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Abstract

Recently, real-time video matting has received growing
attention from academia and industry as a new research
area on the rise. However, most current state-of-the-art
solutions are trained and evaluated on private or inac-
cessible matting datasets, which makes it hard for future
researchers to conduct fair comparisons among different
models. Moreover, most methods are built upon image mat-
ting models with various tricks across frames to boost mat-
ting quality. For real-time video matting models, simple
and effective temporal modeling methods must be explored
better. As a result, we first composite a new video mat-
ting benchmark that is purely based on publicly accessi-
ble datasets for training and testing. We further empiri-
cally investigate various temporal modeling methods and
compare their performance in matting accuracy and infer-
ence speed. We name our method as VideoMatt: a simple
and strong real-time video matting baseline model based
on a newly-composited accessible benchmark. Extensive
experiments show that our VideoMatt variants reach bet-
ter trade-offs between inference speed and matting quality
compared with other state-of-the-art methods for real-time
trimap-free video matting. We release the VideoMatt bench-
mark at https://drive.google.com/file/d/
10T4KHeGW3YrtBsl_ 7zovdCwCAofQ_GIj/view?
usp=sharing.

1. Introduction

Video matting is the task of estimating the alpha matte
for each frame of a given video sequence input. It has
received considerable attention from both industry and
academia in recent years. Given a video sequence I =
{I, I, ..., IT}, each frame I; can be viewed as a composi-
tion of unknown foreground image F; and background im-
age B; [38] with coefficient map alpha matte «; € [0, 1]

L =aF+(1—w)B; (D

Since the goal of video matting is to predict alpha mat-
tes « = {aq, ag, ..., ar}, it becomes an under-constrained
problem with only 3 equations from Eq. | and 7 unknowns
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Figure 1. Comparisons between state-of-the-art trimap-free real-
time video matting methods and our VideoMatt variants in terms
of MSE (lower is better) and FPS (higher is better). MSE (Mean
Squared Error) is used for evaluating the accuracy of alpha matte
predictions. All models are tested under LR (low resolution) in-
puts in a single RTX 2080 GPU and more details are presented in
Table 2. VideoMatt variants show better trade-offs between infer-
ence speed and matting quality.

from «;, F;, B; for each pixel. Previous solutions expect
users to provide a trimap, which is a segmentation map of
foreground, background and unknown regions of images,
to add constraints and estimate alpha matte through itera-
tive nonlinear optimization [26]. Deep learning based ap-
proaches [29, 40-42, 44] for image matting take inputs of
images with corresponding trimaps and estimate alpha mat-
tes in an end-to-end manner through deep convolutional
neural networks, which outperform tranditional solutions
by a large margin. When it comes to video matting solu-
tions, recent deep learning based methods like DVM [37]
and TAM [43] add different attention-based modules for
temporal aggregation. Since adding trimap annotations
to video sequences is expensive and inconvenient, recent
works mainly explore trimap-free solutions. BGM [30]
and BGMv2 [30] adds background images at first frame
and provides efficient solutions under high-resolution in-
puts. MODNet [24] uses self-supervised strategy for post-
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processing to get more smoothing outputs. RVM [31] fur-
ther involves segmentation data for training and make the
network robust to real-world scenes.

However, for current trimap-free video matting meth-
ods, we notice that a fair and accessible video matting
benchmark is missing. MODNet [24] proposes PPM-100
to evaluate different matting methods while the test set
of this benchmark is image-based and the training set is
not released. BGMv2 [30] proposes video matting dataset
VideoMatte240K which only includes foregrounds and al-
pha mattes. RVM [3 1] further adds video backgrounds from
DVM [37] to composite training set, but image backgrounds
are crawled from the internet and not publicly available.
Meanwhile, we also observe that simple and effective tem-
poral modeling techniques are not well-explored for trimap-
free video matting models. DVM [37] and TAM [43] prove
that trimap-based video matting models can benefit from
temporal modeling based on attention mechanism. How-
ever, for trimap-free models, selecting a proper temporal
modeling method to boost matting quality while maintain-
ing real-time inference speed is still an open question to the
community.

