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Abstract

Traditionally, convolutional neural networks (CNN) and
vision transformers (ViT) have dominated computer vision.
However, recently proposed vision graph neural networks
(ViG) provide a new avenue for exploration. Unfortunately,
for mobile applications, ViGs are computationally expen-
sive due to the overhead of representing images as graph
structures. In this work, we propose a new graph-based
sparse attention mechanism, Sparse Vision Graph Attention
(SVGA), that is designed for ViGs running on mobile de-
vices. Additionally, we propose the first hybrid CNN-GNN
architecture for vision tasks on mobile devices, MobileViG,
which uses SVGA. Extensive experiments show that Mobile-
ViG beats existing ViG models and existing mobile CNN and
ViT architectures in terms of accuracy and/or speed on im-
age classification, object detection, and instance segmen-
tation tasks. Our fastest model, MobileViG-Ti, achieves
75.7% top-1 accuracy on ImageNet-1K with 0.78 ms in-
ference latency on iPhone 13 Mini NPU (compiled with
CoreML), which is faster than MobileNetV2x1.4 (1.02 ms,
74.7% top-1) and MobileNetV2x1.0 (0.81 ms, 71.8% top-1).
Our largest model, MobileViG-B obtains 82.6% top-1 ac-
curacy with only 2.30 ms latency, which is faster and more
accurate than the similarly sized EfficientFormer-L3 model
(2.77 ms, 82.4%). Our work proves that well designed hy-
brid CNN-GNN architectures can be a new avenue of ex-
ploration for designing models that are extremely fast and
accurate on mobile devices. Our code is publicly available
at https://github.com/SLDGroup/MobileViG.

1. Introduction

Artificial intelligence (AI) and machine learning (ML)
have had explosive growth in the past decade. In com-

*Equal contribution

puter vision, the key driver behind this growth has been
the re-emergence of neural networks, especially convo-
lutional neural networks (CNNs) and more recently vi-
sion transformers [4, 25]. Even though CNNs trained via
back-propagation were invented in the 1980s [16, 25], they
were used for more small-scale tasks such as character
recognition [17]. The potential of CNNs to re-shape the
field of artificial intelligence was not fully realized until
AlexNet [15] was introduced in the ImageNet [32] com-
petition. Further advancements to CNN architectures have
been made improving their accuracy, efficiency, and speed
[10, 12, 13, 33, 34]. Along with CNN architectures, pure
multi-layer perceptron (MLP) architectures and MLP-like
architectures have also shown promise as backbones for
general-purpose vision tasks [2, 37, 38]

Though CNNs and MLPs had become widely used in
computer vision, the field of natural language processing
used recurrent neural networks (RNNs), specifically long-
short term memory (LSTM), networks due to the dispar-
ity between the tasks of vision and language [11]. Though
LSTMs are still used, they have largely been replaced with
transformer architectures in NLP tasks [40]. With the in-
troduction of Vision Transformer (ViT) [4] a network archi-
tecture applicable to both language and vision domains was
introduced. By splitting an image into a sequence of patch
embeddings an image can be transformed into an input us-
able by transformer modules [4]. One of the major advan-
tages of the transformer architecture over CNNs or MLPs
is its global receptive field, allowing it to learn from distant
object interactions in images.

Graph neural networks (GNNs) have developed to oper-
ate on graph-based structures such as biological networks,
social networks, or citation networks [7, 14, 43, 45]. GNNs
have even been proposed for tasks such as node classifi-
cation [14], drug discovery [5], fraud detection [23], and
now computer vision tasks with the recently proposed Vi-
sion GNN (ViG) [8]. In short, ViG divides an image into
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a)

b)

Figure 1. a) KNN graph attention for the top left pixel of an 8×8
image as used in Vision GNN. b) SVGA for the top left pixel of
an 8×8 image. As shown, SVGA uses a structured graph, that
does not change across input images. This structure removes the
KNN and reshaping operations required in a) that are not mobile
friendly.

patches and then connects the patches through the K-nearest
neighbors (KNN) algorithm [8], thus providing the ability
to process global object interactions similar to ViTs.

