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Abstract

Recent advancements in neural network-based optical
flow estimation often come with prohibitively high compu-
tational and memory requirements, presenting challenges
in their model adaptation for mobile and low-power use
cases. In this paper, we introduce a lightweight low-latency
and memory-efficient model, Dynamic Iterative Field Trans-
forms (DIFT), for optical flow estimation feasible for edge
applications such as mobile, XR, micro UAVs, robotics and
cameras. DIFT follows an iterative refinement framework
leveraging variable resolution of cost volumes for corre-
spondence estimation. We propose a memory efficient so-
lution for cost volume processing to reduce peak memory.
Also, we present a novel dynamic coarse-to-fine cost vol-
ume processing during various stages of refinement to avoid
multiple levels of cost volumes. We demonstrate first real-
time cost-volume based optical flow DL architecture on
Snapdragon 8 Gen 1 HTP efficient mobile AI accelerator
with 32 inf/sec and 5.89 EPE (endpoint error) on KITTI
with manageable accuracy-performance tradeoffs.

1. Introduction

Optical flow is the task of estimating pixel-level corre-
spondences between video frames. In recent years, start-
ing with [3, 8], deep learning-based optical flow methods
have shown remarkable performance while demanding high
memory and substantial computation [10, 25, 27]. Such
computational requirements are not feasible for mobile or
other resource-constrained use cases.

Inspired by RAFT [25] there are follow up works focus-
ing on efficient approaches [26, 28], but primary focus of
these approaches is to improve performance with some re-
duction in overall compute. These approaches too employ
cost volumes, requiring significant computational resources
and are not directly applicable for mobile or low compute
deployment. Design principles of our approach in terms of
cost volume processing, number of iterations and resolution
of cost-volume can be extended to other modern architec-
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Figure 1. Accuracy (in endpoint error) vs. latency comparisons of
DIFT over feature dimensions on Snapdragon HTP Platform. We
observe that DIFT with a single-level cost volume at 1/16X with
feature dimension of 64 (f=64) out of 4 iterations achieves an on-
target throughput of 48 inf/sec with an EPE of 3.85, while DIFT
at 1/8X and f=128 out of 12 iterations achieves 2 inf/sec with 2.7
EPE. The RAFT [25] baseline is not presented in this figure, as
the original RAFT model cannot fit in the memory of commercial
smartphones without major modifications in the network model
architecture. More details can be found in Table 1.

tures which employ cost volumes.
Global vs Local Cost Volume Processing: If we re-

view various architectures for optical flow, most compet-
itive approaches leverage cost volumes or cross-attention.
We can classify approaches by whether they can capture
all-pairs similarity measure. If approaches have global cost
volumes, then it import to understand whether down-stream
cost volume processing is based on global operation such
as attention, 3D convolution or local operators such as grid-
sampling, 2D convolution.

RAFT [25] performs grid sampling only in the local
neighborhood of current estimate of optical flow, but pro-
cesses information in all-pairs cost-volume i.e, using spa-
tially varying local look-up operation across iterations.
Whereas approaches such as GMFlow with the global atten-
tion or Mobile Stereo [20] which applies 3D convolution for
stereo correspondence need to operate atomically on global
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cost volumes, thus requiring much higher computation and
peak memory space.

Therefore, we identify an unique opportunity for
magnitude-order complexity reduction in the type of local
processing particularly with RAFT. RAFT has significant
inductive biases inspired by traditional energy minimization
approaches and inspired follow-up approaches that leverage
transformers [27]. We perform additional modifications to
RAFT and analyse various design choices and compare to
our efficient version DIFT. This helps us in understanding
latency vs performance trade-off as illustrated in Figure 1
and detailed evaluation is discussed in 5.1.

Objective of this work is to adopt cost-volume based
complex DL architectures and understand critical design
choices for mobile use-cases. We introduce Dynamic It-
erative Field Transforms (DIFT) for optical flow or stereo
estimation, a novel memory and computationally efficient
architecture for real-time computation on extreme low com-
pute mobile platform which can run with less than 4MB
memory while preserving core inductive biases of recent
approaches like RAFT [25].

We identify that single level cost volume few iterations
give reasonable performance even for large motion (KITTI).
More detailed description of our method can be found in 3.
Our proposed architecture is evaluated on standard optical
flow benchmark datasets [1, 3, 5, 11, 15, 16].