As a result, we first composite a new video mat-
ting benchmark with VideoMatte240K [30] as video fore-
grounds, DVM [37] as video backgrounds and BG20K [28]
as image backgrounds, respectively. These datasets are all
publicly accessible and can be used to evaluate different
video matting methods under a fair comparison. Then, we
propose VideoMatt: a simple and strong real-time trimap-
free video matting baseline which is built upon this newly-
composited benchmark. It is based on U-Net [35] design
that has an encoder for feature extraction and a decoder to
finish alpha matte prediction. Furthermore, we empirically
investigate different temporal modeling methods based on
VideoMatt in terms of alpha matte quality and build a se-
ries of VideoMatt-T models. Experiments show that our
VideoMatt baseline outperforms other trimap-free solutions
by the trade-off between the accuracy of alpha matte pre-
diction and inference speed as shown in Figure 1.

Our contributions can be summarized as follows:

* We composite a new video matting benchmark that is
purely based on publicly accessible datasets for com-
paring different models.

* We propose a simple and strong baseline VideoMatt
on this newly-composited video matting benchmark
and empirically evaluate different temporal modeling
methods based on VideoMatt.

e Our VideoMatt variants reach better trade-offs be-
tween inference speed and matting quality compared
with other state-of-the-art solutions.

2. Related Works
2.1. Image Matting

Previous image matting solutions started from color
sampling-based methods, which sample pixels nearby fore-
grounds and backgrounds to group alpha maps in the transi-
tion region [9, | 1,13, 15,23]. Then, affinity-based methods,
which estimate the alpha matte from unknown to known
ones [1-3, 6, 14] that are more robust when dealing with
complex images. Traditional methods mainly focus on low-
level features to estimate alpha maps of images. In the
deep-learning era, DIM [41] proposed an encoder-decoder
network to estimate alpha matting in an end-to-end man-
ner with trimaps. DeepMattePropNet [40] further involves
encoder-decoder design within propagation-based matting.
LDN [44] proposes a mobile design for fast deep mat-
ting and GCA [29] extends the idea to natural image mat-
ting with guided attention. Some other works also explore
trimap-free image matting without the need for extra in-
puts of trimaps. SHM [5] uses segmentation networks to
solve alpha matting with single image input. MRN and
QUN [32] were proposed to augment human matting qual-
ity with coarse annotations. HDMatt [42] employs cross-
patch context module for high-resolution image matting.
HAttMatting [33] uses spatial and channel-wise attention
to integrate appearance cues.

2.2. Video Matting

Video matting is a relatively new track compared with
image matting since temporal information can be intro-
duced to augment matting quality. Similar to image mat-
ting, trimap-based video matting methods DVM [37] in-
volve spatio-temporal feature aggregation module for tem-
poral feature fusion and alignment. TAM [43] also uses at-
tention on adjunct frames for feature aggregation. Trimap-
free method background matting [36], which takes an input
of the background image as the first frame and it provides
an important cue for predicting the alpha matte. Follow-
ing work BGMv2 [30] provides solutions to high-resolution
real-time video matting. MODNet [24] only takes images
as inputs and uses a self-supervised strategy for modeling
temporal consistency. RVM [31] further trains the video
matting model on segmentation data and make the matting
quality robust on real-world data. Vision transformer mod-
els [7,8,21,22] adopt full transformers into image seg-
mentation tasks, and VMFormer [27] also leverage a vision
transformer as the solution to trimap-free video matting and
achieves competitive performance.

3. Accessible Benchmark Composition

In this section, we mainly introduce how we con-
struct the new accessible video matting benchmark by pub-
licly available foreground video matting dataset Video-
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Figure 2. Selected video clips from the composited test set. Please zoom in for details.

Matte240K [30], image background dataset BG20K [28]
and video background dataset DVM [37]. We first give a
review of these three datasets about the data statistics and
then introduce how we composite the training and testing
data based on them separately.