Research in computer vision for mobile applications has
seen rapid growth, leading to hybrid architectures using
CNNs for learning spatially local representations and vision
transformers (ViT) for learning global representations [27].
Current ViG models are not suited for mobile tasks, as they
are inefficient and slow when running on mobile devices.
The concepts learned from the design of CNN and ViT
models can be explored to determine whether CNN-GNN
hybrid models can provide the speed of CNN-based mod-
els along with the accuracy of ViT-based models. In this
work, we investigate hybrid CNN-GNN architectures for
computer vision on mobile devices and develop a graph-
based attention mechanism that can compete with existing
efficient architectures. We summarize our contributions as

follows:

1. We propose a new graph-based sparse attention
method designed for mobile vision applications. We
call our attention method Sparse Vision Graph Atten-
tion (SVGA). Our method is lightweight as it does not
require reshaping and incurs little overhead in graph
construction as compared to previous methods.

2. We propose a novel mobile CNN-GNN architecture
for vision tasks using our proposed SVGA, max-
relative graph convolution [18], and concepts from mo-
bile CNN and mobile vision transformer architectures
[12, 27] that we call MobileViG.

3. Our proposed model, MobileViG, matches or beats ex-
isting vision graph neural network (ViG), mobile con-
volutional neural network (CNN), and mobile vision
transformer (ViT) architectures in terms of accuracy
and/or speed on three representative vision tasks: Im-
ageNet image classification, COCO object detection,
and COCO instance segmentation.

To the best of our knowledge, we are the first to in-
vestigate hybrid CNN-GNN architectures for mobile vision
applications. Our proposed SVGA attention method and
MobileViG architecture open a new path of exploration for
state-of-the-art mobile architectures and ViG architectures.

This paper is structured as follows. Section 2 covers re-
lated work in the ViG and mobile architecture space. Sec-
tion 3 describes the design methodology behind SVGA and
the MobileViG architecture. Section 4 describes experi-
mental setup and results for ImageNet-1k image classifica-
tion, COCO object detection, and COCO instance segmen-
tation. Lastly, Section 5 concludes the paper and suggests
future work with ViGs in mobile architecture design.

2. Related Work

ViG [8] is proposed as an alternative to CNNs and ViTs
due to its capacity to represent image data in a more flexible
format. ViG represents images through using the KNN al-
gorithm [8], where each pixel in the image attends to similar
pixels. ViG achieves comparable performance to popular
ViT models, DeiT [39] and SwinTransformer [24], suggest-
ing it is worth further investigations.

Despite the success of ViT-based models in vision tasks,
they are still slower when compared to lightweight CNN-
based models [21], in contrast CNN-based models lack the
global receptive field of ViT-based models. Thus, ViG-
based models may be a possible solution by providing
speeds faster than ViT-based models and accuracies higher
than CNN-based models. To the best of our knowledge,
there are no works on mobile ViGs at this time; however,
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Table 1. MobileViG architecture showing configuration of the stages, output size, downsample layers, and classification head.

