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Abstract

Designing feasible and effective architectures under di-
verse computational budgets, incurred by different appli-
cations/devices, is essential for deploying deep models in
real-world applications. To achieve this goal, existing meth-
ods often perform an independent architecture search pro-
cess for each target budget, which is very inefficient yet un-
necessary. More critically, these independent search pro-
cesses cannot share their learned knowledge (i.e., the dis-
tribution of good architectures) with each other and thus
often result in limited search results. To address these is-
sues, we propose a Pareto-aware Neural Architecture Gen-
erator (PNAG) which only needs to be trained once and
dynamically produces the Pareto optimal architecture for
any given budget via inference. To train our PNAG, we
learn the whole Pareto frontier by jointly finding multiple
Pareto optimal architectures under diverse budgets. Such a
joint search algorithm not only greatly reduces the overall
search cost but also improves the search results. Extensive
experiments on three hardware platforms (i.e., mobile de-
vice, CPU, and GPU) show the superiority of our method
over existing methods.

1. Introduction
Deep neural networks (DNNs) [30] have been the

workhorse of many challenging tasks, including image clas-
sification [18, 24, 37, 51], semantic segmentation [6, 50, 60,
63] and object detection [5, 47, 58, 71]. However, design-
ing effective architectures often relies heavily on human ex-
pertise. To alleviate this issue, neural architecture search
(NAS) methods have been proposed to automatically de-
sign effective architectures [73]. Existing studies show
that these automatically searched architectures often outper-
form the manually designed ones in many computer vision
tasks [8, 15, 31, 55, 61, 67, 74].

*Corresponding author.

However, the state-of-the-art deep networks often con-
tain a large number of parameters and come with extremely
high computational cost. As a result, it is hard to deploy
these models to real-world scenarios with limited computa-
tion resources. Regarding this issue, we have to carefully
design architectures to fulfill a specific computational bud-
get (e.g., a feasible model should have a latency lower than
100ms on a specified mobile device). More critically, we
may have to consider different computational budgets in
the real world. For example, a company may simultane-
ously develop/maintain multiple applications and each of
them has a specific budget of latency.

In order to design feasible architectures, most meth-
ods [52, 53] only considers a single computational budget
and incorporates architecture’s computational cost into the
objective function. When we consider diverse budgets, they
have to conduct an independent search process for each bud-
get [53], which is very inefficient yet unnecessary. Unlike
these methods, one can also exploit the population-based
methods to simultaneously find multiple architectures and
then select an appropriate one from them to fulfill a specific
budget [38,40]. However, due to the limited population size,
these searched architectures do not necessarily satisfy the
required budget. More critically, all these searched archi-
tectures are fixed after search and cannot be easily adapted
for a slightly changed budget. Thus, how to design effective
architectures under diverse computational budgets in an ef-
ficient and flexible way still remains an open question.

In this paper, we propose a Pareto-aware Neural Archi-
tecture Generator (PNAG) which only needs to be trained
once and then dynamically produces Pareto optimal ar-
chitectures for diverse budgets via inference (as shown in
Fig. 1a). Note that the Pareto optimal architectures un-
der different budgets should lie on a distribution, i.e., the
Pareto frontier over model performance and computational
cost [28]. We propose to jointly learn the whole Pareto
frontier (i.e., improving the blue curve to the red curve in
Fig. 1b) instead of finding a single Pareto optimal architec-
ture. During training, we randomly sample budgets from a
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(a) Illustration of generating feasible architectures for diverse budgets using PNAG.
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(b) Comparisons between PNAG and conventional NAS.

Figure 1. We show an illustration of how to apply our PNAG to generate feasible architectures for diverse computational budgets and the
comparisons between our PNAG and conventional NAS methods. (a) PNAG takes an arbitrary computational budget as input and flexibly
generates architectures. (b) Our PNAG learns the whole Pareto frontier rather than finding discrete architectures. Here, the accuracy is
measured on the constructed validation set.

predefined distribution and maximize the expected reward
of the searched architectures to approximate the ground-
truth Pareto frontier. It is worth noting that learning the
Pareto frontier is able to share the learned knowledge across
different budgets and greatly improve the search results in
practice (see results in Table 3). Furthermore, when evaluat-
ing architectures under diverse budgets, we design an archi-
tecture evaluator that learns a Pareto dominance rule to de-
termine which architecture is a relatively better one in pair-
wise comparisons. Unlike the existing methods, we high-
light that the proposed PNAG designs architectures through
a generation process instead of search, which is very effi-
cient (see results in Table 4) and practically useful in real-
world model design and deployment.

We summarize the contributions of our paper as follows.