3.1. Dataset Overview

VideoMatte240K [30]: it collects 484 high-resolution
green screen videos including annotations of alpha matte
and foregrounds. 384 of them are in 4k resolution and
the rest 100 are in HD resolution. The authors split the
videos by 479/5 as training and test sets for evaluation.
BG20K [28]: it contains 20000 high-resolution clean back-
ground images with no salient objects included. The aver-
age solution of BG20K is 1180 x 1539. The background
scenes include city, mountain, urban, and other outdoor en-
vironments. The authors split it by 15000/5000 as train-
ing and test sets. DVM [37]: it collects over 6500 free
video clips of natural scenarios, city views, and indoor en-
vironments. Most of them are HD videos and a few are 4k
videos. The authors treat 6400 video clips as a training set
and 248 video clips as a test set. Compared to other datasets,
it mainly provides rapidly-moving objects for challenging
video matting evaluation. All three datasets are publicly ac-
cessible for compositing a new video matting benchmark
with the training and test set.

3.2. Composited Benchmark

Training Set To composite the training set, we first di-
vide VideoMatte240K following the 479/5 split and further
move 4 video clips from the training set to the validation

set. We further separate the BG20K into a 15000/500/4500
for training, validation, and test set. Then, DVM is
added and split into 3080/37/162 video sequences follow-
ing RVM [31]. VideoMatte240K, BG20K and DVM pro-
vide video foreground sequences with corresponding al-
pha matte sequences, image background sequences and
video background sequences, respectively. During train-
ing, the model randomly picks up a video foreground se-
quence F' = {Fy,Fs,..., Fr} with length T and alpha
matte & = {1, g, ..., ar} from the training set of Video-
Matte240K, then an image or a video background sequence
B = {B, Bs,..., By} is randomly chosen for composi-
tion. Then, a composited I = {I1,Is,...,I7} is used for
training with ground truth « = {1, a, ..., ar}. For each
composited video clip I, we also provide corresponding
foreground F' = {Fy, Fy, ..., Fr} and background B =
{B1, Ba, ..., Br} to meet the needs of different models.

Test Set During testing, we composited a test set that has
200 video clips in which each clip contains 100 frames.
50 of them are composited based on test sets of Video-
Matte240K and DVM, which mainly contain video fore-
grounds and video backgrounds that are sampled from real-
world videos. The rest 150 of them are composited based
on test sets of VideoMatte240K and BG20K, which pro-
vide video foregrounds and image backgrounds from the
real-world. We hope the diverse backgrounds bring more
challenges for robust video matting to the community and
we select some clips from the test set for visualization in
Figure 2. The benchmark is purely synthetic since the an-
notations for alpha matte of per-frame video are expensive,
and previous video matting benchmarks are also purely syn-
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Figure 3. The overall architecture of VideoMatt-S and VideoMatt-T. VideoMatt-S is a simple encoder-decoder based single-frame video
matting model without temporal modeling technique. For VideoMatt-T, we evaluate different temporal modeling methods. Given feature
maps F), and F,, 11 from two consecutive frames I,, and I,,+1, the updated F}, , ; is formulated by (a) Addition: F, + F},+1 (b) Concatena-
tion: Conv(Concate(Fy, Fny1)) (c) Spatial Attention®: Fy, 11 + Spatial Attn(F,) (d) Spatial Attention®: Spatial Attn(F, + Fpy1)
(e) Spatial Attention”: Spatial Attn(Conv(Concate(Fy, Fn4+1))) . Table 1 further shows that Spatial Attention” brings greatest im-

provement among all metrics especially on temporal coherence and thus is selected for temporal modeling module of VideoMatt-T.

thetic [31, 36, 43]. We release the link to the VideoMatt
benchmark both in the abstract and the supplemental file.

4. Our Method

In this section, we mainly introduce our VideoMatt-S
model and compare different temporal modeling techniques
in VideoMatt-T. Then, we describe how we train and evalu-
ate all VideoMatt variants.