Stage Output Size MobileViG-Ti MobileViG-S MobileViG-M MobileViG-B

Stem
H

4
× W

4
Conv ×2 Conv ×2 Conv ×2 Conv ×2

Stage 1
H

4
× W

4

[
MBConv
C = 42

]
×2

[
MBConv
C = 42

]
×3

[
MBConv
C = 42

]
×3

[
MBConv
C = 42

]
×5

↓ H

8
× W

8
Conv Conv Conv Conv

Stage 2
H

8
× W

8

[
MBConv
C = 84

]
×2

[
MBConv
C = 84

]
×3

[
MBConv
C = 84

]
×3

[
MBConv
C = 84

]
×5

↓ H

16
× W

16
Conv Conv Conv Conv

Stage 3
H

16
× W

16

[
MBConv
C = 168

]
×6

[
MBConv
C = 176

]
×9

[
MBConv
C = 224

]
×9

[
MBConv
C = 240

]
×15

↓ H

32
× W

32
Conv Conv Conv Conv

Stage 4
H

32
× W

32

 SV GA
K = 2
C = 256

 ×2

 SV GA
K = 2
C = 256

 ×3

 SV GA
K = 2
C = 400

 ×3

 SV GA
K = 2
C = 464

 ×5

Head 1 × 1 Pooling & MLP Pooling & MLP Pooling & MLP Pooling & MLP

there are many existing works in the mobile CNN and hy-
brid model space. We classify mobile architecture designs
into two primary categories: convolutional neural network
(CNN) models and hybrid CNN-ViT models, which blend
elements of CNNs and ViTs.

The MobileNetv2 [33] and EfficientNet [35, 36] fami-
lies of CNN-based architectures are some of the first mo-
bile models to see success in common image tasks. These
models are lightweight with fast inference speeds. How-
ever, purely CNN-based models have steadily been replaced
by hybrid competitors.

There are a vast number of hybrid mobile models, in-
cluding MobileViTv2 [28], EdgeViT [29] LeViT [6], and
EfficientFormerv2 [20]. These hybrid models consistently
beat MobileNetv2 in image classification, object detection,
and instance segmentation tasks, but some of these models
do not always perform as well in terms of latency. The la-
tency difference can be tied to the inclusion of ViT blocks,
which have traditionally been slower on mobile hardware.
To improve this state of affairs we propose MobileViG,
which provides speeds comparable to MobileNetv2 [33]
and accuracies comparable to EfficientFormer [21].

3. Methodology

In this section, we describe the SVGA algorithm and pro-
vide details on the MobileViG architecture design. More

precisely, Section 3.1 describes the SVGA algorithm. Sec-
tion 3.2 explains how we adapt the Grapher module from
ViG [8] to create the SVGA block. Section 3.3 describes
how we combine the SVGA blocks along with inverted
residual blocks for local processing to create MobileViG-
Ti, MobileViG-S, MobileViG-M, and MobileViG-B.

3.1. Sparse Vision Graph Attention

We propose Sparse Vision Graph Attention (SVGA) as
a mobile-friendly alternative to KNN graph attention from
Vision GNN [8]. The KNN-based graph attention intro-
duces two non-mobile-friendly components, KNN compu-
tation and input reshaping, that we remove with SVGA.

In greater detail, the KNN computation is required for
every input image, since the nearest neighbors of each pixel
cannot be known ahead of time. This results in a graph
with seemingly random connections as seen in Figure 1a.
Due to the unstructured nature of KNN, the authors of [8]
reshape the input image from a 4D to 3D tensor, allowing
them to properly align the features of connected pixels for
graph convolution. Following the graph convolution, the
input must be reshaped from 3D back to 4D for subsequent
convolutional layers. Thus, KNN-based attention requires
the KNN computation and two reshaping operations, both
of which are costly on mobile devices.

To remove the overhead of the KNN computation and
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Stage 2: N2 x

H/8 x W/8

Stage 3: N3 x

H/16 x W/16

Stage 4: N4 x

H/32 x W/32

Conv Stem

Conv Stem

MBConv Block

Downsample

Downsample

Downsample

SVGA Block

a) MobileViG Architecture

MBConv Block

MBConv Block

b) MBConv Block

c) SVGA Block

Conv 1x1 - BN

Conv 1x1 - BN
DW Conv 3x3 - BN

GeLU

GeLU

d) Grapher

e) FFN

Grapher

FFN

Conv 1x1 - BN
Conv 1x1 - BN

MRGraphConv

Conv 1x1 - BN

Conv 1x1 - BN

GeLU

Stage 1: N1 x

H/4 x W/4

Figure 2. MobileViG architecture. (a) network architecture showing the stages and layers, where N1, N2, N3, and N4 represent the number
of those blocks in the MobileViG-Ti, S, M, and B configurations (Section 3.3). (b) MBConv Block (Section 3.3). (c) SVGA Block (Section
3.2). (d) & (e) Grapher and FFN (Section 3.2).

reshaping operations, SVGA assumes a fixed graph, where
each pixel is connected to every Kth pixel in its row and
column. For example, given an 8×8 image and K = 2,
the top left pixel would be connected to every second pixel
across its row and every second pixel down its column as
seen in Figure 1b. This same pattern is repeated for every
pixel in the input image. Since the graph has a fixed struc-
ture (i.e., each pixel will have the same connections for all
8×8 input images), the input image does not have to be re-
shaped to perform the graph convolution.

