
Hardware-aware NAS by Genetic Optimisation with a Design Space Exploration
Simulator

Lotte Hendrickx1, Arne Symons2, Wiebe Van Ranst1, Marian Verhelst2, Toon Goedemé1
1EAVISE-PSI-ESAT, KU Leuven

Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
2MICAS, Department of Electrical Engineering, KU Leuven

Kasteelpark Arenberg 10, 3310 Leuven, Belgium
lotte.hendrickx@kuleuven.be

Abstract

Neural Architecture Search (NAS) has shown its poten-
tial in aiding in the development of more efficient neural
networks. In regard to hardware, efficiency often equates to
power usage or latency. Over the years many researchers
have incorporated hardware performance into their NAS
experiments. However, accurately modelling hardware per-
formance is a challenge in itself. We look to the field of de-
sign space exploration (DSE) for more precise performance
metrics on neural network accelerators and incorporate the
results into our NAS search. Our experiments show that
doing so achieves a significant reduction in latency and en-
ergy consumption. The approach we propose also enables
detailed insight in the breakdown of the energy consumption
and latency of the optimised model.

1. Introduction
The introduction of Neural Architecture Search (NAS)

has helped accelerate developments in deep learning in the
past few years. NAS aids in finding the most suitable neu-
ral networks for a specific goal instead of being handcrafted
by experts to suit one specific purpose. In many real-life
applications of artificial intelligence compute and memory
resources are limited. These limitations make it difficult
to use off-the-shelf deep learning models that are not opti-
mal for the target hardware. In these cases NAS’ capabil-
ities in discovering new neural networks can be leveraged
to overcome these challenges. For example, NAS can take
the specifics of certain types of hardware into account when
searching for optimal solutions to the problem at hand by
looking for smaller, faster and more energy efficient neural
networks. A plethora of NAS strategies have been proposed
in the past few years. Many of these strategies are multi-
objective and therefore offer the possibility to find an opti-

mal neural network that satisfies multiple requirements. De-
pending on the implementation, some of these existing NAS
algorithms already take into account some form of hardware
performance as well as the performance of the neural net-
work. For example, hardware performance can be measured
through latency or by calculating the size of the neural net-
work. More in-depth metrics can provide better insight but
are more complicated and require expert knowledge on dif-
ferent hardware architectures.

Alongside the algorithmic deep learning improvements,
specialized application-specific integrated circuit (ASIC)
hardware architectures to accelerate the inference of deep
learning workloads have been proposed [3,4,13,31,40]. Ac-
celeration performance has drastically improved in the last
decade, but improvements are slowing down due to the end
of traditional transistor scaling [39]. As a result, optimally
mapping these algorithmic workloads onto the hardware re-
sources becomes vital for efficient inference. To this extent,
multiple design space exploration (DSE) frameworks have
been developed that model the hardware architecture at a
higher level of abstraction and optimise the mapping of the
workload onto the architecture [14, 29, 34]. Because these
frameworks rely on an analytical cost model to estimate the
hardware performance, they are orders of magnitude faster
than actually running the workload on the hardware.

Combining both NAS and these frameworks gives re-
searchers detailed insights. The outputs of the framework
can be used as an optimisation objective for NAS, but also
give a detailed breakdown of their mapping cost in gen-
eral. They also allow researchers to optimise their neural
networks for different hardware architectures without need-
ing physical access to them. In turn also providing feedback
not only on the design of the neural network, but also on the
performance of the different accelerators.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2275



2. Related Work
In this section we give an overview of existing work in

the fields of NAS and DSE.