4.1. VideoMatt-S

The framework of VideoMatt-S is illustrated in Figure 3,
which is a single-frame baseline without temporal model-
ing. Given a video sequence I = {I3, I5, ..., IT} as input
and T is the number of frames, the encoder generates fea-
ture pyramids f = {f1, fo, f3, fa}. Here the feature pyra-
mids start from a high-resolution feature map since video
matting is a per-pixel prediction task and high-resolution
feature maps are favorable for accurate prediction of alpha
matte. f, is then sent to an atrous spatial pyramid pooling
layer [4] and becomes f;. For the decoder part, in each
up-scaling block we have

fi = Deconv(f] 1) + fi )

which outputs f' = {fi, f}, f1} accordingly. Finally,
the predictions of the corresponding alpha matte sequences
a = {aj,a9,..,ar} and foreground images F =
{F1, Fy, ..., Fr} for the video sequence are based on a com-
bination of up-scaling and convolution layers on top of Fj.

[, F] = Conv(Deconv(f1)) 3)

Then prediction of @« = {aj,as,...,ar} are used for
evaluation of matting accuracy. We use VideoMatt-S
as a baseline model to investigate the efficacy of vari-
ous temporal modeling techniques in VideoMatt-T. Unlike
BGMv2 [36], which requires background image input, and
RVM [31], which incorporates ConvGRU temporal mod-
ules, VideoMatt-S utilizes the U-Net architecture and does
not rely on such mechanisms. By leveraging this baseline
model, we aim to identify effective ways of incorporating
temporal information into video matting models and im-
prove the accuracy of alpha matte predictions.

4.2. VideoMatt-T

Temporal modeling is about utilizing temporal informa-
tion to augment matting quality across frames by reducing
flickers and revising wrong predictions. To evaluate the ef-
fectiveness of different temporal methods for video matting,
we try five different implementations based on our strong
baseline VideoMatt-S and they are illustrated in Figure 3.
For two consecutive frames I,, and I, 11, given two corre-
sponding feature maps F;, and F,; at the same level in the
decoder, the simplest way to model their relation is to add
them for temporal aggregation,

7/L+1:Fn+Fn+1 (4)
F} ., denotes for updated feature map of frame I,, 1. A
similar implementation is to concatenate feature maps with
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Figure 4. Illustration of Spatial Attention used in VideoMatt-
T.Given an input feature map F/, it generates query, key, and value
matrix by convolution layers, then spatial attention map is calcu-
lated by batch matrix-matrix product of query and key with a fol-
lowing softmax function for normalization. Finally, it is projected
on the value matrix and the projected value matrix is added to the
original F'.
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a following convolution layer for channel reduction,
F) 1 = Conv(Concate(Fy, Fp41)) 3)

Compared with VideoMatt-S baseline, the addition opera-
tion makes little improvements on accuracy and temporal
connectivity in terms of MAD, Grad, Conn and dtSSD met-
rics. We further consider more complicated temporal mod-
eling techniques based on the attention mechanism intro-
duced as a non-local block [39] for video classification. To
save memory and computation, we apply a simplified ver-
sion of spatial attention [19] for semantic segmentation and
apply it between two consecutive frames iteratively. We de-
sign three versions «, 3,7 of applying spatial attention to
F,,. The implementation of Spatial Attention® is

F) 1 = Foq1 + Spatial Attn(F),) (6)

7

which implies that the temporal information from the atten-
tion map of the previous frame is added to the current frame.
The Spatial Attention operation is illustrated in Figure 4 in
details, which generates a self-attention based feature map.
To make the temporal information learnable on both con-
secutive frames, we further apply Spatial Attention” and
Spatial Attention”,

F) | = Spatial Attn(F, + Fp41) )

n

F/

11 = Spatial Attn(Conv(Concate(F,, Fr41))) (8)

They apply spatial attention to outputs of addition and con-
catenation of two consecutive frames. It shows that spa-
tial attention” achieve the greatest improvements compared

with the other two implementations. As a result, we use
spatial attention” to build VideoMatt-T model. We only ap-
ply it to half channels of feature pyramids F}j, F}} and Fj to
save computation, which reaches a better trade-off between
accuracy and inference speed.