Instead, it can be implemented using rolling operations
across the two image dimensions, denoted as rollright and
rolldown in Algorithm 1. The first parameter to the roll op-
eration is the input to roll, and the second is the distance
to roll in the right or down direction. Using the exam-
ple from Figure 1b where K = 2, the top left pixel can be

aligned with every second pixel in its row by rolling the im-
age twice to the right, four times to the right, and six times
to the right. The same can be done for every second pixel
in its column, except by rolling down. Note that since every
pixel is connected in the same way, the rolling operations
used to align the top left pixel with its connections simul-
taneously align every other pixel in the image with its con-
nections. In MobileViG, graph convolution is performed
using max-relative graph convolution (MRConv). There-
fore, after every rollright and rolldown operation, the differ-
ence between the original input image and the rolled version
is computed, denoted as Xr and Xc in Algorithm 1, and
the max operation is taken element wise and stored in Xj ,
also denoted in Algorithm 1. After completing the rolling
and max-relative operations, a final Conv2d is performed.
Through this approach, SVGA trades the KNN computation
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for cheaper rolling operations, consequently not requiring
reshaping to perform the graph convolution.

We note that SVGA eschews the representation flexibil-
ity of KNN in favor of being mobile friendly.

Algorithm 1 SVGA with MRConv

Require: K, the distance between connections; H,W , the
image resolution; X , the input image; m, controls the
distance of each roll
m← 0
while mK < H do

Xc ← X − rolldown(X,mK) ▷ get relative features
Xj ← max(Xc, Xj) ▷ keep max relative features
m← m+ 1

end while
m← 0
while mK < W do

Xr ← X − rollright(X,mK)
Xj ← max(Xr, Xj)
m← m+ 1

end while
return Conv2d(Concat(X,Xj))

3.2. SVGA Block

We insert SVGA and the updated MRConv layer into the
Grapher block proposed in Vision GNN [8]. Given an input
feature X ∈ RN×N , the updated Grapher is expressed as

Y = σ(MRConv(XWin))Wout +X (1)

where Y ∈ RN×N , Win and Wout are fully connected layer
weights, and σ is a GeLU activation. We also change the
number of filter groups from 4 (the value used in Vision
GNN [8]) to 1 in the MRConv step to increase the expres-
sive potential of the MRConv layer without a noticeable in-
crease in latency. The updated Grapher module is visually
depicted in Figure 2d

Following the updated Grapher, we use the feed-forward
network (FFN) module as proposed in Vision GNN [8] and
shown in Figure 2e The FFN module is a two layer MLP
expressed as

Z = σ(XW1)W2 + Y (2)

where Z ∈ RN×N , W1 and W2 are fully connected layer
weights, and σ is once again GeLU. We call this combina-
tion of updated Grapher and FFN an SVGA block, as shown
in Figure 2c.

3.3. MobileViG Architecture

The MobileViG architecture shown in Figure 2a is com-
posed of a convolutional stem, followed by three stages of
inverted residual blocks (MBConv) with an expansion ra-
tio of four for local processing as proposed in MobileNetv2

Table 2. Top-1 accuracy on ImageNet-1k classification and
iPhone13 Mini GPU latency for PyramidViG and MobileViG.
Bold entries indicate results obtained using MobileViG and SVGA
in this paper.