In summary, inspired by RAFT we propose a novel
memory and computationally efficient optical flow archi-
tecture (DIFT) for mobile use cases with novel components
for better deployment.

• Introduce a novel coarse-to-fine approach (3.2) for cor-
relation lookup with varying cost-volume resolution
across iterations.

• Extend efficient correlation lookup approach (3.3)
from RAFT [25] to fit within less than 4MB.

• We introduce an efficient algorithm, bilinear shift,
(3.4) which achieves 8× sampling throughput with
arithmetic equivalent to the baseline bilinear sampling
for HW efficient warping.

• On target deployment and latency evaluation of DIFT,
on Snapdragon HTP platform with 8MB Tightly cou-
pled memory (TCM) but also evaluated on platform
with less than 4MB.

2. Related Work
Optical Flow: There has been lot of work deep learn-

ing based approaches for optical flow estimation, and an ac-
tive research area. FlowNet [3] introduced the first end-to-
end CNN based architecture for optical flow estimation, and
FlowNet2 [8] developed a stacked architecture that includes
a warping image with optical flow prediction. FlowNet2

shows improves performance by refining optical flow at
multiple stages, and such iterative refinement framework is
adopted later in [7, 25].

There are various approaches which leverage coarse-to-
fine techniques with image or feature pyramids. They com-
pute the large displacement at a coarse level and get re-
fining at the finer level. SpyNet [17] combined traditional
coarse-to-fine image pyramid methods with deep learning,
and PWC-Net [24] replaced the fixed image pyramid with
learnable feature pyramids. Additionally, PWC-Net con-
ducted the warping operation at the layer level in the net-
work. But these approaches process cost volume locally
once & lack capability of iterative refinement architectures.
In our work we introduce coarse-to-fine approach for cost
volume processing within iterative refinement scheme, we
will describe more in detail in Section 3

Recurrent All Pairs Field Transforms (RAFT) [25]
demonstrated significant performance improvement over
previous methods, and has influenced many subsequent re-
search [6, 9, 10, 27]. RAFT generates multi-scale and all-
pairs field 4D correlation volume from feature extraction
outputs and iteratively updates the optical flow estimates
through GRU with local grid sampling within 4D correla-
tion volume.

RAFT has demonstrated good generalization perfor-
mance and is more robust to adversarial attacks compared
to prior works [19] and has very good inductive biases
which is adopted by followup works. Motion is one of
fundamental geometric cues applicable in autonomous driv-
ing, robotics and many other safety critical applications.
Hence a robust and generalizable optical flow estimation
is useful not just for down-stream tasks, but also to de-
tect novel objects i.e., openset and Out-of-distribution de-
tection [18] complementing appearance based features, rep-
resentational learning and uncertainty measures based ap-
proaches [4, 12, 13].

Memory Efficiency Model: Flow1D [26] decomposed
2D correlation to 1D and DIP [28] proposed patchmatch
framework. However, they still require large memory com-
pared to their baseline RAFT algorithm. The Correlation
Volume of Flow1D requires O(HW (H + W )) memory,
which is less than RAFT O((H +W )2), but depending on
resolution, it requires still large memory and pre-computes
cost volume. This could also be an interesting direction to
consider but we do not consider such decomposition in this
work. DIP adopted previous warping method, and it re-
duced the memory to O(HW ). But, DIP computes the cor-
relation volume even at 1/4 downsampled resolution fea-
tures and has multiple computations to process cost vol-
umes for each update. With low resolution (448 × 1024),
DIP (1.56GB) requires about 3 times more memory com-
pared to RAFT (0.48GB).

Modern Optical Flow Architectures: Key components
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Figure 2. DIFT with Coarse-to-Fine Cost Volumes and Lookup Concatenation. CNN based encoder applied to images I1, I2 and
additional context Encoder applied to I1. Three different resolutions of cost volumes for various update stages are illustrated in orange,
yellow and light purple. Each update block(green) takes output of lookup operator at corresponding cost volume resolution zk, rk. And
overall flow is updated with element-wise sum across iterations as illustrated in bottom of figure. For visual clarity did not include Look-Up
Concatenation in the architecture diagram.

of modern optical flow architectures such as RAFT include
feature extraction, cost volumes or cross-attention i.e., to
use some similarity metric, iterative or multiple stages of
flow refinement informed by cost volumes or cross atten-
tion, and finally coarse to fine spatial information process-
ing either having multi-scale features and/or multi-scale
cost volumes, and having coarse to fine cost volume is po-
tentially useful for capturing large motion.