• Instead of designing architectures for a single budget,
we propose a Pareto-aware Neural Architecture Gen-
erator (PNAG) which is only trained once and flexi-
bly generates effective architectures for arbitrary bud-
get via inference (see Fig. 1a). In this way, our archi-
tecture generation process becomes very efficient and
practically useful in real-world applications.

• To train PNAG, we explicitly learn the Pareto frontier
by maximizing the expected reward of the searched ar-
chitectures over diverse budgets. Interestingly, learn-
ing the Pareto frontier shares the learned knowledge
across the search processes under diverse budgets and
greatly improves the search results (see Table 3).

• Since an architecture should have different re-
wards/scores under different budgets, we propose an
architecture evaluator to adaptively evaluate architec-
tures for any given budget. To train the evaluator, we
propose to learn a Pareto dominance rule which deter-
mines whether an architecture is better than the other
in pairwise comparisons.

• We measure the latencies on three hardware platforms
and take them as the computational budgets to gen-
erate feasible architectures. Extensive experiments
show that the architectures produced by PNAG con-
sistently outperform the architectures searched by ex-
isting methods across different budgets and platforms.

2. Related Work
In this section, we provide a brief overview of existing

work on neural architecture search, architecture design un-
der resource constraints, as well as Pareto frontier learning.

2.1. Neural Architecture Search (NAS)

Unlike manually designing architectures with expert
knowledge, NAS seeks to automatically design more ef-
fective architectures [23, 33, 68, 69, 72]. Existing NAS
methods can be roughly divided into three categories,
namely, reinforcement-learning-based methods, evolution-
ary approaches, and gradient-based methods. Specifically,
reinforcement-learning-based methods [42, 44, 57, 59, 73]
learn a controller to produce architectures. Evolutionary
approaches [7, 34, 36, 39, 45, 46] search for promising ar-
chitectures by gradually evolving a population. Gradient-
based methods [10,11,13,35,66] relax the search space to be
continuous and optimize architectures by gradient descent.
Besides designing effective search algorithms, many efforts
have also been made to improve the accuracy of architec-
ture evaluation [14, 65, 70]. Unlike these methods that find
a single architecture, one can design different architectures
by training an architecture generator. Specifically, Rand-
Wire [64] designs stochastic network generators to generate
randomly wired architectures. NAGO [48] is the first work
to learn an architecture generator and proposes a hierarchi-
cal and graph-based search space to reduce the optimiza-
tion difficulty. However, these generated architectures tend
to perform very similarly (i.e., low diversity) in terms of
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Figure 2. Overview of the proposed PNAG. Our PNAG mainly consists of two modules: an architecture generator f(·; θ) and an archi-
tecture evaluator R(·|·;w). Specifically, we build the generator model based on an LSTM network, which takes a budget constraint B as
input and produces a promising architecture αB that satisfies the budget constraint, i.e., c(α). To optimize the generator model, we design
the evaluator using three fully connected (FC) layers to estimate the performance of the generated architectures αB . The orange and green
boxes in (c) denote the embeddings of architecture αB and the budget w.r.t. B, respectively.

both model performance and computational cost [48, 64].
Thus, these architectures may not satisfy an arbitrary re-
quired budget. In other words, they still have to learn a
generator for a required budget to produce architectures.

2.2. Architecture Design under Constraints

Many efforts have been made in designing architectures
under a resource constraint [1,3,22,26,32,56]. Specifically,
PONAS [26] builds an accuracy table to find architectures
satisfying a single budget constraint. TuNAS [1] proposes
a reward function to restrict the latency of the searched ar-
chitecture, which omits additional hyper-parameter tuning.
Related to our work, SGNAS [27] proposes an architecture
generator which generates architectures for specific budget
constraints. Nevertheless, SGNAS optimizes a regression
loss w.r.t. budget constraint and the resultant architecture
does not necessarily have lower cost than the target budget,
i.e., violating the budget. More critically, SGNAS considers
a fixed hyper-parameter λ to balance the regression loss and
a classification loss. Due to the large diversity among archi-
tectures, their accuracy and computational cost may vary
significantly across different budgets, also leading to sub-
optimal search results (See Table 1).

2.3. Pareto Frontier Learning

Given multiple objectives, Pareto frontier learning aims
to find a set of Pareto optimal solutions over them. Most
methods exploit evolutionary algorithms [16, 29] to solve
this problem. Inspired by them, many efforts have been
made to simultaneously find a set of Pareto optimal ar-

chitectures over accuracy and computational cost [12, 17].
Recently, NSGANetV1 [41] presents an evolutionary ap-
proach to find a set of trade-off architectures over multi-
ple objectives in a single run. NSGANetV2 [38] further
presents two surrogates (at the architecture and weights
level) to produce task-specific models under multiple com-
peting objectives. Given a target budget, these methods may
manually select an appropriate architecture from a set of
searched architectures. However, given limited population
size, the selected architectures do not necessarily satisfy a
required budget. More critically, all the searched architec-
tures are fixed after search and cannot be easily adapted for
a slightly changed budget. Thus, how to learn the Pareto
frontier and use it to generate architectures for arbitrary
budget in a flexible way still remains unexplored.