Model Params (M) GMACs GPU Latency (ms) Top-1 (%)

PViG-Ti [8] 10.7 1.7 81.2 78.2

PViG-S [8] 27.3 4.6 111 82.1

PViG-M [8] 51.7 8.9 171 83.1

PViG-B [8] 92.6 16.8 242 83.7

MViG-Ti (Ours) 5.2 0.7 18.0 75.7
MViG-S (Ours) 7.2 1.0 28.7 78.2
MViG-M (Ours) 14.0 1.5 33.2 80.6
MViG-B (Ours) 26.7 2.8 53.4 82.6

[33]. Within the MBConv blocks, we swap ReLU6 for
GeLU as it has been shown to improve performance in
computer vision tasks [4, 20]. The MBConv blocks consist
of a 1×1 convolution plus batch normalization (BN) and
GeLU, a depth-wise 3×3 convolution plus BN and GeLU,
and lastly a 1×1 convolution plus BN and a residual con-
nection as seen in Figure 2b. Following the MBConv blocks
we have one stage of SVGA blocks to capture global infor-
mation as seen in Figure 2a. We also have a convolutional
head after the SVGA blocks for classification. After each
MBConv stage, a downsampling step halves the input res-
olution and expands the channel dimension. Each stage is
composed of multiple MBConv or SVGA blocks, where the
number of repetitions is changed depending on model size.
The channel dimensions and number of blocks repeated per
stage for MobileViG-Ti, MobileViG-S, MobileViG-M, and
MobileViG-B can be seen in Table 1.

4. Experimental Results
We compare MobileViG to ViG [8] and show its supe-

rior performance in terms of latency, model size, and im-
age classification accuracy on ImageNet-1k [3] in Table 2.
We also compare MobileViG to several mobile models and
show that, for each model, it has superior or comparable
performance in terms of accuracy and latency in Table 3.

4.1. Image Classification

We implement the model using PyTorch 1.12 [30] and
Timm library [42].We use 8 NVIDIA A100 GPUs to train
each model, with an effective batch size of 1024. The mod-
els are trained from scratch for 300 epochs on ImageNet-
1K [3] with AdamW optimizer [26]. Learning rate is set
to 2e-3 with cosine annealing schedule. We use a standard
image resolution, 224 × 224, for both training and testing.
Similar to DeiT [39], we perform knowledge distillation us-
ing RegNetY-16GF [31] with 82.9% top-1 accuracy. For
data augmentation we use RandAugment, Mixup, Cutmix,
random erasing, and repeated augment.
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Table 3. Results of MobileViG and other mobile architectures on ImageNet-1k. Latency is reported on the NPU and GPU of the iPhone13
Mini. Models are compiled with CoreML. Bold entries indicate results obtained using MobileViG and SVGA in this paper.

Model Type Params (M) GMACs
Latency (ms)

