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Abstract

Neural Architecture Search (NAS) has shown its poten-
tial in aiding in the development of more efficient neural
networks. In regard to hardware, efficiency often equates to
power usage or latency. Over the years many researchers
have incorporated hardware performance into their NAS
experiments. However, accurately modelling hardware per-
formance is a challenge in itself. We look to the field of de-
sign space exploration (DSE) for more precise performance
metrics on neural network accelerators and incorporate the
results into our NAS search. Our experiments show that
doing so achieves a significant reduction in latency and en-
ergy consumption. The approach we propose also enables
detailed insight in the breakdown of the energy consumption
and latency of the optimised model.

1. Introduction
The introduction of Neural Architecture Search (NAS)

has helped accelerate developments in deep learning in the
past few years. NAS aids in finding the most suitable neu-
ral networks for a specific goal instead of being handcrafted
by experts to suit one specific purpose. In many real-life
applications of artificial intelligence compute and memory
resources are limited. These limitations make it difficult
to use off-the-shelf deep learning models that are not opti-
mal for the target hardware. In these cases NAS’ capabil-
ities in discovering new neural networks can be leveraged
to overcome these challenges. For example, NAS can take
the specifics of certain types of hardware into account when
searching for optimal solutions to the problem at hand by
looking for smaller, faster and more energy efficient neural
networks. A plethora of NAS strategies have been proposed
in the past few years. Many of these strategies are multi-
objective and therefore offer the possibility to find an opti-

mal neural network that satisfies multiple requirements. De-
pending on the implementation, some of these existing NAS
algorithms already take into account some form of hardware
performance as well as the performance of the neural net-
work. For example, hardware performance can be measured
through latency or by calculating the size of the neural net-
work. More in-depth metrics can provide better insight but
are more complicated and require expert knowledge on dif-
ferent hardware architectures.

Alongside the algorithmic deep learning improvements,
specialized application-specific integrated circuit (ASIC)
hardware architectures to accelerate the inference of deep
learning workloads have been proposed [3,4,13,31,40]. Ac-
celeration performance has drastically improved in the last
decade, but improvements are slowing down due to the end
of traditional transistor scaling [39]. As a result, optimally
mapping these algorithmic workloads onto the hardware re-
sources becomes vital for efficient inference. To this extent,
multiple design space exploration (DSE) frameworks have
been developed that model the hardware architecture at a
higher level of abstraction and optimise the mapping of the
workload onto the architecture [14, 29, 34]. Because these
frameworks rely on an analytical cost model to estimate the
hardware performance, they are orders of magnitude faster
than actually running the workload on the hardware.

Combining both NAS and these frameworks gives re-
searchers detailed insights. The outputs of the framework
can be used as an optimisation objective for NAS, but also
give a detailed breakdown of their mapping cost in gen-
eral. They also allow researchers to optimise their neural
networks for different hardware architectures without need-
ing physical access to them. In turn also providing feedback
not only on the design of the neural network, but also on the
performance of the different accelerators.
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2. Related Work
In this section we give an overview of existing work in

the fields of NAS and DSE.

2.1. Neural Architecture Search

NAS and all its related facets have been greatly stud-
ied during the past few years. Many different types of
algorithms have been implemented to serve the purpose
of the algorithm that drives the search process. Popu-
lar options include genetic algorithms [20, 22, 35, 45], re-
inforcement learning (RL) [38, 50], differentiable search
[2, 19] and many other types of optimisation algorithms
such as Bayesian optimisation and particle swarm optimi-
sation [8, 32, 43].
Due to NAS having the possibility to take into account mul-
tiple optimisation objectives, multi-objective (meaning two
or more objectives to be satisfied by the NAS algorithm)
have almost become standard practice in NAS research. Up
until now, hardware and performance related metrics in-
cludes model size, amount of compute operations needed
to run the neural network (MACs or FLOPs), consumed
energy or latency. A first option for estimating the hard-
ware related costs are metrics that don’t require any phys-
ical type of hardware. These are metrics such as multiply-
accumulate operations (MACs) or floating point operations
(FLOPs) that can be computed or model size, which is a
characteristic of the neural network [2, 9, 22, 23, 48].