3. Pareto-aware Architecture Generation

In this paper, we focus on the architecture genera-
tion problem and intend to generate effective architectures
for diverse computational budgets via inference instead of
search/training. Note that the optimal architectures under
different budgets lie on the Pareto frontier over model per-
formance and computational cost [28]. Thus, we develop a
Pareto-aware Neural Architecture Generator (PNAG) to ex-
plicitly learn the whole Pareto frontier. To locate the best
architecture from the frontier for a given budget, we build
our PNAG as a conditional model which takes the budget
as input and directly produces a feasible architecture. In
Section 3.1, we depict our architecture generator model and
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present a novel learning algorithm to learn the Pareto fron-
tier. In Section 3.2, we propose an architecture evaluator,
as well as its training algorithm, to adaptively evaluate ar-
chitectures under different budgets. Algorithm 1 shows the
whole training process of PNAG.

3.1. Learning the Architecture Generator f(B; θ)

We seek to build an architecture generator model to dy-
namically and flexibly produce effective architectures for
any given computational budget. Let B be a budget (e.g., la-
tency or MAdds) which can be considered as a random vari-
able drawn from some distribution B, namely B∼B. Let Ω
be an architecture search space. For any architecture α ∈ Ω,
we use c(α) and Acc(α) to measure the cost and validation
accuracy of α, respectively.

Since an architecture can be represented as a sequence of
tokens (each token denotes a setting of a layer, e.g., width
or kernel size) [44, 73], we cast the architecture genera-
tion problem as a sequential decision problem and build
the architecture generator f(B; θ) using an LSTM network.
As shown in Fig. 2, the generator takes a budget B as in-
put and generates architectures αB=f(B; θ) (satisfying the
constraint c(αB) ≤ B) by sequentially predicting the token
sequences, i.e., the depth, width, and kernel size of each
layer. Here, θ denotes the learnable parameters. Note that
the optimal architecture under a specific budget should lie
on the Pareto frontier over model performance and compu-
tational cost. To make the generator generalize to arbitrary
budget, we seek to learn the Pareto frontier rather than find-
ing discrete architectures. In the following, we first illus-
trate our training method in Section 3.1.1 and then discuss
how to represent a arbitrary budget in Section 3.1.2.

3.1.1 Training Method of f(B; θ)

To illustrate the training objective of our method, we first
revisit the NAS problem with a single budget and then gen-
eralize it to the problem with diverse budgets.

NAS under a single budget. Since it is non-trivial to
directly find the optimal architecture [73], by contrast, one
can first learn a policy π(·; θ) and then conduct sampling
from it to find promising architectures, i.e., α ∼ π(·; θ).
Given a budget B, the optimization problem becomes

max
θ

Eα∼π(·;θ) [R (α|B;w)] , s.t. c(α) ≤ B. (1)

Here, π(·; θ) is the learned policy parameterized by θ, and
R(α|B;w) is the reward function parameterized by w that
measures the joint performance of both the accuracy and
latency of the architecture α. Eα∼π(·;θ) [·] is the expectation
over the searched architectures.

NAS under diverse budgets. Problem (1) only focuses
on one specific budget constraint. In fact, we seek to learn

Algorithm 1 Training method of PNAG.
Require: Search space Ω, latency distribution B, learning rate η,

training data set D, parameters M , N , and K.
1: Initialize model parameters θ for the generator and w for the

architecture evaluator.
// Collect the architectures with accuracy and latency

2: Train a supernet S on D.
3: Randomly sample architectures {βi}Mi=1 from Ω.
4: Construct tuples {(βi, c(βi),Acc(βi))}Mi=1 using S.

// Learn the architecture evaluator
5: while not convergent do
6: Sample a set of latencies {Bk}Kk=1 from B.
7: Update the architecture evaluator by:
8: w ← w − η∇wL(w).
9: end while

// Learn the architecture generator
10: while not convergent do
11: Sample a set of latencies {Bk}Kk=1 from B.
12: Obtain {α(i)

Bk
}Ni=1 from π(·|Bk; θ) for each Bk.