Epochs Top-1 (%)
NPU GPU

MobileNetV2x1.0 [33] CONV 3.5 0.3 0.81 13.0 300 71.8

MobileViTv2-1.0 [28] Hybrid 4.9 1.8 3.13 40.2 300 78.1

EfficientFormerV2-S0 [20] Hybrid 3.5 0.4 0.85 19.0 300 75.7

EdgeViT-XXS [29] Hybrid 4.1 0.6 - 25.0 300 74.4

MobileViG-Ti (Ours) CNN-GNN 5.2 0.7 0.78 18.0 300 75.7

MobileNetV2x1.4 [33] CONV 6.1 0.6 1.02 14.8 300 74.7

EfficientNet-B0 [35] CONV 5.3 0.4 1.89 17.9 300 77.7

DeiT-T [39] Attention 5.9 1.2 8.60 27.3 300 74.5

EdgeViT-XS [29] Hybrid 6.7 1.1 - 36.9 300 77.5

EfficientFormerV2-S1 [20] Hybrid 6.1 0.7 0.93 31.7 300 79.0

LeViT-128S [6] Hybrid 7.8 0.3 7.63 8.09 1000 76.6

MobileViG-S (Ours) CNN-GNN 7.2 1.0 0.99 28.7 300 78.2

ResNet18 CONV 11.7 1.82 1.20 15.7 300 69.7

MobileViTv2-1.5 [28] Hybrid 10.6 4.0 4.52 70.0 300 80.4

EfficientNet-B3 [35] CONV 12.2 2.0 5.46 61.4 300 82.2

PoolFormer-s12 [44] Pool 12.0 2.0 1.47 91.7 300 77.2

LeViT-192 [6] Hybrid 10.9 0.7 41.8 13.0 1000 80.0

EdgeViT-S [29] Hybrid 11.1 1.9 - 57.5 300 81.0

EfficientFormerV2-S2 [20] Hybrid 12.6 1.3 1.42 60.0 300 81.6

EfficientFormer-L1 [21] Hybrid 12.3 1.3 1.18 18.0 300 79.2

MobileViG-M (Ours) CNN-GNN 14.0 1.5 1.38 33.2 300 80.6

ResNet50 [10] CONV 25.6 4.1 2.29 38.2 300 80.4

ConvNext-T [25] CONV 28.6 7.4 147 227 300 82.7

MobileViTv2-2.0 [28] Hybrid 18.5 7.5 6.13 128 300 81.2

PoolFormer-s24 [44] Pool 21.0 3.6 2.48 177 300 80.3

PoolFormer-s36 [44] Pool 31.0 5.2 3.40 266 300 81.4

PoolFormer-m36 [44] Pool 56.0 8.8 5.73 343 300 82.1

DeiT-S [39] Attention 22.5 4.5 13.7 76.9 300 81.2

Swin-T [24] Attention 29.0 4.5 - - 300 81.4

LeViT-256 [6] Hybrid 18.9 1.1 48.5 18.7 1000 81.6

LeViT-384 [6] Hybrid 39.1 2.4 62.0 30.7 1000 82.6

EfficientFormerV2-L [21] Hybrid 26.1 2.6 2.36 83.7 300 83.3

EfficientFormer-L3 [21] Hybrid 31.3 3.9 2.77 38.1 300 82.4

EfficientFormer-L7 [21] Hybrid 82.1 10.2 6.87 83.3 300 83.3

MobileViG-B (Ours) CNN-GNN 26.7 2.8 2.30 53.4 300 82.6
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Table 4. Object detection and instance segmentation results of MobileViG and other backbones on MS COCO 2017. Bold entries indicate
results obtained using MobileViG and SVGA in this paper.

Backbone Params (M) APb APb50 APb75 APm APm50 APm75
ResNet18 [10] 11.7 34.0 54.0 36.7 31.2 51.0 32.7

EfficientFormer-L1 [21] 12.3 37.9 60.3 41.0 35.4 57.3 37.3
PoolFormer-S12 [44] 12.0 37.3 59.0 40.1 34.6 55.8 36.9

MobileViG-M (Ours) 14.0 41.3 62.8 45.1 38.1 60.1 40.8

ResNet50 [10] 25.5 38.0 58.6 41.4 34.4 55.1 36.7
EfficientFormer-L3 [21] 31.3 41.4 63.9 44.7 38.1 61.0 40.4

PoolFormer-S24 [44] 21.0 40.1 62.2 43.4 37.0 59.1 39.6
PVT-Small [41] 24.5 40.4 62.9 43.8 37.8 60.1 40.3

MobileViG-B (Ours) 26.7 42.0 64.3 46.0 38.9 61.4 41.6

We use an iPhone 13 Mini (iOS 16) to benchmark la-
tency on NPU and GPU. The models are compiled with
CoreML and latency is averaged over 1000 predictions [1].

As seen in Table 2, for a similar number of parameters,
MobileViG outperforms Pyramid ViG [8] both in accuracy
and GPU latency. For example, for 3.5 M fewer parameters,
MobileViG-S matches Pyramid ViG-Ti in top-1 accuracy,
while being 2.83× faster. Additionally, for 0.6 M fewer
parameters, MobileViG-B beats Pyramid ViG-S by 0.5% in
top-1 accuracy, while being 2.08× faster.