NAS approaches that are aware of metrics involving
hardware performance require additional steps to provide
these metrics to the algorithm. We can distinguish different
strategies in the NAS experiments involving hardware [1].
One possibility is adding the target hardware in the loop
and measuring the metrics the researchers are interested in.
This is an approach that is often used for obtaining the to-
tal latency when running the neural network on the the de-
vice [18,38] but can be used for energy as well [11]. An al-
ternative to this strategy is using a pre-defined lookup table
(LUT) to get the latency for a specific neural network ar-
chitecture on a given type of hardware [15,44,49]. Another
widely used technique is building and training prediction
models. These prediction models are generally based on a
wide variety of machine learning (ML) algorithms, rang-
ing from multilayer perceptrons (MLPs) and other types of
neural networks [26, 27, 42] to random forests [16]. A final
category consists of making an (often rather rough) estima-
tion based on analysing the operations in the neural network
with the option of adding some form of mathematical term
to account for the specifics of the hardware [24, 28].
NAS can also be used as part of a hardware-software co-
design method. Since these methods are also modelling
(part of) the accelerators they need accurate ways to predict
their performance. Similar methods to the ones mentioned
above are used, including machine learning [5, 10], FLOPs

[18] and analysing the operators with a compensation factor
for memory based on on device measurements [25].

2.2. NAS with Design Space Exploration Simulators

The MAESTRO framework [14], a tool for deep neu-
ral network (DNN) accelerator analysis, has been used in
multiple works to provide energy and latency estimations
to NAS searches [21, 46]. Timeloop [34] similarly pre-
dicts energy and latency performance for mapping of DNNs
onto accelerator architectures. While these frameworks
provide more insight than simply counting the number of
MAC operations or the DNN model size, modelling algo-
rithmic workloads is cumbersome, their underlying archi-
tectural templates have limited expressiveness and their la-
tency modelling is simple.

The ZigZag exploration framework [29] provides map-
ping optimisations and accurate hardware performance es-
timations through an enhanced latency model [30] that takes
into account on-chip memory stalls due to limited band-
width.

In this work we will investigate the results of combining
NAS with a state-of-the-art HW mapping and DSE frame-
work. Our contributions are as follows:

• We propose a NAS approach that searches the best
neural network architecture for a specific type of hard-
ware accelerator on a constrained dataset.

• We implement the use of a DSE that allows the explo-
ration of different types of neural network accelerators.

• We optimise for either energy or latency.

• We use this method to perform experiments that offer
understanding of optimal neural network choices for
typical hardware architectures.

Figure 1. Schematic overview of our NAS approach that incorporates
the custom hardware modelling tool ZigZag.

3. Approach
This section gives an overview of our choices for the de-

velopment of our proposed NAS pipeline, shown in figure
Figure 1.
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(a) NPU energy (b) TPU energy (c) Meta-prototype energy (d) Edge-TPU energy (e) Ascend energy

(f) NPU latency (g) TPU latency (h) Meta-prototype latency (i) Edge-TPU latency (j) Ascend latency

Figure 2. Overview of results of NAS searches for different objectives for different hardware layouts for the sunflower dataset.

3.1. NAS Approach

In our previous work [9] we focused on extending
NSGA-Net [22] with a hot-start based on MobileNetV2.
NSGA-Net is an implementation of the NSGA-II [7] algo-
rithm, a widely adopted genetic algorithm, for NAS. The
algorithm optimises for accuracy and the size of the neu-
ral network. Model size can be one of the limiting factors
for embedded devices. It also has the advantage of being a
parameter that can be quite easily computed and introduces
very little additional overhead. Other options, such as la-
tency or consumed energy, can be obtained by choosing
a hardware in the loop approach. This, however, requires
the physical hardware, and can take a long time because of
compilation and deployment. Hence, DSE frameworks are
an attractive alternative for hardware-related performance
metrics, as they are fast and only require an architectural
template at a high level of abstraction.

3.2. Hardware Performance Modelling

This work integrates the ZigZag DSE framework into our
NAS approach. This has several key benefits:

• Easy interfacing through ZigZag’s Open Neural Net-
work Exchange (ONNX) front-end.

• Ability to estimate performance for a large number
of popular accelerators through provided architectural
templates.

• Fast, yet accurate hardware performance estimation
through analytical modelling, including a detailed la-
tency model.