13: Update the generator via policy gradient by:
14: θ ← θ + η∇θJ(θ).
15: end while

the Pareto frontier over the whole range of budgets (e.g., la-
tency). However, this problem is hard to solve since there
may exist infinite Pareto optimal architectures with differ-
ent computational cost. To address this, one can learn an ap-
proximated Pareto frontier by finding a set of uniformly dis-
tributed Pareto optimal points [20]. Here, we evenly sample
K budgets from the range of latency and maximize the ex-
pected reward over them. Thus, the problem becomes

max
θ

EB∼B

[
Eα

B
∼π(·|B;θ) [R (αB|B;w)]

]
,

s.t. c(αB) ≤ B, B ∼ B,
(2)

where EB∼B [·] denotes the expectation over the distribu-
tion of budget. Unlike Eqn. (1), π(·|B; θ) is the learned
policy conditioned on the budget of B. In practice, we use
policy gradient to learn the architecture generator. To en-
courage exploration, we follow [21, 44] to introduce an en-
tropy regularization. Please refer to the supplementary ma-
terials for more details.

Advantages over existing NAS methods. Our PNAG
exhibits two advantages over existing NAS methods. First,
our PNAG is able to share the learned knowledge across
the search processes under different budgets, which greatly
improves the search results (see Table 3). The main rea-
son is that, once we find a good architecture for one bud-
get, we may easily obtain a competitive architecture for a
larger/smaller budget by slightly modifying some compo-
nents (model width or kernel size). Second, given a well-
trained PNAG, we can directly use it to generate feasible
architectures for any required budget via inference, which
is very efficient and practically useful (see Table 4).
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3.1.2 Vector Representation of Budget Bounds

To learn the architecture generator, we still have to con-
sider how to represent the budget bound B as the inputs
of PNAG. As mentioned before, our PNAG considers K
discrete budgets during training. To represent different bud-
gets, we use an embedding vector [44] to represent different
budgets (See details in Section 3.1.2). Following [44], we
build a learnable embedding vector b = g(B) for each sam-
pled budget B. We incorporate these learnable embedding
vectors into the parameters of the architecture generator and
train them jointly. In this way, we are able to automatically
learn the vectors of these budgets and encourage PNAG to
produce feasible architectures.

As mentioned before, we only sample a set of discrete
budgets to train PNAG. To accommodate all the budgets
belonging to a continuous space, we propose an embedding
interpolation method to represent a budget with any possi-
ble value. Specifically, we perform a linear interpolation
between the embedding of two adjacent discrete budgets to
represent the considered budgets. For a target budget B be-
tween two sampled budgets B1<B<B2, the linear interpo-
lation of the budget vector b can be computed by

b = g(B) = ξg(B1)+(1−ξ)g(B2), where ξ =
B2−B

B2−B1
,

Here, ξ ∈ [0, 1] denotes the weight of B1 in interpolation.

3.2. Learning the Architecture Evaluator R(·|B;w)

Given diverse budgets, an architecture should have dif-
ferent rewards/scores regarding whether it satisfies the cor-
responding budget constraint. However, it is non-trivial to
manually design a reward function for each budget. Instead,
we propose to learn an architecture evaluator to automat-
ically predict the score. To this end, we build an evalu-
ator with three fully connected layers. Given any archi-
tecture β and a budget B, we seek to predict the perfor-
mance R(β|B;w) of β under the budget B. Since we have
no ground-truth labels for training, following [2, 9, 19], we
learn the evaluator via pairwise architecture comparisons.

3.2.1 Training Method of R(·|B;w)

To obtain a promising evaluator, we train the architecture
evaluator using a pairwise ranking loss, which has been
widely used in ranking problems [2, 9, 19]. Specifically,
we collect M architectures with accuracy and latency, and
record them as a set of triplets {(βi, c(βi),Acc(βi))}Mi=1.
Thus, given M architectures, we have M(M−1) architec-
ture pairs {(βi, βj)} in total after omitting the pairs with
themselves. Assuming that we have K budgets, the pair-

wise ranking loss becomes

L(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j ̸=i

ϕ
(
d(βi, βj , Bk)

·
[
R(βi|Bk;w)−R(βj |Bk;w)

])
,

(3)
where d

(
β1, β2, Bk

)
denotes a function to indicate whether

βi is better than βj under the budget Bk, as will be dis-
cussed in Section 3.2.2. ϕ(z) = max(0, 1 − z) is a hinge
loss function and we use it to enforce the predicted ranking
results R(βi|Bk;w) − R(βj |Bk;w) to be consistent with
the results of d(βi, βj , Bk) obtained by a comparison rule
based on Pareto dominance.

