943 4.351

GT ∞ 1 49.2 0 3.777

Table 1. The comparison between current state-of-the-art methods
and proposed approach. The best performance is shown in bold
and the second-best performance is shown by underline. The sym-
bol ∗ denotes that the model is fine-tuned in our training set.

methods, may causing an unfair comparison. Same degra-
dation in Eq. (10) are adopted to obtain the degraded test-
ing image, substantially reducing the image quality with-
out changing the resolution. The text captions for this data
are from CelebAText-HQ and Multi-Modal CelebA-HQ, re-
spectively. All models are tested in our testing dataset and
relevant metrics are calculated.

We present the quantitative comparison results in Tab.
1, where our proposed TFRGAN demonstrates consistently
competitive performance in comparison to state-of-the-art
methods. Notably, our model achieves the highest scores
in both the PSNR and SSIM metrics, indicating that our re-
stored results are most similar to the original image in terms
of pixel-level accuracy and structural similarity. These high
scores suggest that our model outperforms other methods
in terms of pixel-level quality. Furthermore, our model
achieves the best score in the LPIPS metric, which measures
consistency with human perception. The FID metric also
indicates that our model’s reconstruction results are highly
similar to the real image in terms of whole dataset. As for
NIQE metric, our model performs slightly inferior to other
competing methods. The visual comparisons are shown in
Fig. 1 and Fig. 4. The visual results demonstrate that our
proposed method outperforms other methods, particularly
in extremely degraded facial images.

4.3. Ablation Study

We have conducted ablation studies to verify the effec-
tiveness of the proposed text-image fusion block (TIFB) and
Text-Guided Block (TGB). The quantitative results in terms
of FID, NIQE, PSNR, SSIM, and LPIPS are shown in Tab.
2. In Tab. 2, the model without TIFB and TGB is denoted
as Baseline, the model with TIFB and without TGB is de-
noted as TIFB, and the model without TIFB and with TGB
is denoted as TGB. The visual results are shown in Fig. 5.

Text-Image Fusion Block: The comparison between
the model with and without the proposed text-image fusion
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Figure 5. Visual results of ablation experiments on the effectiveness of proposed TIFB module and the TGB module. The model without
TIFB and TGB is denoted as Baseline, the model with TIFB and without TGB is denoted as TIFB, the model without TIFB and with TGB
is denoted as TGB, and the model with TIFB and TGB is denoted as TFRGAN.

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓ NIQE↓

Baseline 15.03 0.4846 91.93 0.3020 4.471
With TIFB 15.29 0.4836 73.03 0.2962 4.381
With TGB 15.26 0.4826 72.21 0.2972 4.377
TFRGAN 15.36 0.4856 69.79 0.2943 4.3511

Table 2. Ablation results on CelebAMask-HQ. The best perfor-
mance is shown in bold.

block (TIFB) is presented in Tab. 2, which are denotes as
With TIFB and Baseline respectively. The results clearly in-
dicate that the proposed TIFB module leads to a significant
improvement in performance, as demonstrated by widely
used image quality metrics such as PSNR and FID. Ad-
ditionally, the visual comparison between the model with
and without the proposed text-image fusion block (TIFB) is
shown in Fig. 5 (c) and (d). Specifically, the restored images
by the model with TIFB exhibit lower distortion and higher
quality than those generated by the baseline model. For in-
stance, the bright color of the lips with traces of lipstick is
more pronounced in the images produced with TIFB.

Text-Guided Block: We conducted experiments to in-
vestigate the effect of proposed TGB module in the text
guided U-net decoder. The results are presented in Tab.
2, which are denoted as Baseline (without TGB) and With
TGB (with TGB) respectively. The results in Tab. 2 indi-
cate that integrating a TGB module leads to a significant
decrease in the FID metric. We obtained similar findings
when comparing TIFB (with TGB) and TFRGAN (without
TGB), as reported in Tab. 2. These results suggest that
incorporating additional textual information into the auxil-
iary network (U-net decoder) guides the generator to gener-
ate high-quality images. Moreover, we the visual compari-
son between the model with and without the proposed text-
guided block (TGB) is shown in Fig. 5 (c) and (e). These vi-
sual results further support the conclusion that the addition
of textual information to the generator improves its perfor-
mance. The proposed TFRGAN that integrates both TIFB
and TGB modules achieves the best performance quantita-
tively and qualitatively as shown in Fig. 5 and Tab. 2.

4.4. Limitations and Future Work

Although our proposed model has shown promising re-
sults in restoring extremely degraded facial images with
some text descriptions, we acknowledge that there are some
limitations of datasets used in this study. First, the size of
both our training and testing sets is relatively small, which
could potentially limit the performance of our model. To
address this limitation, we plan to expand our dataset by
including more diverse and representative facial images,
along with their corresponding text descriptions. Moreover,
the quality of the text annotations in our current dataset is
not optimal since it was built for other tasks, which could
negatively affect the performance of our model. To im-
prove the accuracy of our text information, we aim to in-
corporate higher-quality text annotations in future experi-
ments. Besides, we plan to further enhance the performance
of our model by utilizing other more advanced generative
networks as prior knowledge for restoring degraded facial
images using text information.

5. Conclusion
In this paper, we present the TFRGAN model, a novel

approach for blind face restoration that incorporates tex-
tual information to enhance the restoration of extremely de-
graded face images. To achieve this, we introduce two dis-
tinct modules that fully exploit textual information in fa-
cial image restoration. The first module involves mapping
the extracted textual features into text latent code, which is
then fused with the image latent code via the proposed text-
image fusion block. Additionally, we propose a text-guided
decoder that modulates the image feature with the extracted
text feature map, leading to more realistic outcomes. Our
extensive experiments demonstrate that TFRGAN outper-
forms existing methods of blind face restoration, producing
highly detailed results for severely degraded face images.
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