3.3. Dataset

We use two datasets as we want to compare the differ-
ences between academic datasets and industrial ones. Pre-
vious research on pruning [33] has shown that constrained

problems have a higher reduction potential than general aca-
demic datasets. NAS doesn’t just prune channels, it allows
to change the whole neural network architecture. We opted
to use an application-specific dataset that was used to steer
a drone towards sunflowers using on board processing [6]
and the well-known CIFAR-10 dataset. Both are RGB clas-
sification datasets and contain six and ten classes respec-
tively. The main difference is that the sunflower dataset
contains only one type of object compared to the ten classes
of CIFAR-10. Which means that the sunflower dataset is
much less diverse compared to CIFAR-10.

4. Experiments

We conducted various experiments to gain insight in the
impact of the different parameters that can be changed for
our NAS pipeline. In this section we present our chosen
configurations. We will also share our training set-up.

4.1. Training Set-up

For the training parameters we follow the original train-
ing schedule for NSGA-Net, but train each proposed neural
network for 20 epochs, employing an early stopping train-
ing strategy. We use a batch size of 250 images with di-
mension 32 by 32 for both datasets. Our parameters for the
genetic algorithm are a population size of 30 and an off-
spring of 40 neural networks. We let the genetic algorithm
evolve for 40 generations.

DNN accelerators quantise the network parameters and
activations to lower (typically fixed) precision, as opposed
to the floating point representation used during training.
As a consequence, the model size and required memory
bandwidth is reduced. This leads to better latency and en-
ergy, while having limited to no impact on inference ac-
curacy [12, 41]. For this work, we rely on post-training
quantisation and encode parameters and activations to the

2277



common 8 bit for parameters and activations, and 16 bit for
partial sums of the channel reduction.

4.2. Hardware Architectures

The ZigZag framework allows users to model different
accelerators designed for various purposes. Each architec-
ture consists of an n-dimensional array of processing ele-
ments (PEs), is connected to a hierarchy of memories and
employs a specific dataflow [3]. The PE array size, mem-
ory interconnections, memory capacities, memory read and
write costs and memory bandwidths differ for each archi-
tecture, impacting hardware performance for diverse DNN
topologies. Five different architectures are encoded to study
the architecture impact: Tesla NPU [37], Ascend [17],
TPU [13], Edge-TPU [47] and Meta-prototype [36].

4.3. ZigZag Output

We configure ZigZag to give us a detailed breakdown
of the hardware related performance. When using the ac-
celerators for real-life embedded applications there are of-
ten two important metrics: energy consumption and la-
tency. The output of ZigZag contains a detailed break-
down of the consumed energy and the latency of the dis-
covered neural networks. For our NAS approach we pro-
pose to focus the optimisation for our bi-objective search on
the parameters latency with onloading with offloading and
energy total. latency with onloading with offloading is the
complete latency cycle of the neural network, with all time
spent on onloading and offloading data to the accelerator
included. The parameter energy total represents all energy
used by executing the neural network on the accelerator, in-
cluding operational energy and energy spent on operations
related to memory. The analytical breakdown produced by
ZigZag will allow us to study the detailed parts that make
up the global parameters.

5. Results
In this section we present and discuss our results for en-

ergy and latency on the sunflower dataset and the CIFAR-10
dataset respectively.

5.1. Optimising for Energy Consumption

Our first group of experiments aims to maximise accu-
racy while minimising energy consumed for all DNN ac-
celerators introduced in section 4 for the sunflower dataset.
Figure 2 shows the evolution of the NAS process over a se-
lected number of generations.

In order to show a stable and outlier-free trend for each
accelerator, we plot the median of each generation for every
accelerator type in Figure 3. We conclude that while en-
ergy consumption decreases during the optimisation, accu-
racy actually increases significantly on such a task-specific
dataset.

Figure 3. Evolution of median neural network performance over 40
generations, optimised for energy. □ denotes generation 1 and △
generation 40.

Figure 4. Evolution of median neural network performance over 40
generations, optimised for latency. □ denotes generation 1 and △
generation 40.

We calculate the reduction for each accelerator com-
pared to the MobileNetV2-inspired hot-started neural net-
works of the first generation. Our NAS approach is able to
reduce the energy consumption up to 4.85 times (see Ta-
ble 1).

5.2. Optimising for Latency

The second type of experiments has the goal of maximis-
ing accuracy while minimising latency for all DNN acceler-
ators introduced in section 4 for the sunflower dataset. The
bottom row of Figure 2 illustrates this NAS process.