4.3. Training and Testing

Training Stage During training, we follow the short-to-
long principles from RVM [3 1] and break the whole training
pipeline into two stages. In the first stage, we train the net-
work based on low-resolution and short video sequences for
20 epochs. When the training is well converged, we extend
the video sequence length and train the network for another
5 epochs in the second stage for the final comparisons.
Loss Function The loss function we used is adopted from
RVM, which is a combination of individual loss on alpha
matte and foreground prediction,

L=L, + Lr )]
L, is loss for alpha matte, which is
Oa oa
La = n An )\oz - ="
o = Gally + Aall 52 = S22 s +

5
> 2 YL a) ~ Li(én)y ne0.T—1  (10)

i=1
here «, is the prediction of alpha matte and &, is ground
truth. The L, involves L1 loss, temporal consistency loss
and Laplacian loss used in [17,31,37]. A\, is the loss weight
for Laplacian loss and is set to be 5 for balanced training.
For foreground loss Ly,

oF,
pral
similarly, Lr contains L1 loss and temporal consistency
loss for foreground prediction. Ap is also set to be 5 for
balanced training procedure.

Testing Stage During inference stage, we resize the inputs
into three different resolutions: 512 x 288 (LR), 1920 x
1080 (HD) and 3840 x 2160 (4K) for evaluation. The net-
work takes the whole video clip as input and run inference
frame by frame. During inference on each frame, temporal
feature maps are saved as intermediate result for input of
next frame. More experimental details are introduced in the
next section.

. OF,
Lp=|F, - Ful + )\FHW* 1)

5. Experiments

In this section, we first review the datasets and evalua-
tion metrics we used for experiments. Then, we specify the
experimental setting in detail and make ablation studies on
various temporal modeling methods. We also test the infer-
ence speed and model size of different models for compari-
son. We further compare our VideoMatt variants with other
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Temporal Metrics

Modeling MAD| MSE| Grad] Conn] dtSSDJ
VideoMatt-S 6.75 1.46 1.20 0.52 1.85
+Addition 6.57 1.49 1.17 0.50 1.75
+Concatenation 7.48 2.80 1.21 0.62 1.78
+Spatial Attention® 6.51 1.45 1.15 0.49 1.73
+Spatial Attention® | 6.77 1.48 1.13 045 1.75
+Spatial Attention” 6.50 1.45 1.19 0.49 1.70

Table 1. Ablation study on different temporal modeling meth-
ods based on VideoMatt-S. The performance of temporal coher-
ence (dtSSD) benefits from the added attention operator. All num-
bers are evaluated only after the first stage of training as described
in Section 4.3.

Model | Backbone | FPS (4K/HD/LR) | Params
BGMv2 | MobileNetV2 | 30.6/121.6/159.0 | 4.991M
MODNet | MobileNetV2 | 2.9/11.2/92.1 6.487M
RVM MobilenetV3 | 72.9/114.7/149.0 | 3.749M
RVM ResNet50 54.2/74.5/81.8 | 26.890M
VideoMatt-S | MobilenetV3 | 99.0/136.8/190.4 | 3.296M
VideoMatt-S ResNet50 61.6/83.4/96.0 25.990M
VideoMatt-T | MobilenetV3 65.2/89.4/114.6 3.304M
VideoMatt-T |  ResNet50 51.4/66.4/72.5 | 26.008M

Table 2. Inference speed & Params Comparisons between differ-
ent models on a single RTX 2080 GPU. Bold indicates the highest
FPS and the least number of parameters.

trimap-free methods and visualize some video matting re-
sults.

5.1. Datasets and Evaluation Metrics

Datasets The datasets we use for compositing training,
validation and test sets are from VideoMatte240K, BG20K
and DVM. We give detailed descriptions in Section 3
about how we composite the training set and conduct an
evaluation of the test set.

Evaluation Metrics The evaluation metrics are mainly fo-
cused on the quality of predicted alpha mattes. It in-
volves Mean Absolute Difference (MAD), Mean Squared
Error (MSE), Gradient (Grad), Connectivity (Conn) [34]
and Sum of Squared Differences (dtSSD) [10] for evalu-
ating quality and temporal consistency of alpha mattes. We
scale MAD, MSE, Grad, Conn, dtSSD by 102, 103, 1073,
10~3 and 102 respectively.