2.1. Neural Architecture Search

NAS and all its related facets have been greatly stud-
ied during the past few years. Many different types of
algorithms have been implemented to serve the purpose
of the algorithm that drives the search process. Popu-
lar options include genetic algorithms [20, 22, 35, 45], re-
inforcement learning (RL) [38, 50], differentiable search
[2, 19] and many other types of optimisation algorithms
such as Bayesian optimisation and particle swarm optimi-
sation [8, 32, 43].
Due to NAS having the possibility to take into account mul-
tiple optimisation objectives, multi-objective (meaning two
or more objectives to be satisfied by the NAS algorithm)
have almost become standard practice in NAS research. Up
until now, hardware and performance related metrics in-
cludes model size, amount of compute operations needed
to run the neural network (MACs or FLOPs), consumed
energy or latency. A first option for estimating the hard-
ware related costs are metrics that don’t require any phys-
ical type of hardware. These are metrics such as multiply-
accumulate operations (MACs) or floating point operations
(FLOPs) that can be computed or model size, which is a
characteristic of the neural network [2, 9, 22, 23, 48].

NAS approaches that are aware of metrics involving
hardware performance require additional steps to provide
these metrics to the algorithm. We can distinguish different
strategies in the NAS experiments involving hardware [1].
One possibility is adding the target hardware in the loop
and measuring the metrics the researchers are interested in.
This is an approach that is often used for obtaining the to-
tal latency when running the neural network on the the de-
vice [18,38] but can be used for energy as well [11]. An al-
ternative to this strategy is using a pre-defined lookup table
(LUT) to get the latency for a specific neural network ar-
chitecture on a given type of hardware [15,44,49]. Another
widely used technique is building and training prediction
models. These prediction models are generally based on a
wide variety of machine learning (ML) algorithms, rang-
ing from multilayer perceptrons (MLPs) and other types of
neural networks [26, 27, 42] to random forests [16]. A final
category consists of making an (often rather rough) estima-
tion based on analysing the operations in the neural network
with the option of adding some form of mathematical term
to account for the specifics of the hardware [24, 28].
NAS can also be used as part of a hardware-software co-
design method. Since these methods are also modelling
(part of) the accelerators they need accurate ways to predict
their performance. Similar methods to the ones mentioned
above are used, including machine learning [5, 10], FLOPs

[18] and analysing the operators with a compensation factor
for memory based on on device measurements [25].

2.2. NAS with Design Space Exploration Simulators

The MAESTRO framework [14], a tool for deep neu-
ral network (DNN) accelerator analysis, has been used in
multiple works to provide energy and latency estimations
to NAS searches [21, 46]. Timeloop [34] similarly pre-
dicts energy and latency performance for mapping of DNNs
onto accelerator architectures. While these frameworks
provide more insight than simply counting the number of
MAC operations or the DNN model size, modelling algo-
rithmic workloads is cumbersome, their underlying archi-
tectural templates have limited expressiveness and their la-
tency modelling is simple.

The ZigZag exploration framework [29] provides map-
ping optimisations and accurate hardware performance es-
timations through an enhanced latency model [30] that takes
into account on-chip memory stalls due to limited band-
width.

In this work we will investigate the results of combining
NAS with a state-of-the-art HW mapping and DSE frame-
work. Our contributions are as follows:

• We propose a NAS approach that searches the best
neural network architecture for a specific type of hard-
ware accelerator on a constrained dataset.

• We implement the use of a DSE that allows the explo-
ration of different types of neural network accelerators.

• We optimise for either energy or latency.

• We use this method to perform experiments that offer
understanding of optimal neural network choices for
typical hardware architectures.

Figure 1. Schematic overview of our NAS approach that incorporates
the custom hardware modelling tool ZigZag.

3. Approach
This section gives an overview of our choices for the de-

velopment of our proposed NAS pipeline, shown in figure
Figure 1.

2276



(a) NPU energy (b) TPU energy (c) Meta-prototype energy (d) Edge-TPU energy (e) Ascend energy

(f) NPU latency (g) TPU latency (h) Meta-prototype latency (i) Edge-TPU latency (j) Ascend latency

Figure 2. Overview of results of NAS searches for different objectives for different hardware layouts for the sunflower dataset.