There are many later works [6, 27] which adopt core
design principles from RAFT by leveraging attention &
transformers while adopting similar design in terms of
cost volume or cross attention, (iterative) refinement of
flow/correspondence estimation informed by cost volume.

Improving Training Pipeline and Data: Recent ap-
proaches such as Autoflow [23] and [22], which improve
training strategy, or works such as [10] which leverage
augmentations to impose consistency and improve perfor-
mance, are orthogonal to our work. Our architecture can
also leverage such training techniques, but we do not con-
sider such techniques for this work.

3. DIFT

We introduce DIFT following core design principles of
RAFT, an iterative refinement network which consists of
a feature extractor, cost volume based iterative refinement
scheme with novel components. DIFT adopts a single level
of cost volume with potentially varying resolutions. The
overall architecture is illustrated in Fig 2, which includes
our dynamic coarse to fine lookup, and illustration of sam-
ple local grid for a region. For DIFT, we do not pre-compute

or compute all-pairs cost volume for each update step but
can leverage all-pairs information across updates.

Now lets review core components of RAFT and ad-
ditional modifications for DIFT, we adopt notation from
RAFT paper.

3.1. Architecture Overview

Feature Extraction: We adopt a simple convolutional
feature encoder gθ which is applied on I1 and I2. Output
dimension of gθ is RH/K×W/K×D, where ‘K’ is the scale
of down-sampling 16 or 8 in our experiments and ‘D’ is the
feature dimension, we try D = 64, 128, 256 in our experi-
mental evaluation. Similar to RAFT we also have a separate
context encoder applied on base image and output of con-
text encoder is passed to update block. Unlike RAFT for
final version we choose K = 16 to minimize peak memory
and overall latency.

Cost Volume Computation & Lookup: Given images
I1, I2 and image features gθ(I1), gθ(I2) then all-pairs cor-
relation or cost volume C(gθ(I1), gθ(I2)) is computed by
applying dot product where each element has its value de-
fined by Cijkl =

∑
h gθ(I1)ijh · gθ(I2)klh.

Let LC be the correlation lookup, which generates a cor-
relation feature map, is obtained based on current estimate
of flow fk = (f1, f2) denote flow in x,y directions, respec-
tively. Then for each pixel x = (u, v) in I1 to obtain cor-
respondence in I2, we define a local neighborhood region
around x defined by N (x′)r = {x′+dx|dx ∈ Z2, ||dx||1 ≤
r}.

We consider different resolutions of cost volumes
C1, C2, C3 obtained by pooling on feature maps for corre-
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lation lookup, or pooling along last two dimension in case of
RAFT-small as practiced in [25]. For coarse to fine lookup,
for each update step we only adopt one level of cost volume
Ci and corresponding lookup LCi

.
Update Block: Our default update block is adopted

from RAFT, lets review components of update block. Each
update block takes current flow estimate fk, correlation
lookup output, context encoder features. Update block con-
sists of few pre-processing convolutional layers for process-
ing current flow estimate, correlation features.

Let zk, rk be features obtained by after processing cur-
rent flow fk and correlation features, respectively. Then
based on zk, rk and additional input from context encoder
and previous hidden state are input to the update block. For
lookup concatenation we do not just pass zk, rk but also
zk−1, zk−2 and rk−1, rk−2 also as inputs to update block.

3.2. Coarse-to-Fine Lookup

For DIFT, we adopt a single level cost volume per-
iteration and we choose 1/16 as resolution for cost-volume
(CV). To reduce overall latency while aiming to cap-
ture large motion, we introduce Coarse-to-fine strategy for
choosing resolution of cost volume to have a varying effec-
tive receptive field across iterations. We achieve this by
adopting a coarser resolution for CV for initial iterations,
with an intuition that these initial steps should provide good
initialization for further refinement. For later iterations, in-
crease the resolution of cost volume so that now the refine-
ment can focus on finer correspondence. And if needed,
we can also have one/two iterations of coarser cost volume
resolution after finer refinements to capture if there are any
regions with larger displacements.