5.2. Experimental Setting

Training Setting For training the network, we use 4 RTX
A6000 GPU with batch size at 1 video clip per GPU. The

optimizer is Adam with different learning rates at different
modules of the network. The initial learning rate for the
encoder is 0.0001 and 0.0002 for the decoder, which are
further scaled down to 0.00005 and 0.0001 at stage 2. We
use random resize, center crop, horizontal flip, color jitter-
ing, image blurring and sharpening for data augmentation.
For backbone selection, we use ImageNet [25] pre-trained
Mobilenetv3-Large [18] as encoders to train VideoMatt
variants. Most other training hyper-parameters and settings
are adopted from RVM [3 1] for fair comparisons.

Runtime Setting During inference, the test sets are pre-
composited for stable and fast testing. We compare current
trimap-free video matting models and VideoMatt variants
under both our synthetic test sets and the test sets used in
RVM [31] to test both the matting quality and robustness
of our model to different backgrounds. In detail, we test
these models on a single RTX 2080 GPU to compare infer-
ence speed under inputs of different resolutions and report
the number of parameters of these models. The framework
is based on Pytorch 1.9.1 and CUDA 11.1. The system is
Ubuntu 20.04 with AMD EPYC 7662 as the CPU.

5.3. Ablation Study

Temporal Modeling To evaluate the effectiveness of
different temporal modeling methods, we first build the
VideoMatt-S baseline which is a single-frame version
without any temporal modeling technique. It is trained on
inputs with short and low-resolution video sequences for
the first stage of training as described in Section 4.3. Then
we add different temporal modeling methods as shown
in Table 1 and trained all these models under the same
settings. It shows that for simple temporal modeling, the
addition operator is more effective than the concatenation
operator. For more complicated ones, spatial attention
based on concatenation is the most effective solution
among them, especially on the temporal consistency metric
dtSSD which drops from 1.85 to 1.70. As a result, we
select Spatial Attention” for the temporal modeling module
and build VideoMatt-T on top of VideoMatt-S accordingly.

Backbone Selection We evaluate VideoMatt variants
mainly under MobilnetV3-Large [18] that represent light-
weight CNN-based backbone. ResNet50 [16] is a relatively
larger and deeper CNN-based backbone.

Inference Speed To evaluate the inference speed of
different real-time video matting models fairly, we
used pretrained weights of three most recent models
BGMv2 [30], MODNet [24] and RVM [31] for compar-
isons under inputs of three resolutions in Table 2. All
models are evaluated on a single RTX 2080 GPU with
inputs under 3840 x 2160 (4K), 1920 x 1080 (HD) and
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Temporal Metrics
Model Backbone Modeling | MAD| MSE| Grad] Conn] dtSSD |
BGMyv2 MobilenetV?2 X 33.90 28.39 2.38 4.52 2.72
MODNet MobilenetV?2 X 7.36 2.60 1.58 0.60 3.75
RVM MobilenetV3 v 6.36 1.47 1.03 0.45 1.68
VideoMatt-S | MobilenetV3 X 6.02 1.12 0.94 0.40 1.68
VideoMatt-T | MobilenetV3 v 5.90 1.10 0.94 0.39 1.57

Table 3. Comparison on the composited testing set. VideoMatt-S: Single-frame baseline version without temporal modeling; VideoMatt-T:
VideoMatt-S with temporal modeling based on spatial attention”. All numbers are evaluated after the two stages of training as described

in Section 4.3.

Training Data Metrics
Model Backbone Segmentation Matting | MAD ] MSE| Grad] Conn/ dtSSD |

BGMv2 [31] MobilenetV?2 v v 25.19 19.63 2.28 3.26 2.74
DeepLabV3 [4] ResNet101 v v 14.47 9.67 8.55 1.69 5.18
MODNet [31] | MobileNetV2 v v 9.28 4.17 1.76 0.79 2.10
FBA [12] ResNet50 v v 8.36 3.37 2.09 0.75 2.09
RVM [31] MobilenetV3 v v 6.08 1.47 0.88 0.41 1.36
VideoMatt-S MobilenetV3 X v 6.52 1.54 1.15 0.48 1.76
VideoMatt-T MobilenetV3 X v 6.06 1.27 1.09 0.42 1.60

Table 4. Robustness evaluation on the test set in RVM. We directly evaluate VideoMatt-S/T on RVM’s test set without re-training the

models on more segmentation data.