3.1. NAS Approach

In our previous work [9] we focused on extending
NSGA-Net [22] with a hot-start based on MobileNetV2.
NSGA-Net is an implementation of the NSGA-II [7] algo-
rithm, a widely adopted genetic algorithm, for NAS. The
algorithm optimises for accuracy and the size of the neu-
ral network. Model size can be one of the limiting factors
for embedded devices. It also has the advantage of being a
parameter that can be quite easily computed and introduces
very little additional overhead. Other options, such as la-
tency or consumed energy, can be obtained by choosing
a hardware in the loop approach. This, however, requires
the physical hardware, and can take a long time because of
compilation and deployment. Hence, DSE frameworks are
an attractive alternative for hardware-related performance
metrics, as they are fast and only require an architectural
template at a high level of abstraction.

3.2. Hardware Performance Modelling

This work integrates the ZigZag DSE framework into our
NAS approach. This has several key benefits:

• Easy interfacing through ZigZag’s Open Neural Net-
work Exchange (ONNX) front-end.

• Ability to estimate performance for a large number
of popular accelerators through provided architectural
templates.

• Fast, yet accurate hardware performance estimation
through analytical modelling, including a detailed la-
tency model.

3.3. Dataset

We use two datasets as we want to compare the differ-
ences between academic datasets and industrial ones. Pre-
vious research on pruning [33] has shown that constrained

problems have a higher reduction potential than general aca-
demic datasets. NAS doesn’t just prune channels, it allows
to change the whole neural network architecture. We opted
to use an application-specific dataset that was used to steer
a drone towards sunflowers using on board processing [6]
and the well-known CIFAR-10 dataset. Both are RGB clas-
sification datasets and contain six and ten classes respec-
tively. The main difference is that the sunflower dataset
contains only one type of object compared to the ten classes
of CIFAR-10. Which means that the sunflower dataset is
much less diverse compared to CIFAR-10.

4. Experiments

We conducted various experiments to gain insight in the
impact of the different parameters that can be changed for
our NAS pipeline. In this section we present our chosen
configurations. We will also share our training set-up.

4.1. Training Set-up

For the training parameters we follow the original train-
ing schedule for NSGA-Net, but train each proposed neural
network for 20 epochs, employing an early stopping train-
ing strategy. We use a batch size of 250 images with di-
mension 32 by 32 for both datasets. Our parameters for the
genetic algorithm are a population size of 30 and an off-
spring of 40 neural networks. We let the genetic algorithm
evolve for 40 generations.

DNN accelerators quantise the network parameters and
activations to lower (typically fixed) precision, as opposed
to the floating point representation used during training.
As a consequence, the model size and required memory
bandwidth is reduced. This leads to better latency and en-
ergy, while having limited to no impact on inference ac-
curacy [12, 41]. For this work, we rely on post-training
quantisation and encode parameters and activations to the

2277



common 8 bit for parameters and activations, and 16 bit for
partial sums of the channel reduction.

4.2. Hardware Architectures

The ZigZag framework allows users to model different
accelerators designed for various purposes. Each architec-
ture consists of an n-dimensional array of processing ele-
ments (PEs), is connected to a hierarchy of memories and
employs a specific dataflow [3]. The PE array size, mem-
ory interconnections, memory capacities, memory read and
write costs and memory bandwidths differ for each archi-
tecture, impacting hardware performance for diverse DNN
topologies. Five different architectures are encoded to study
the architecture impact: Tesla NPU [37], Ascend [17],
TPU [13], Edge-TPU [47] and Meta-prototype [36].

4.3. ZigZag Output

We configure ZigZag to give us a detailed breakdown
of the hardware related performance. When using the ac-
celerators for real-life embedded applications there are of-
ten two important metrics: energy consumption and la-
tency. The output of ZigZag contains a detailed break-
down of the consumed energy and the latency of the dis-
covered neural networks. For our NAS approach we pro-
pose to focus the optimisation for our bi-objective search on
the parameters latency with onloading with offloading and
energy total. latency with onloading with offloading is the
complete latency cycle of the neural network, with all time
spent on onloading and offloading data to the accelerator
included. The parameter energy total represents all energy
used by executing the neural network on the accelerator, in-
cluding operational energy and energy spent on operations
related to memory. The analytical breakdown produced by
ZigZag will allow us to study the detailed parts that make
up the global parameters.