3.2.2 Pareto Dominance Rule

To compare the performance between two architectures,
we need to define a reasonable function d

(
β1, β2, B

)
in

Eqn. (3). To this end, we define a Pareto dominance to guide
the design of this function. Specifically, Pareto dominance
requires that the quality of an architecture should depend on
both the satisfaction of budget and accuracy. That means,
given a specific budget B, a good architecture should be the
one with the cost lower than or equal to B and with high ac-
curacy. In this sense, we use Pareto dominance to compare
two architectures and judge which one is dominative.

Given any two architectures β1, β2, if both of them sat-
isfy the budget constraints (namely c(β1) ≤ B and c(β2) ≤
B), then β1 dominates β2 if Acc(β1) ≥ Acc(β2). More-
over, when at least one of β1, β2 violates the budget con-
straint, clearly we have that β1 dominates β2 if c(β1) ≤
c(β2). Formally, we define the Pareto dominance function
d
(
β1, β2, B

)
to reflect the above rules:

d
(
β1, β2, B

)
=



1, if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) ≥ Acc(β2));

−1, else if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) < Acc(β2));

1, else if c(β1) ≤ c(β2);

−1, otherwise.
(4)

Based on Eqn. (4), we have d(β1, β2, B) = −d(β2, β1, B)
if β1 ̸= β2, making it a symmetric metric w.r.t. β1 and β2.

Remark 1 The accuracy constraint Acc(β1) ≥ Acc(β2)
plays an important role in the proposed Pareto dominance
function d

(
β1, β2, B

)
. Without the accuracy constraint, we

may easily find the architectures with very low computation
cost and poor performance (See results in Table 2).
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Figure 3. Comparisons of the architectures obtained by different
methods on a mobile device (Qualcomm Snapdragon 821).

Figure 4. Comparisons of the Pareto frontiers of the generated
architectures between NAS-MO and PNAG. Here, we report the
accuracy evaluated on the constructed validation set.

(a) Ground-truth latency histogram. (b) Generation results with B=110ms. (c) Generation results with B=140ms.

Figure 5. Latency histograms of sampled architectures on mobile devices. (a) Ground-truth latency histogram of 16, 000 architectures
that are uniformly sampled from the search space. (b) The latency histogram of 1, 000 architectures sampled by different methods given
B=110ms. (c) The latency histogram of 1, 000 architectures sampled by different methods given B=140ms.

4. Experiments

We apply the proposed PNAG to produce architec-
tures under diverse latency budgets evaluated on three
different hardware platforms, including a mobile de-
vice (equipped with a Qualcomm Snapdragon 821 pro-
cessor), a CPU processor (Intel Core i5-7400), and a
GPU card (NVIDIA TITAN X). For convenience, we use
“Architecture-B” to represent the generated architecture
that satisfies the latency budget B, e.g., PNAG-80. The
results on CPU and GPU can be found in the supplemen-
tary. Our code and all the pretrained models are available at
https://github.com/guoyongcs/PNAG.

4.1. Implementation Details

Following [3], we use MobileNetV3 [25] as the back-
bone to build the search space [3,26]. We train the architec-
ture evaluator for 250 epochs. The learning rate is initial-
ized to 0.1 and decreased to 1×10−3 with a cosine anneal-
ing. We emphasize that training the architecture evaluator
is very efficient and only takes less than 0.2 GPU hours. We

train the architecture generator for 120k iterations using an
Adam optimizer with a learning rate of 3×10−4. To investi-
gate the effectiveness of the proposed method, we compare
our PNAG with two variants: 1) EVO uses the evolutionary
search method [45] to perform architecture search. 2) NAS-
MO conducts architecture search based by exploiting the
multi-objective reward [53]. More implementation deatils
can be found in the supplementary.

4.2. Architecture Search for Mobile Devices

In this experiment, we train our PNAG to produce feasi-
ble architectures for the latency budgets based on a mobile
device (Qualcomm Snapdragon 821 processor). Based on
the proposed budget interpolation method in Section 3.1.2,
our PNAG is flexible to generate feasible architectures for
any arbitrary budget. To evaluate our method, for simplic-
ity, we manually choose 5 latency budgets {80ms, 110ms,
140ms, 170ms, 200ms} and reports the results under each
of them. The other budgets are also possible.