To dynamically vary cost volume, we perform average
pooling on the encoder’s feature maps to modify the res-
olution of cost volume. Figure 2, demonstrates varying
cost volume resolutions across iterations. We can also con-
sider a method where we vary the lookup radius and poten-
tially consider irregular sampling with the same cost vol-
ume resolution across updates. But such irregular sampling
or larger neighborhood sampling is inefficient on hardware,
and hence we do not investigate this approach.

Weight Sharing: As we have varying receptive fields
w.r.t cost volume, we do not share parameters of update
block across all iterations, but weight sharing is still present
for update blocks which process same resolution of cost vol-
ume.

3.2.1 Look-Up Concatenation

Usually update block within RAFT only has local neighbor-
hood information within cost volume, but GMFlow [27] and
other works have shown performance improves with global
processing of cost volume, but global processing would re-

quire significant memory. To retain more information than
local neighborhood information captured in lookup opera-
tion. We concatenate the output of lookup operation, previ-
ous flow estimate (could also be equivalent to position en-
coding) over past few iterations as additional input to update
block.

For simplicity we did not include concatenation part in 2
but darker square block illustrates additional region of cor-
relation volume which can be given as additional input cap-
turing more information than local look-up with less com-
putation & memory.

Let LCt
be the lookup operator at iteration ‘k’ which

returns correlation features and zk, rk based current esti-
mate of flow fk. And similarly let zk−1, rk−1 are obtained
by previous lookup operations LCk−1

and zk−2, rk−2 from
LCk−2

. When we adopt concatenation within lookup our
update block does not just take zk, rk but also zk−1, rk−1 &
zk−2, rk−2.

3.3. Just-in-Time Construction & Lookup

Extending a computation alternative that samples for
each pixel only by the required feature grids based on cor-
responding neighborhood as discussed in RAFT [25], we
further decompose the linear-complexity construction and
look-up operations in our just-in-time (JiT) approach in or-
der to achieve low peak memory against the tightly-coupled
memory (TCM) (4MB) constraints on typical smartphones.

Even during such on-demand lookups we technically
need to construct a 3D cost volume based on a fix-sized
look-up radius (R) and such approach would need O(N ×
2R) memory complexity with N = (H/16×W/16), which
may not in practice be feasible to fit in a memory smaller
than 2MB.

Specifically, to ensure a system of balanced pipelining,
which involves memory read/write accesses and neural net-
work processing on our target hardware, we optimize pa-
rameters including Nslice i.e., the number of tiles in gθ(I1)
decomposition and R for the radius of look-up range in
either direction for each pixel. DIFT with the JiT design
successfully achieves a peak memory at only 2MB with
{((H/16 × W/16) × (2R))/Nslice}. In the case of Sin-
tel, we adopt Nslice = 56 for DIFT at 1/16 cost volume
resolution.

Instead of processing entire feature map gθ(I1) at once,
we process it few pixels at a time in a sliding window
fashion and based on neighborhood N (x′)r ,retrieve corre-
sponding features from gθ(I2) to construct correlation vol-
ume for current slice, and then aggregating to generate over-
all correlation volume for current iteration. In our imple-
mentation we decompose real-valued and sub-pixel part of
current flow estimate, to first use real-valued neighborhood
to construct cost volume in a sliding window approach and
later adjust for sub-pixel part using bilinear shift approach
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Algorithm 1 Bilinear Shift
Let input tensor to bilinear shift be T
Let Tx0, Tx1 be sliced tensors in width (X) axis
Let Ty0, Ty1 be sliced tensors in height (Y ) axis
Let lTx

, lTy
be length of Tensors in X,Y axis

Tx0 = T [0 : lTx
− 2] and Tx1 = T [1 : lTx

− 1]
Tx0 = (1−∆x)× Tx0

Tx1 = (∆x)× Tx1

T2 = Tx0 + Tx1

Ty0 = T2[0 : lTy
− 2] and Ty1 = T2[1 : lTy

− 1]
Ty0 = (1−∆y)× Ty0

Ty1 = (∆y)× Ty1

Tout = Ty0 + Ty1

return Tout

discussed in next section.

3.4. Bilinear Shift

Bilinear Sampling is used within each iteration of GRU
update to perform warping based on current estimate of
flow. Bilinear sampling involves a series of pointwise grid
operations followed by series of bilinear interpolation op-
erations based on current estimate of flow. This operation
is not efficient on hardware as it cannot leverage vector-
ized execution and hence adds significant bottleneck to la-
tency. To alleviate this problem, we propose a mathemati-
cally equivalent Bilinear shift which replaces grid sampling
with vectorizable element-wise operators, and we assume
grid input is uniform which can work for dense optical flow
estimation.