5. Results
In this section we present and discuss our results for en-

ergy and latency on the sunflower dataset and the CIFAR-10
dataset respectively.

5.1. Optimising for Energy Consumption

Our first group of experiments aims to maximise accu-
racy while minimising energy consumed for all DNN ac-
celerators introduced in section 4 for the sunflower dataset.
Figure 2 shows the evolution of the NAS process over a se-
lected number of generations.

In order to show a stable and outlier-free trend for each
accelerator, we plot the median of each generation for every
accelerator type in Figure 3. We conclude that while en-
ergy consumption decreases during the optimisation, accu-
racy actually increases significantly on such a task-specific
dataset.

Figure 3. Evolution of median neural network performance over 40
generations, optimised for energy. □ denotes generation 1 and △
generation 40.

Figure 4. Evolution of median neural network performance over 40
generations, optimised for latency. □ denotes generation 1 and △
generation 40.

We calculate the reduction for each accelerator com-
pared to the MobileNetV2-inspired hot-started neural net-
works of the first generation. Our NAS approach is able to
reduce the energy consumption up to 4.85 times (see Ta-
ble 1).

5.2. Optimising for Latency

The second type of experiments has the goal of maximis-
ing accuracy while minimising latency for all DNN acceler-
ators introduced in section 4 for the sunflower dataset. The
bottom row of Figure 2 illustrates this NAS process.

We compute the median for every generation and show

2278



Hardware Energy Gen 1 Energy Gen 40 Reduction Latency Gen 1 Latency Gen 40 Reduction
Type (108 pJ) (108 pJ) Factor (106 cycles) (106 cycles) Factor
NPU 4.46 0.92 4.85 0.89, 0.19 4.68
TPU 5.59 1.80 3.11 5.37 3.70 1.45
Edge-TPU 4.45 0.95 4.67 0.98 0.36 2.72
Meta 4.41 0.96 4.59 1.05 0.25 4.20
Ascend 4.458 0.94 4.76 1.94 0.57 3.40

Table 1. Comparison of best results, focusing on energy vs accuracy trade-off and latency vs accuracy trade-off for the sunflower dataset.

(a) CIFAR-10 NPU energy (b) CIFAR-10 NPU latency

Figure 5. Results of NAS searches for different objectives for NPU
for the CIFAR-10 dataset.

the results in Figure 4. These results show a significant de-
crease in latency, whilst still achieving an increase in accu-
racy on the sunflower dataset.

Table 1 illustrates the reduction in latency relative to the
MobileNetV2-inspired neural network architectures in gen-
eration 1. We are able to achieve a speed up of up to 4.68
times.

5.3. Breakdown of Energy and Latency

ZigZag enables us to give a detailed breakdown of the
energy consumed by the accelerator, as well as the break-
down of the latency. Figure 6a shows the breakdown of en-
ergy consumed by memory and compute operations for gen-
eration 1 and 40. We conclude that most energy is used for
accessing the memory of the accelerator. Figure 6b breaks
down the different aspects of latency by level of dataloading
for each accelerator. We remark that for some accelerators,
like the TPU, the latency introduced by the dataloading only
accounts for a small percentage op the total latency. For
other types of accelerators the difference is less pronounced.

5.4. CIFAR-10 Experiments

Figure 5 depicts the progression of our NAS approach
for the more diverse dataset CIFAR-10 for both energy and
latency on the NPU accelerator. This shows that while our
hardware-related optimisation metrics decrease, accuracy
remains relatively the same, even decreasing a little towards
the last generations. Analysing the breakdown of the la-
tency and the energy in Figure 6d and Figure 6c still show

a reduction in energy and latency. However, compared to
the NPU results described in Table 1, the reduction factor is
smaller, around 2 times.

6. Discussion
From the results of our experiments described above, a

few remarkable observations can be made.
We firstly observe that the hardware architecture choice

does not influence the accuracy of the final optimised
model, for each of the hardware types the final sunflower
classification accuracy reaches around 50% on the valida-
tion dataset. However, because of to the early stopping
technique used for training the neural networks, the final
accuracy after further training might still be higher.