We compare our PNAG with state-of-the-art methods
given different latency budgets evaluated on he considered
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Table 1. Comparisons with state-of-the-art architectures on mobile devices. ∗ denotes the best architecture reported in the original paper.
“-” denotes the results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

MobileNetV3-Large (0.75×) [25] 93.0 73.3 - 4.0 155 -
MobileNetV2 (1.0×) [49] 90.3 72.0 - 3.4 300 -

EVO-80 76.8 77.1 93.3 6.1 350 0.7
NAS-MO-80 77.6 76.6 93.2 7.9 340 0.7

PNAG-80 79.9 78.3 94.0 7.3 349 0.7

FBNet-A [62] 91.7 73.0 - 4.3 249 9.0
ProxylessNAS-Mobile [4] 97.3 74.6 - 4.1 319 8.3

MobileNetV3-Large (1.0×) [25] 107.7 75.2 - 5.4 219 -
EVO-110 109.3 78.4 94.0 10.2 482 0.7

NAS-MO-110 106.3 78.0 93.8 8.4 478 0.7
PNAG-110 106.8 79.4 94.5 9.9 451 0.7

ProxylessNAS-GPU [4] 123.3 75.1 - 7.1 463 8.3
MnasNet-A1 (1.0×) [53] 120.7 75.2 92.5 3.4 300 ∼3792

FBNet-C [62] 135.2 74.9 - 5.5 375 9.0
EVO-140 133.7 78.7 94.1 9.1 488 0.7

NAS-MO-140 139.0 78.6 94.0 9.5 486 0.7
PNAG-140 127.8 79.8 94.7 9.2 492 0.7

NSGANetV1 [41] - 76.2 93.0 5.0 585 27
PONAS-C [26] 145.1 75.2 - 5.6 376 8.8
P-DARTS [11] 168.7 75.6 92.6 4.9 577 3.8

EVO-170 168.3 79.2 94.4 10.7 661 0.7
NAS-MO-170 165.0 78.7 94.4 8.5 584 0.7

PNAG-170 167.1 80.3 95.0 10.0 606 0.7

PC-DARTS [66] 194.1 75.8 92.7 5.3 597 0.1
EfficientNet B0 [54] 237.7 77.3 93.5 5.3 390 -

Cream-L [43] - 80.0 94.7 9.7 604 12
OFA∗ [3] 201.9 80.2 95.1 9.1 743 51.7
EVO-200 195.9 79.8 94.5 11.0 783 0.7

NAS-MO-200 187.4 79.2 94.4 9.1 630 0.7
PNAG-200 193.9 80.5 95.2 10.4 724 0.7

mobile device. In Fig. 3, we compare the architectures
searched by different methods in terms of both accuracy
and latency. We draw the following conclusions. First, our
PNAG (red line) consistently generates better architectures
than the considered variants EVO and NAS-MO under di-
verse budgets. Second, our best architecture (the rightmost
point of the red line) yields a better trade-off between ac-
curacy and latency than a strong baseline OFA∗, i.e., the
best architecture reported in [3]. For convenience, we put
more detailed comparison results in Table 1. Given diverse
latency budgets, our PNAG greatly outperforms the com-
pared NAS methods in terms of the accuracy of the gen-
erated/searched architectures. Specifically, our PNAG-200
yields the best accuracy of 80.5, which is better than the
best reported results in OFA [3], namely OFA∗. We also
highlight that, besides the superior performance, the total
training cost of our PNAG is about 0.7 GPU days, which is
much more efficient than most SOTA NAS methods.

Moreover, we compare the searched frontiers of differ-

ent methods and show the comparisons of Pareto frontiers
in Fig. 4. We plot all the architectures produced by different
methods to form the Pareto frontier. Specifically, we use the
architectures searched by multiple independent runs under
different budgets for NAS-MO. For PNAG, we use linear
interpolation to generate architectures that satisfy different
budgets. From Fig. 4, our PNAG finds a better frontier than
NAS-MO due to the shared knowledge across the search
process under different budgets. We also visualize the la-
tency histograms of the architectures evaluated on mobile
devices in Fig. 5b and Fig. 5c. Given latency budgets of
110ms and 140ms, NAS-MO is prone to produce architec-
tures that cannot satisfy the target budgets. These results
show that it is hard to design the multi-objective reward to
obtain the preferred architectures. Instead, PNAG uses the
Pareto dominance reward to encourage the architectures to
satisfy the desired budget constraints. In this sense, most
architectures generated by our PNAG fulfill the target bud-
gets. We put more visual results in the supplementary.
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Table 2. Comparisons of different reward functions based on PNAG. We report the latency on mobile devices.

Reward B1=80ms B2=110ms B3=140ms B4=170ms B5=200ms
Acc. (%) Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms)

Multi-objective Reward [53] 77.0 77.6 78.5 106.3 78.9 139.0 79.3 165.1 79.5 187.3
Multi-objective Absolute Reward [1] 78.1 76.8 78.9 109.2 79.2 130.1 79.5 163.6 79.9 197.5

Pareto Dominance Reward (w/o acc. constraint) 73.8 74.4 73.6 64.9 74.3 66.5 73.9 70.0 74.0 70.8
Pareto Dominance Reward (Ours) 78.4 79.9 79.5 106.8 79.8 127.8 80.3 167.1 80.5 193.9

Table 3. Effect of different search strategies on the performance of PNAG. We report the accuracy on ImageNet.