Based on a shift along x and y dimension i.e., ∆x,∆y,
the grid sample operation can be decomposed into a bi-
linear operation associated with a 2D shift, and such op-
erations can be mapped to vectorizable elementwise op-
erators on hardware, and can also allow flexibility w.r.t
compilation/run-time as it can allow further decomposition
into smaller operators/tiling.

Algorithm 1 describes overall Bilinear shift operation
given input tensor T , the x-shift (∆x) and y-shift (∆y).
For bilinear shift, first input tensor T is split into two equal
parts indexed by one pixel offset along x direction and
then interpolated using x-shift ∆x and (1 −∆x). Then an
analogous operation is repeated along y direction.
We compare bilinear shift with baseline grid sampling on
our hardware simulation platform to analyze latency. For
a given input dimension, bilinear shift has a throughput of
12277.3inf/s (81.45µs) whereas grid sample has throughput
of 1483.2 inf/sec (674.22µs) i.e., 8× improvement in
throughput (inf/sec)

4. Experimental Setup
4.1. Datasets

We evaluate our approach on common optical flow
benchmarks, Sintel (S) [1], KITTI (K) [5, 16]. For eval-
uation on Sintel we use checkpoint pre-trained on on Fly-
ingChairs (C) [3] + Flying Things(T) [15], following a
common protocol. And for KITTI evaluation, we start with
pre-train on (C+T) and fineune (T) checkpoint additionally
on Virtual KITTI2 (VK) [2].

4.2. Architecture Details

We build our DIFT model on top of the RAFT [25] base-
line 1 along with its original hyperparameters. We adopt
RAFT-small CNN architecture for Image encoders as start-
ing point, we add one additional convolutional layer to fur-
ther down-sample input to 1/16x image resolution for cost
volume processing. We choose lookup radius to be ‘3’ for
all our experiments based to maximize throughput on Snap-
dragon HTP hardware. And we don’t adopt convex up-
sampling.

4.2.1 Weight Sharing of Update Block

For baseline single level cost volume variant of DIFT we
adopt update block of RAFT-small and have shared weights
across iterations i.e., we use a convolutional GRU based on
GRU Cell. But for coarse to fine variant, we observe that
weight sharing across iterations actually performs worse
and we share weights dependent on resolution of cost vol-
ume across iterations.

For concatenation of lookup output, we take output of
convolutional pre-processing layers before GRU cell within
update block from previous iterations as additional infor-
mation so if required GRU block can leverage such addi-
tional context. Even though we vary the cost-volume reso-
lution across iterations but as the reference optical flow and
cost-volume resolution is fixed and only the relative fidelity
of each update operation changes the training is stable and
convergence is fast on-par with RAFT compared to previ-
ous DL based approaches such as PWC-Net or FlowNet2.

4.3. Implementation Details

We pre-train DIFT for 100k iterations on FlyingChairs
(C) [3] for 100k steps followed by training on FlyingTh-
ings3D (T) [15] initialized with previous checkpoint. We
adopt batchsize of 12 with AdamW [14] optimizer for both
the datasets. When trained on Virtual KITTI [2] we adopt
RAFT fine-tuning hyper-parameters for KITTI. We do not
perform any finetuning on Sintel or KITTI and both the
datasets are only used for evaluation. Also, to have a fair

1https://github.com/princeton-vl/RAFT
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Table 1. Analysis for RAFT & DIFT on Levels of cost volume, Cost volume resolution, feature encoder dimension, inference time
iterations and corresponding latency. (LCV : Cost Volume Levels, RCV : Cost Volume Resolution (Downsampling), #F : Encoder Feature
Dimension, #I: Test iterations and #radius: lookup radius). C+T represents model trained on Flyingchairs and FlyingThings & VK
indicates fine-tuned on Virtual KITTI for KITTI evaluation only. In below table best latency-aware version is highlighted with bold, overall
best performing DIFT model is denoted via underline.