Despite reaching similar accuracy, the reduction factors
we are able to achieve vary depending on the type of accel-
erator. This can be explained by the differences in hardware
layout. For example, different types of accelerators have
registers with different dimensions. Registers that are big-
ger introduce a higher energy cost per operation, so when
using registers that are not optimal this can introduce a
higher energy cost compared to using an accelerator with
registers that can be optimally used. Our experiments show
the differences in performance for the accelerators and can
aid in the choice of the most suitable one.

We also remark that for a constrained dataset accuracy
increases drastically during the search process. This hap-
pens despite the hot-start from the proven MobileNetV2 ar-
chitecture. As mentioned before, we only trained the neu-
ral networks for 20 epochs. The final accuracy after a full
training cycle is expected to be higher. Towards the end
of the evolutionary search process the neural networks have
become smaller with less parameters to optimise. Smaller
neural networks are able to be trained more quickly than
larger counterparts and generalise better.

Our experiments on the general purpose CIFAR-10 show
a different evolution in accuracy. The accuracy remains
more or less constant across the different generations. The
first generation already reaches a relatively high accuracy
achieved by training for 20 epochs. This illustrates the suit-
ability of MobileNetV2 for this dataset. With a slight drop
in accuracy , as shown in Figure 5, we are still able to re-

2279



(a) Energy breakdown (sunflower) (b) Latency breakdown (sunflower)

(c) Energy breakdown (CIFAR-10) (d) Latency breakdown (CIFAR-10)

Figure 6. Breakdown results of NAS searches for energy and latency.

duce latency and energy consumption. This is in line with
results from similar experiments for pruning [33].

Lastly we also note that using either latency or energy as
an optimisation metric can lead to significant reductions for
these optimisation metrics.

7. Conclusion

In this paper we explored the benefits of expanding a
NAS algorithm with a state of the art DSE framework. The
DSE framework provides accurate hardware performance
metrics, such as latency and energy, for DNN accelerators.
Our experiments have shown that using these metrics leads
to a significant reduction in consumed energy and latency,
because the NAS optimisation can exploit the hardware-
specific properties. Additionally, we note that these reduc-
tions are on average more pronounced for a task-specific

dataset. As future work, we plan to investigate the possi-
bility to also involve parameters of the actual hardware ar-
chitecture into the genetic optimisation, hence transforming
this method to hardware/software co-optimisation finding
simultaneously the optimal neural network architecture and
the best hardware architecture for a specific application.

Acknowledgements
This work has been supported by the Flemish Govern-

ment under the AI Research Program. The authors thank
the company MAGICS for supplying the sunflower dataset.

References
[1] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza

Ouarnoughi, Smail Niar, Martin Wistuba, and Naigang
Wang. A Comprehensive Survey on Hardware-Aware Neu-

2280



ral Architecture Search, Jan. 2021. arXiv:2101.09336 [cs].
2

[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
Neural Architecture Search on Target Task and Hardware.
arXiv:1812.00332 [cs, stat], Feb. 2019. arXiv: 1812.00332.
2

[3] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi
Tang. A survey of accelerator architectures for deep neural
networks. Engineering, 6(3):264–274, 2020. 1, 4

[4] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne
Sze. Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks. IEEE journal of
solid-state circuits, 52(1):127–138, 2016. 1

[5] Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu,
Youngsok Kim, and Jinho Lee. DANCE: Differentiable Ac-
celerator/Network Co-Exploration. arXiv:2009.06237 [cs,
stat], Sept. 2020. arXiv: 2009.06237. 2

[6] Hulens D, Van Ranst W., Cao Y., and Goedemé T. The au-
tonomous pollination drone. Proceedings of the 2nd Winter
IFSA Conference on Automation, Robotics & Communica-
tions for Industry 4, 2:38–41, Feb. 2022. 3

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
Transactions on Evolutionary Computation, 6(2):182–197,
2002. 3