Search Strategy B1=80ms B2=110ms B3=140ms B4=170ms B5=200ms
Repeated Independent Search 76.7 78.6 79.1 79.4 79.7

Pareto Frontier Search 78.4 79.5 79.8 80.3 80.5

Table 4. Comparisons of the time cost for architecture genera-
tion/design among different methods.

Method PNAG PC-DARTS ENAS DARTS

Time Cost ≤5 s 2 hours 12 hours 4 days

4.3. Further Experiments

Effect of the Pareto Dominance Reward We investigate
the effectiveness of the Pareto frontier learning strategy and
the Pareto dominance reward. From Table 2 and Table 3,
the Pareto frontier learning strategy tends to find better ar-
chitectures than the independent search process due to the
shared knowledge across the search processes under differ-
ent budgets. Compared with two existing multi-objective
rewards [1, 53], the Pareto dominance reward encourages
the generator to produce architectures that satisfy the con-
sidered budget constraints. Moreover, if we do not consider
accuracy constraint in the Pareto dominance reward, the ar-
chitectures have low latency and poor accuracy. With both
the Pareto frontier learning strategy and the Pareto domi-
nance reward, our method yields the best results.
Comparisons of Architecture Generation Cost In this
part, we compare the architecture generation cost of differ-
ent methods for 5 different budgets and show the compari-
son results in Table 4. Given an arbitrary target budget, ex-
isting NAS methods need to perform an independent search
to find feasible architectures. By contrast, since PNAG di-
rectly learns the whole Pareto frontier, we are able to gen-
erate promising architectures based on a learned generator
model via inference. Thus, the architecture generation cost
of PNAG is much less than other methods (See Table 4).
In this sense, we greatly accelerate the architecture design
process in real-world scenarios. These results demonstrate
the efficiency of our PNAG in generating architectures.
Effect of K on the Generation Performance We inves-
tigate the effect of K on the generation performance of
PNAG. Note that we evenly select K budgets from the range
of latency. To this end, we consider several candidate values

Table 5. Effect of K on the generation performance of PNAG with
the target latency B=140ms on ImageNet.

K 1 2 5 10 30

Top-1 Acc. (%) 78.5 79.1 79.4 79.8 79.8

of K ∈ {2, 5, 10, 30}. We show the Top-1 accuracies of the
architectures generated by PNAG with different K on Ima-
geNet in Table 5. Since a small number of selected budgets
K cannot accurately approximate the ground-truth Pareto
frontier or provide enough shared knowledge between dif-
ferent search processes, our method yields poor results with
K = 2. When we increase K larger than 5, we are able to
greatly improve the performance of the generated architec-
tures. From Table 5, our method yields the best result when
K ≥ 10 and we use this setting in the experiments.

5. Conclusion
In this paper, we focus on designing effective and fea-

sible architectures via an architecture generation process.
To this end, we have proposed a novel Pareto-aware Neu-
ral Architecture Generator (PNAG) which only needs to be
trained once and dynamically generates promising architec-
tures satisfying any given budget via inference. Based on
the learned Pareto frontier, our PNAG consistently outper-
forms existing NAS methods across diverse budgets. Exten-
sive experiments on three hardware platforms demonstrate
the effectiveness of the proposed method.
Acknowledgements. This work was partially supported by
Key-Area Research and Development Program of Guang-
dong Province (2019B010155002), National Natural Sci-
ence Foundation of China (NSFC) 61836003 (key project),
National Natural Science Foundation of China (NSFC)
62072190, Ministry of Science and Technology Founda-
tion Project 2020AAA0106900, Key Realm R&D Pro-
gram of Guangzhou 202007030007, Program for Guang-
dong Introducing Innovative and Enterpreneurial Teams
2017ZT07X183.

2255



References
[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V. Le. Can weight
sharing outperform random architecture search? an inves-
tigation with tunas. In IEEE International Conference on
Computer Vision, pages 14311–14320, 2020. 3, 8

[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Greg Hullender. Learning to
rank using gradient descent. In International Conference on
Machine Learning, pages 89–96, 2005. 5

[3] Han Cai, Chuang Gan, and Song Han. Once for all: Train
one network and specialize it for efficient deployment. In In-
ternational Conference on Learning Representations, 2020.
3, 6, 7

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2019.
7

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, ed-
itors, European Conference on Computer Vision, volume
12346, pages 213–229, 2020. 1

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, European Conference on Computer Vi-
sion, volume 11211, pages 833–851, 2018. 1

[7] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In IEEE International Conference on Computer Vi-
sion, pages 12250–12260, 2021. 2