RAFT DIFT (Ours)

LCV RCV #F #I
Sintel (train-EPE) ↓ KITTI (Train) On-target Sintel (train-EPE) ↓ KITTI (Train) On-target
Clean Final EPE↓ F1-all ↓ (ms (Inf/s)) Clean Final EPE↓ F1-all ↓ ms ↓ (Inf/s) ↑

Cost Volume Level (C+T)
4

1
16x 128 12

2.65 3.94 11.87 38.02

N/A

N/A N/A N/A N/A N/A
3 N/A N/A N/A N/A 3.20 4.17 12.54 43.07 496.7 (2)
2 2.67 3.81 11.23 38.14 3.07 4.18 12.67 41.15 248.3 (4)
1 2.69 3.76 10.63 38.38 3.01 4.32 12.21 42.06 124.9 (8)

Cost Volume Resolution (C+T)

1
1
8x 128 12 2.34 3.42 9.06 28.20 N/A 2.70 3.93 10.33 31.47 498.7 (2)
1

16x 2.69 3.76 10.63 38.38 3.01 4.32 12.21 42.06 124.9 (8)
Feature Dimension (C+T)

1 1
16x

128 12 2.69 3.76 10.63 38.38 N/A 3.03 4.32 12.21 42.06 123.2 (8)
64 2.67 3.81 10.52 37.35 3.11 4.19 12.87 43.83 62.5 (16)

Number of Iterations (C+T/VK)

1 1
16x 128

4 3.31 4.41 6.55 24.76 3.88 5.08 7.25 30.06 41.7 (24)
6 2.95 4.03 5.91 22.29 3.38 4.63 6.45 26.69 62.5 (16)
12 2.68 3.76 5.11 24.33 3.01 4.32 5.67 24.33 125 (8)

Proposed Method (Coarse2Fine) (C+T/VK)

1 1
16x

128
4 3.61 4.71 6.66 30.41 42.1 (24)
6 3.38 4.44 5.83 28.05 62.9 (16)
12 3.09 4.13 5.56 25.76 126.3 (8)

1 64 6 3.44 4.57 5.89 26.81 32.8 (32)
Proposed Method (Coarse2Fine + Concat) (C+T/VK)

1 1
16x 128/

4 3.64 4.91 6.55 31.1 45.45 (22)
6 3.54 4.62 6.35 30.40 71.4 (14)
12 3.04 4.15 5.51 25.76 142.85 (6)

comparision with DIFT we also adopt a maximum of 12 it-
erations/GRU Update steps for RAFT-small. But we also
evaluate both DIFT & RAFT-small variants after 4,6 and 12
updates for various ablation study as latency is a key con-
straint for mobile deployment.

5. Results
Primary goal of our work is to obtain a good real-

time optical flow, stereo or broadly correspondence estima-
tion architectures with good inductive biases, generalization
ability for mobile platforms. In this section we want to un-
derstand what are key bottlenecks & critical design choices
in modern cost-volume based DL based architectures such
as [25] for mobile or low compute settings. We analyse
key design choices as discussed in 5.1 with in framework
inspired by RAFT [25] to understand what matters in corre-
spondence estimation for mobile/low-compute settings.

5.1. Ablation Study

To understand performance vs latency trade-off. In sec-
tion 3, we discussed our architecture and motivation for
our design choices. Here we present results for representa-
tive combinations of design choices and provide guideline
recommendation for architecture exploration for correspon-
dence estimation.

Coare-to-Fine Lookup: To understand effectiveness of
our proposed approach we can compare Coare-to-fine vari-
ants with fixed resolution of cost volume across iterations.
From Table 1 we can observe that both for fewer iteration
setting coarse-to-fine lookup gives significant performance
boost. At 4 iterations, our approach improves performance
form 7.25 → 6.66 EPE i.e., 0.59 boost in EPE over baseline
corresponding DIFT. Similarly Delta 0.62 boost in EPE for
6 iterations with final EPE of 5.83 only 0.16 EPE less than
12 iteration version of DIFT. In addition to Coarse-to-fine
approach lookup-concatenation further improves the perfor-
mance by 0.11 EPE for 4 iteration setting.

Overall we observe that our Coarse-to-fine approach
consistently improves performance without additional in-
crease in latency and is especially effective for large mo-
tion setting such as KITTI compared to Sintel, where even
a single level cost volume would allow to provide good ini-
tialization

Number of Levels of Cost Volume: We observe that
though additional levels of cost-volumes does not necessar-
ily improve performance significantly but adds significant
cost to latency. From table 1 we can observe that when
go from 1 level cost-volume to 3-levels in case of DIFT,
EPE actually gets from 3.01 to 3.20 in case of sintel-clean,
similarly it worsens in case of KITTI. But performance im-
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proves marginally in case of Sintel Final for DIFT and also
in case of RAFT-small variants. But as the performance of
single-level cost volume is good-enough it might be worth-
while to investigate such approaches towards efficient solu-
tions.