[8] David Eriksson, Pierce I.-Jen Chuang, Samuel Daulton, Peng
Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed
Aly, Ganesh Venkatesh, and Maximilian Balandat. Latency-
Aware Neural Architecture Search with Multi-Objective
Bayesian Optimization, June 2021. arXiv:2106.11890 [cs].
2

[9] Lotte Hendrickx, Wiebe Van Ranst, and Toon Goedemé.
Hot-started nas for task-specific embedded applications. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1970–1977,
2022. 2, 3

[10] Deokki Hong, Kanghyun Choi, Hye Yoon Lee, Joonsang Yu,
Noseong Park, Youngsok Kim, and Jinho Lee. Enabling hard
constraints in differentiable neural network and accelerator
co-exploration. In Proceedings of the 59th ACM/IEEE De-
sign Automation Conference, DAC ’22, pages 589–594, New
York, NY, USA, Aug. 2022. Association for Computing Ma-
chinery. 2

[11] Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-
Ping Chou, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan,
Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas:
Multi-objective neural architecture search using reinforce-
ment learning, 2018. 2

[12] Sitao Huang, Aayush Ankit, Plinio Silveira, Rodrigo An-
tunes, Sai Rahul Chalamalasetti, Izzat El Hajj, Dong Eun
Kim, Glaucimar Aguiar, Pedro Bruel, Sergey Serebryakov,
et al. Mixed precision quantization for reram-based dnn in-
ference accelerators. In Proceedings of the 26th Asia and
South Pacific Design Automation Conference, pages 372–
377, 2021. 3

[13] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer ar-
chitecture, pages 1–12, 2017. 1, 4

[14] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar
Krishna, Michael Pellauer, and Angshuman Parashar. Mae-
stro: A data-centric approach to understand reuse, perfor-
mance, and hardware cost of dnn mappings. IEEE Micro,
40(3):20–29, 2020. 1, 2

[15] Jooyeon Lee, Junsang Park, Seunghyun Lee, and Jaeha
Kung. Implication of Optimizing NPU Dataflows on Neural
Architecture Search for Mobile Devices. ACM Transactions
on Design Automation of Electronic Systems, 27(5):48:1–
48:24, June 2022. 2

[16] Zhuojin Li, Marco Paolieri, and Leana Golubchik. In-
ference Latency Prediction at the Edge, Oct. 2022.
arXiv:2210.02620 [cs]. 2

[17] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou,
Honghui Yuan, and Yuxing Hu. Ascend: a scalable and uni-
fied architecture for ubiquitous deep neural network com-
puting: Industry track paper. In 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 789–801. IEEE, 2021. 4

[18] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang
Gan, and Song Han. MCUNet: Tiny Deep Learning on
IoT Devices. arXiv:2007.10319 [cs], July 2020. arXiv:
2007.10319. 2

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable Architecture Search. arXiv:1806.09055 [cs,
stat], Apr. 2019. arXiv: 1806.09055. 2

[20] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, and Gary
Yen. A Survey on Evolutionary Neural Architecture Search.
arXiv:2008.10937 [cs], Aug. 2020. arXiv: 2008.10937. 2

[21] Bingqian Lu, Zheyu Yan, Yiyu Shi, and Shaolei Ren. A
Semi-Decoupled Approach to Fast and Optimal Hardware-
Software Co-Design of Neural Accelerators, Mar. 2022.
arXiv:2203.13921 [cs]. 2

[22] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
NSGA-Net: Neural Architecture Search using Multi-
Objective Genetic Algorithm. arXiv:1810.03522 [cs], Apr.
2019. arXiv: 1810.03522. 2, 3

[23] Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh
Boddeti. Multi-Objective Evolutionary Design of Deep
Convolutional Neural Networks for Image Classification.
arXiv:1912.01369 [cs], Sept. 2020. arXiv: 1912.01369. 2

[24] Xiangzhong Luo, Di Liu, Shuo Huai, Hao Kong, Hui Chen,
and Weichen Liu. Designing Efficient DNNs via Hardware-
Aware Neural Architecture Search and Beyond. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 41(6):1799–1812, June 2022. Conference
Name: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems. 2