[8] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neu-
ral architecture search on imagenet in four gpu hours:
A theoretically inspired perspective. arXiv preprint
arXiv:2102.11535, 2021. 1

[9] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and
Hang Li. Ranking measures and loss functions in learning
to rank. In Advances in Neural Information Processing Sys-
tems, pages 315–323, 2009. 5

[10] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. In International Conference on Learning
Representations, 2021. 2

[11] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In IEEE International Confer-
ence on Computer Vision, pages 1294–1303, 2019. 2, 7

[12] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-
Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan, Yu-
Ting Chen, Wei Wei, and Da-Cheng Juan. Searching to-
ward pareto-optimal device-aware neural architectures. In
Proceedings of the International Conference on Computer-
Aided Design, pages 1–7, 2018. 3

[13] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. DARTS-: robustly stepping out
of performance collapse without indicators. In International
Conference on Learning Representations, 2021. 2

[14] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In IEEE International Conference on Com-
puter Vision, pages 12219–12228. IEEE, 2021. 2

[15] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew
Yu, Peter Vajda, and Joseph E. Gonzalez. Fbnetv3: Joint
architecture-recipe search using predictor pretraining. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 16276–16285, June 2021. 1

[16] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197, 2002. 3

[17] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Dpp-net: Device-aware progressive search for
pareto-optimal neural architectures. In European Conference
on Computer Vision, pages 517–531, 2018. 3

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1

[19] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer.
An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4(Nov):933–969,
2003. 5

[20] Crina Grosan and Ajith Abraham. Generating uniformly
distributed pareto optimal points for constrained and uncon-
strained multicriteria optimization. International Conference
on Informatics and Systems, pages 27–29, 2008. 4

[21] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Zhipeng Li,
Jian Chen, Peilin Zhao, and Junzhou Huang. Towards accu-
rate and compact architectures via neural architecture trans-
former. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 4

[22] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560,
2020. 3

[23] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-
nas: Efficient neural architecture search via mixed-level re-
formulation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 11990–11999, 2020. 2

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016. 1

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

2256



Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In IEEE International Conference on Computer
Vision, pages 1314–1324, 2019. 6, 7

[26] Sian-Yao Huang and Wei-Ta Chu. Ponas: Progressive one-
shot neural architecture search for very efficient deployment.
arXiv preprint arXiv:2003.05112, 2020. 3, 6, 7

[27] Sian-Yao Huang and Wei-Ta Chu. Searching by generating:
Flexible and efficient one-shot nas with architecture gener-
ator. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 983–992, 2021. 3

[28] Il Yong Kim and Oliver L De Weck. Adaptive weighted-
sum method for bi-objective optimization: Pareto front
generation. Structural and Multidisciplinary Optimization,
29(2):149–158, 2005. 1, 3

[29] Mifa Kim, Tomoyuki Hiroyasu, Mitsunori Miki, and Shinya
Watanabe. SPEA2+: improving the performance of the
strength pareto evolutionary algorithm 2. In Parallel Prob-
lem Solving from Nature, volume 3242, pages 742–751.
Springer, 2004. 3

[30] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1(4):541–551,
1989. 1

[31] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1989–1998, 2020. 1

[32] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,
Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, and
Yingyan Lin. Hw-nas-bench: Hardware-aware neural archi-
tecture search benchmark. arXiv preprint arXiv:2103.10584,
2021. 3

[33] Guohao Li, Guocheng Qian, Itzel C. Delgadillo, Matthias
Müller, Ali K. Thabet, and Bernard Ghanem. SGAS: se-
quential greedy architecture search. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1617–
1627, 2020. 2

[34] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot
nas for high-performance deep image recognition. In IEEE
International Conference on Computer Vision, 2021. 2

[35] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 2

[36] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G
Yen, and Kay Chen Tan. A survey on evolutionary neural
architecture search. IEEE transactions on neural networks
and learning systems, 2021. 2

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
IEEE International Conference on Computer Vision, pages
9992–10002, 2021. 1

[38] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang
Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2: Evolu-
tionary multi-objective surrogate-assisted neural architecture

search. In European Conference on Computer Vision, pages
35–51. Springer, 2020. 1, 3

[39] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang
Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neu-
ral architecture transfer. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 43(9):2971–2989, 2021. 2

[40] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
Nsga-net: neural architecture search using multi-objective
genetic algorithm. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 419–427, 2019. 1

[41] Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Bod-
deti. Multi-objective evolutionary design of deep convolu-
tional neural networks for image classification. IEEE Trans-
actions on Evolutionary Computation, 2020. 3, 7

[42] Ramakanth Pasunuru and Mohit Bansal. Continual and
multi-task architecture search. In Anna Korhonen, David R.
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