When compared to mobile models in Table 3, Mobile-
ViG consistently beats every model in at least NPU latency,
GPU latency, or accuracy. MobileViG-Ti is faster than Mo-
bileNetv2 with 3.9% higher top-1 accuracy. It also matches
EfficientFormerv2 [20] in top-1 while having a slight edge
in NPU and GPU latency. MobileViG-S is nearly 2x faster
than EfficientNet-B0 [35] in NPU latency and has 0.5%
higher top-1 accuracy. Compared to MobileViTv2-1.5 [28],
MobileViG-M is over 3x faster in NPU latency and 2x faster
in GPU latency with 0.2% higher top-1 accuracy. Addition-
ally, MobileViG-B is 6x faster than DeiT-S and is able to
beat both DeiT-S and Swin-Tiny in top-1 accuracy.

4.2. Object Detection and Instance Segmentation

We evaluate MobileViG on object detection and instance
segmentation tasks to further prove the potential of SVGA.
We integrate MobileViG as a backbone in the Mask-RCNN
framework [9] and experiment using the MS COCO 2017
dataset [22]. We implement the backbone using PyTorch
1.12 [30] and Timm library [42], and use 4 NVIDIA RTX
A6000 GPUs to train our models. We initialize the model
with pretrained ImageNet-1k weights from 300 epochs of
training, use AdamW [26] optimizer with an initial learning
rate of 2e-4 and train the model for 12 epochs with a stan-
dard resolution (1333 X 800) following the process of Next-
ViT, EfficientFormer, and EfficientFormerV2 [19–21].

As seen in Table 4, with similar model size Mobile-
ViG outperforms ResNet, PoolFormer, EfficientFormer, and
PVT in terms of either parameters or improved average pre-
cision (AP) on object detection and/or instance segmenta-
tion. The medium size MobileViG-M model gets 41.3 AP-
box, 62.8 APbox when 50 Intersection over Union (IoU),
and 45.1 APbox when 75 IoU on the object detection task.
MobileViG-M gets 38.1 APmask, 60.1 APmask when 50
IoU, and 40.8 APmask when 75 IoU for the instance seg-
mentation task. The big size MobileViG-B model gets 42.0
APbox, 64.3 APbox when 50 IoU, and 46.0 APbox when 75
IoU on the object detection task. MobileViG-B gets 38.9
APmask, 61.4 APmask when 50 IoU, and 41.6 APmask
when 75 IoU on the instance segmentation task. The strong
performance of MobileViG on object detection and instance
segmentation shows that MobileViG generalizes well as a
backbone for different tasks in computer vision.

The design of MobileViG is partly inspired by the de-
signs of Pyramid ViG [8], EfficientFormer [21], and the
MetaFormer concept [44]. The results achieved in Mo-
bileViG demonstrate that hybrid CNN-GNN architectures
are a viable alternative to CNN, ViT, and hybrid CNN-ViT
designs. Hybrid CNN-GNN architectures can provide the
speed of CNN-based models along with the accuracy of ViT
models making them an ideal candidate for high accuracy
mobile architecture designs. Further explorations of hybrid
CNN-GNN architectures for mobile computer vision tasks
can improve on the MobileViG concept and introduce new
state-of-the-art architectures.

5. Conclusion
In this work, we have proposed a graph-based attention

mechanism, Sparse Vision Graph Attention (SVGA), and
MobileViG, a competitive mobile vision architecture that
uses SVGA. SVGA does not require reshaping and allows
for the graph structure to be known prior to inference, unlike
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previous methods. We use inverted residual blocks, max-
relative graph convolution, and feed-forward network layers
to create MobileViG, a hybrid CNN-GNN architecture, that
achieves competitive results on image classification, object
detection, and instance segmentation tasks. MobileViG out-
performs existing ViG models and many existing mobile
models, including MobileNetv2, in terms of accuracy and
latency. Future research on mobile architectures can further
explore the potential of GNN-based models on resource-
constrained devices for IoT applications.
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