[25] Xiangzhong Luo, Di Liu, Shuo Huai, and Weichen
Liu. HSCoNAS: Hardware-Software Co-Design of Effi-
cient DNNs via Neural Architecture Search, Mar. 2021.
arXiv:2103.08325 [cs]. 2

2281



[26] Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen,
and Weichen Liu. LightNAS: On Lightweight and Scalable
Neural Architecture Search for Embedded Platforms. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, pages 1–1, 2022. Conference Name:
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 2

[27] Xiangzhong Luo, Di Liu, Hao Kong, and Weichen Liu. Ed-
geNAS: Discovering Efficient Neural Architectures for Edge
Systems. In 2020 IEEE 38th International Conference on
Computer Design (ICCD), pages 288–295, Oct. 2020. ISSN:
2576-6996. 2

[28] Alberto Marchisio, Andrea Massa, Vojtech Mrazek, Beat-
rice Bussolino, Maurizio Martina, and Muhammad Shafique.
NASCaps: A Framework for Neural Architecture Search to
Optimize the Accuracy and Hardware Efficiency of Convolu-
tional Capsule Networks. arXiv:2008.08476 [cs, stat], Aug.
2020. arXiv: 2008.08476. 2

[29] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian
Giraldo, and Marian Verhelst. Zigzag: Enlarging joint
architecture-mapping design space exploration for dnn ac-
celerators. IEEE Transactions on Computers, 70(8):1160–
1174, 2021. 1, 2

[30] Linyan Mei, Huichu Liu, Tony Wu, H Ekin Sumbul, Marian
Verhelst, and Edith Beigne. A uniform latency model for
dnn accelerators with diverse architectures and dataflows. In
2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 220–225. IEEE, 2022. 2

[31] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Mar-
ian Verhelst. 14.5 envision: A 0.26-to-10tops/w subword-
parallel dynamic-voltage-accuracy-frequency-scalable con-
volutional neural network processor in 28nm fdsoi. In 2017
IEEE International Solid-State Circuits Conference (ISSCC),
pages 246–247. IEEE, 2017. 1

[32] Sergiu Cosmin Nistor and Gabriela Czibula. IntelliSwAS:
Optimizing deep neural network architectures using a par-
ticle swarm-based approach. Expert Systems with Applica-
tions, 187:115945, Jan. 2022. 2

[33] Tanguy Ophoff, Cedric Gullentops, Kristof Van Beeck, and
Toon Goedemé. Investigating the Potential of Network Opti-
mization for a Constrained Object Detection Problem. Jour-
nal of Imaging, 7(4), 2021. Publisher: MDPI. 3, 6

[34] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao,
Yu-Hsin Chen, Victor A Ying, Anurag Mukkara, Ranghara-
jan Venkatesan, Brucek Khailany, Stephen W Keckler, and
Joel Emer. Timeloop: A systematic approach to dnn accel-
erator evaluation. In 2019 IEEE international symposium
on performance analysis of systems and software (ISPASS),
pages 304–315. IEEE, 2019. 1, 2

[35] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex
Kurakin. Large-Scale Evolution of Image Classifiers.
arXiv:1703.01041 [cs], June 2017. arXiv: 1703.01041. 2

[36] H Ekin Sumbul, Tony F Wu, Yuecheng Li, Syed Shakib Sar-
war, William Koven, Eli Murphy-Trotzky, Xingxing Cai, El-
naz Ansari, Daniel H Morris, Huichu Liu, et al. System-level
design and integration of a prototype ar/vr hardware featur-

ing a custom low-power dnn accelerator chip in 7nm tech-
nology for codec avatars. In 2022 IEEE Custom Integrated
Circuits Conference (CICC), pages 01–08. IEEE, 2022. 4

[37] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan,
Peter Bannon, Bill McGee, Benjamin Floering, Ankit Jalote,
Christopher Hsiong, Sahil Arora, Atchyuth Gorti, et al.
Compute solution for tesla’s full self-driving computer. IEEE
Micro, 40(2):25–35, 2020. 4