Cost Volume Resolution: In our experiments we find
that resolution of cost-volume is one of significant design
choices w.r.t performance. When we go from H/8 ×W/8
to H/16×W/16 we can observe that EPE drops from 3.93
to 4.32 i.e., a 0.39 loss of EPE on sintel Final in case of
DIFT. But as the latency is also reduced by 4x, we choose
to pursue 1/16x resolution.

Effect of Iterations: Based on Table 1 we can observe
that though increasing iterations improve performance, rela-
tive improvement is marginal compared to additional com-
pute cost from 5.83 to 5.56 EPE for double the latency in
case of KITTI.

Feature Dimension: In our experiments we find that re-
ducing feature dimension to as low as 64 still gives reason-
ably good performance. This helps us get to close to real-
time solutions by reducing the feature dimension.

Overall Performance: Compared a best-performing
DIFT with 12 iterations and one H/8 × W/8 cost-volume
resolution we get a 16x boost in latency with relatively min-
imal performance drop 2.70 (2inf/sec) → 3.46 (32 inf/sec)
EPE on sintel clean where we adopt a coarse-to-fine variant
of DIFT with 6 iterations and feature-dimension/number of
encoder channels is 64. In case of KITTI we can get 5.89
EPE with real-time latency of 32 inf/sec.

To the best of our knowledge this is first real-time demon-
stration of cost-volume based deep learning solution for ex-
treme low-compute mobile platforms. From 3 we can ob-
serve that DIFT output is on-par with RAFT-small while
being significantly faster.

5.2. On-target Evaluation

In our experiments, we also evaluate DIFT on Snap-
dragon 8Gen 1 HTP (power efficient mobile AI accelera-
tor for Neural Networks) to understand latency of differ-
ent design choices. We have developed and optimized a
deployment pipeline Snapdragon® 8 Gen 1 HTP acceler-
ator platform, to leverage maximum out of hardware for
this model. We adopt INT8 quantization (W8A8) based
on AIMET quantization toolkit [21] and QNN-SDK 2from
Qualcomm® AI Stack. 3

Depending on target platform few details might influence
different final performance, but our experiments and obser-
vations should be informative and translate to other plat-
forms.

2https : / / developer . qualcomm . com / software /
qualcomm-ai-stack

3Snapdragon and Qualcomm branded products are products of Qual-
comm Technologies, Inc. and/or its subsidiaries.

5.3. Analysis

From Table 1, we can observe that latency is largely de-
pendent on size/memory of cost volume, as the bottleneck is
largely w.r.t memory access for such large tensors (cost vol-
umes) after optimizing inference pipeline. Based on these
on-target latency evaluations, we can infer following depen-
dencies w.r.t key design choices

• Latency is proportional to levels of Cost Volume as the
number of lookups we perform is dependent on num-
ber of levels of cost-volume per GRU Update.

• Latency is proportional on maximum resolution of cost
volume as this determines the memory transfer and the
also GMACs within lookup.

• Latency is proportional to number of iterations , as this
also effects total number of lookups per inference.

• Latency is proportional to feature/channel dimension
as this would also effect memory size of cost volume.

In summary, we observe that latency is proportional to
number of lookup operations and memory requirement of
each lookup, as this is inherently a memory bounded opera-
tion and hence latency is significantly determined by peak-
memory of hardware module and cost-volume size.

If there is an efficient way to decompose cost-volume
or cross-attention construction and processing more broadly
then that would put less constraints on our network architec-
tures.

We can observe from the Table 1 that, as iterations de-
crease from 12 → 4 throughput triples from 8 inf/sec → 24
inf/sec, or latency drops from 126.3ms to 42.1ms. Reduc-
ing feature dimension from 128 to 64 at 4 iterations further
improves throughput from 24 inf/sec to 48inf/sec or 20.8ms
latency.

5.3.1 Peak Memory

In this section, we discuss the effect of peak memory on
overall latency, as determined by number of lookups which
is dependent on size of cost volume and number of levels of
cost-volumes for each GRU iteration.