512 x 288 (LR). We report Frame-Per-Second (FPS)
and number of parameters of these models. Considering
this table and the following tables on matting quality, it
shows that our VideoMatt variants reaches better trade-offs
between accuracy and inference speed compared to other
methods, since VideoMatt-S is fastest with comparable
matting accuracy.

Mobile Device Inference To estimate the performance and
inference speed of VideoMatt-S/T on the mobile device, we
refer to the AI-Benchmark [20], where the MobilNetV3
runs 66ms on the Apple Al5 Bionic chip. As a result,
the estimation of VideoMatt-S/T on the Apple A15 Bionic
would be around 94ms/132ms, considering the inference of
MobileNetV3 takes 70%/50% of the total inference time in
Table 2.

5.4. Comparison to State-of-the-art Methods

Composited test set The composited test set we used for
comparison is introduced in Section 3, which contains
200 video clips for evaluation. We compare our Video-
Matt variants with most recent state-of-the-art real-time
video matting models BGMv2 [30], MODNet [24] and

RVM [31]. To make fair comparisons, we reproduced
them with their original design based on their open-sourced
codes and trained them on our composited training data.
All experimental results are listed in Table 3. For the
VideoMatt-S and VideoMatt-T, we further trained them
with the second stage as described in Section 4.3, and the
performance improves compared to the numbers in Table 1.
Our evaluation mainly focuses on matting qualify of alpha
matte predictions and we evaluate all models under inputs
of 512 x 288. VideoMatt-T outperforms VideoMatt-S in
all metrics especially on the temporal consistency (dtSSD)
from 1.68 to 1.57.

Other benchmarks To test the robustness of our Video-
Matt variants, we further test them on the test set used
in RVM [31] as shown in Table 4 without re-training the
VideoMatt models. We directly run inference and evalua-
tion of VideoMatt models on this test set with the pretrained
weights on our training set, while all other models BGMv2,
MODNet, FBA, DeeplabV3 and RVM are re-trained as re-
ported in RVM [31]. It shows that VideoMatt reach compa-
rable performances to other pre-trained state-of-the-art so-
lutions.
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Figure 5. Visualization of alpha matte predictions from MODNet, RVM, VideoMatt-S and VideoMatt-T under challenging frames from

the composited test set. Please zoom in for details.

5.5. Visualization

In this section, we select some challenging consecu-
tive video frames from the composited test set for compar-
isons and visualize the video matting results in Figure 5.
It shows that our VideoMatt variants can distinguish am-
biguous backgrounds from foregrounds and temporal mod-
eling in VideoMatt-T further removes some inaccurate pre-
dictions on foregrounds compared with MODNet and RVM.

6. Conclusion

In this paper, we discuss current bottlenecks for real-time
video matting solutions. Firstly, it lacks a fair and accessi-
ble video matting benchmark, for making comparisons be-
tween different algorithms. Secondly, temporal modeling

is not well-explored for trimap-free video matting models.
Motivated by these observations, we first composite a new
video matting benchmark that is based on all public acces-
sible datasets for comparing different models. Then, we in-
vestigate various temporal modeling methods and compare
their performance on matting accuracy and temporal con-
sistency. Our benchmark and method are named as Video-
Matt: a simple and strong real-time trimap-free video mat-
ting model that is trained and evaluated on our new video
matting benchmark. Extensive experiments show that our
VideoMatt variants reach better trade-offs between accu-
racy of alpha matte predictions and inference speed com-
pared with other state-of-the-art solutions. For the future
work, we mainly focus on improving the robustness of
VideoMatt to real-world data and scenarios.
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