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
Net: Platform-Aware Neural Architecture Search for Mobile.
arXiv:1807.11626 [cs], May 2019. arXiv: 1807.11626. 2

[39] Thomas N Theis and H-S Philip Wong. The end of moore’s
law: A new beginning for information technology. Comput-
ing in Science & Engineering, 19(2):41–50, 2017. 1

[40] Kodai Ueyoshi, Ioannis A Papistas, Pouya Houshmand,
Giuseppe M Sarda, Vikram Jain, Man Shi, Qilin Zheng, Se-
bastian Giraldo, Peter Vrancx, Jonas Doevenspeck, et al. Di-
ana: An end-to-end energy-efficient digital and analog hy-
brid neural network soc. In 2022 IEEE International Solid-
State Circuits Conference (ISSCC), volume 65, pages 1–3.
IEEE, 2022. 1

[41] Marian Verhelst and Bert Moons. Embedded deep neural
network processing: Algorithmic and processor techniques
bring deep learning to iot and edge devices. IEEE Solid-State
Circuits Magazine, 9(4):55–65, 2017. 3

[42] Xueying Wang, Guangli Li, Xiu Ma, and Xiaobing Feng.
Facilitating hardware-aware neural architecture search with
learning-based predictive models. Journal of Systems Archi-
tecture, 137:102838, Apr. 2023. 2

[43] Colin White, Willie Neiswanger, and Yash Savani. BA-
NANAS: Bayesian Optimization with Neural Architectures
for Neural Architecture Search. arXiv:1910.11858 [cs, stat],
Feb. 2020. arXiv: 1910.11858. 2

[44] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBNet: Hardware-Aware Effi-
cient ConvNet Design via Differentiable Neural Architec-
ture Search. arXiv:1812.03443 [cs], May 2019. arXiv:
1812.03443. 2

[45] Lingxi Xie and Alan Yuille. Genetic CNN.
arXiv:1703.01513 [cs], Mar. 2017. arXiv: 1703.01513. 2

[46] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen
Lai, Tushar Krishna, Vikas Chandra, Weiwen Jiang, and
Yiyu Shi. Co-Exploration of Neural Architectures and Het-
erogeneous ASIC Accelerator Designs Targeting Multiple
Tasks. arXiv:2002.04116 [cs, eess, stat], Feb. 2020. arXiv:
2002.04116. 2

[47] Amir Yazdanbakhsh, Kiran Seshadri, Berkin Akin, James
Laudon, and Ravi Narayanaswami. An evaluation of edge
tpu accelerators for convolutional neural networks. arXiv e-
prints, pages arXiv–2102, 2021. 4

[48] Haichao Zhang, Jiashi Li, Xin Xia, Kuangrong Hao, and
Xuefeng Xiao. Multi-Objective Evolutionary for Ob-
ject Detection Mobile Architectures Search, Nov. 2022.
arXiv:2211.02791 [cs]. 2

[49] Xindong Zhang, Hui Zeng, and Lei Zhang. Efficient
Hardware-Aware Neural Architecture Search for Image

2282



Super-Resolution on Mobile Devices. In Lei Wang, Juergen
Gall, Tat-Jun Chin, Imari Sato, and Rama Chellappa, editors,
Computer Vision – ACCV 2022, volume 13843, pages 409–
426. Springer Nature Switzerland, Cham, 2023. Series Title:
Lecture Notes in Computer Science. 2

[50] Barret Zoph and Quoc V. Le. Neural Architecture Search
with Reinforcement Learning. arXiv:1611.01578 [cs], Feb.
2017. arXiv: 1611.01578. 2

2283


	. Introduction
	. Related Work
	. Neural Architecture Search
	. NAS with Design Space Exploration Simulators

	. Approach
	. NAS Approach
	. Hardware Performance Modelling
	. Dataset

	. Experiments
	. Training Set-up
	. Hardware Architectures
	. ZigZag Output

	. Results
	. Optimising for Energy Consumption
	. Optimising for Latency
	. Breakdown of Energy and Latency
	. CIFAR-10 Experiments

	. Discussion
	. Conclusion