From table 2 we can observe that 1/8x variant of RAFT
needs peak memory of 56.3 MB which is a significant chal-
lenge for mobile platforms as they have very limited TCM
memory, often less than 10MB. As further decomposition
of JiT in DIFT allows to decompose overall operation, if
needed DIFT supports higher resolution of cost-volume.

In case of Sintel, even after 16x down-sampling instead
of 8x (for efficient latency), and radius = 3, we will have
440 x 1024 original image down-sampled, then effective
cost volume including padding would result to 28 × 64 ×
(2× (radius = 3 + 1))2 × 128 = 28× 64× 64× 128 =
14, 680, 064/1024 = 14.3MB and similarly at 8x and
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Ground Truth RAFT-Small (Original) RAFT-Small* DIFT (Ours)

Figure 3. In this figure we compare optical Flow output on a Sintel test-case comparing DIFT to RAFT Variants. RAFT-small is default
version with 4 level cost volume, 24 GRU iterations and 1/8× cost-volume resolution. Where is DIFT and RAFT-small* are single-level
cost-volume versions with 6 GRU iterations.

Table 2. Peak Memory Comparison DIFT & RAFT

Model Down
sampling

Peak
Memory LCV Latency for

12 Iterations
DIFT 16x < 1MB 1 124.9 ms
DIFT 16x < 1MB 4 501.3 ms
RAFT 16x 14.3MB 4 N/A
DIFT 8x < 1MB 1 499.2 ms
DIFT 8x < 1MB 4 2010.4 ms
RAFT 8x 56.3MB 4 N/A

radius = 3 its 56.32MB. For DIFT with 4 levels of cost
volume (16x), which is similar to RAFT it would take ap-
proximately ( 124.9×4 = 499.6ms) for one iteration which
is equivalent to DIFT at 8x down-sampling but less effec-
tive.

Without further decomposition of cost-volume construc-
tion and processing as discussed earlier we cannot run
RAFT on-target because of peak-memory constraints i.e.,
as mobile smartphones have limited (Tightly coupled Mem-
ory), often less than 10MB. Instead without decomposition
if we try running RAFT on-target based on DDR-memory
bound inference we observe that latency of single iteration
is less than 0.2 inf/sec. So we do not report latency w.r.t
RAFT in our experiments.

We also did not run alternate solutions for optical flow
on Snapdragon HTP, because unlike bench-marking on
NVIDIA GPUs with CUDA, these mobile platforms ML
deployment workflows are still under-development and usu-
ally does not support all operations on hardware. Typically
such operations have to be identified, substituted and end
to end model also might need additional optimizations w.r.t
effective usage of hardware for a fair Comparison. As the
goal of this study is predominantly to understand to what
extent we can adopt cost-volume based solutions for cor-
respondence estimation for mobile, and understand key de-
sign choices we start with RAFT and similar intuitions can
be extended to various recent follow up works with cost-
volumes or cross-attentions, iterative reasoning, etc.

5.4. Recommendations for Architecture Design:

• As Cost-volume computations are memory-bound,
adopt architectures with local cost-volume processing

so that overall operation can be decomposed for mo-
bile platforms.

• For most settings single-level or coarse-to-fine lookup
seem to work with very minimal performance drop
with significant boost in latency.

• Optimize overall size of cost-volumes by choosing ap-
propriately low resolution of cost-volume at-least for
initial iterations to save memory.

• Given a choice between number of levels of cost-
volumes vs maximum resolution of cost-volume, its
better to adopt a maximum resolution one with coarse-
to-fine lookup strategy.

• Reduce Feature dimension/number of output channels
in encoder as much as possible as for many settings
within such iterative refinement architectures.

• If required increase encoder complexity as it only
needs to run-once and doesn’t introduce significant
bottlenecks w.r.t latency.

6. Conclusion
In this paper, we have introduced DIFT, a computation

and memory efficient real-time optical flow algorithm with
competitive performance and good inductive biases . To the
best of our knowledge, this is first work to adopt and per-
form various on-target analysis of such complex cost vol-
ume based refinement architectures for mobile use-cases.
Based on our experiments, we observe that DIFT is feasi-
ble for real-time mobile solutions and shows good perfor-
mance. Nevertheless, any lightweight design choices come
at the cost of an expected performance drop. This means,
there is a scope for further research to improve correspon-
dence estimation for mobile use-cases as this is a fundamen-
tal problem across various vision problems.
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