We compute the median for every generation and show
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Hardware Energy Gen 1 Energy Gen 40 Reduction Latency Gen 1 Latency Gen 40 Reduction
Type (108 pJ) (108 pJ) Factor (106 cycles) (106 cycles) Factor
NPU 4.46 0.92 4.85 0.89, 0.19 4.68
TPU 5.59 1.80 3.11 5.37 3.70 1.45
Edge-TPU 4.45 0.95 4.67 0.98 0.36 2.72
Meta 4.41 0.96 4.59 1.05 0.25 4.20
Ascend 4.458 0.94 4.76 1.94 0.57 3.40

Table 1. Comparison of best results, focusing on energy vs accuracy trade-off and latency vs accuracy trade-off for the sunflower dataset.

(a) CIFAR-10 NPU energy (b) CIFAR-10 NPU latency

Figure 5. Results of NAS searches for different objectives for NPU
for the CIFAR-10 dataset.

the results in Figure 4. These results show a significant de-
crease in latency, whilst still achieving an increase in accu-
racy on the sunflower dataset.

Table 1 illustrates the reduction in latency relative to the
MobileNetV2-inspired neural network architectures in gen-
eration 1. We are able to achieve a speed up of up to 4.68
times.

5.3. Breakdown of Energy and Latency

ZigZag enables us to give a detailed breakdown of the
energy consumed by the accelerator, as well as the break-
down of the latency. Figure 6a shows the breakdown of en-
ergy consumed by memory and compute operations for gen-
eration 1 and 40. We conclude that most energy is used for
accessing the memory of the accelerator. Figure 6b breaks
down the different aspects of latency by level of dataloading
for each accelerator. We remark that for some accelerators,
like the TPU, the latency introduced by the dataloading only
accounts for a small percentage op the total latency. For
other types of accelerators the difference is less pronounced.

5.4. CIFAR-10 Experiments

Figure 5 depicts the progression of our NAS approach
for the more diverse dataset CIFAR-10 for both energy and
latency on the NPU accelerator. This shows that while our
hardware-related optimisation metrics decrease, accuracy
remains relatively the same, even decreasing a little towards
the last generations. Analysing the breakdown of the la-
tency and the energy in Figure 6d and Figure 6c still show

a reduction in energy and latency. However, compared to
the NPU results described in Table 1, the reduction factor is
smaller, around 2 times.

6. Discussion
From the results of our experiments described above, a

few remarkable observations can be made.
We firstly observe that the hardware architecture choice

does not influence the accuracy of the final optimised
model, for each of the hardware types the final sunflower
classification accuracy reaches around 50% on the valida-
tion dataset. However, because of to the early stopping
technique used for training the neural networks, the final
accuracy after further training might still be higher.

Despite reaching similar accuracy, the reduction factors
we are able to achieve vary depending on the type of accel-
erator. This can be explained by the differences in hardware
layout. For example, different types of accelerators have
registers with different dimensions. Registers that are big-
ger introduce a higher energy cost per operation, so when
using registers that are not optimal this can introduce a
higher energy cost compared to using an accelerator with
registers that can be optimally used. Our experiments show
the differences in performance for the accelerators and can
aid in the choice of the most suitable one.

We also remark that for a constrained dataset accuracy
increases drastically during the search process. This hap-
pens despite the hot-start from the proven MobileNetV2 ar-
chitecture. As mentioned before, we only trained the neu-
ral networks for 20 epochs. The final accuracy after a full
training cycle is expected to be higher. Towards the end
of the evolutionary search process the neural networks have
become smaller with less parameters to optimise. Smaller
neural networks are able to be trained more quickly than
larger counterparts and generalise better.

Our experiments on the general purpose CIFAR-10 show
a different evolution in accuracy. The accuracy remains
more or less constant across the different generations. The
first generation already reaches a relatively high accuracy
achieved by training for 20 epochs. This illustrates the suit-
ability of MobileNetV2 for this dataset. With a slight drop
in accuracy , as shown in Figure 5, we are still able to re-

2279



(a) Energy breakdown (sunflower) (b) Latency breakdown (sunflower)

(c) Energy breakdown (CIFAR-10) (d) Latency breakdown (CIFAR-10)

Figure 6. Breakdown results of NAS searches for energy and latency.

duce latency and energy consumption. This is in line with
results from similar experiments for pruning [33].

Lastly we also note that using either latency or energy as
an optimisation metric can lead to significant reductions for
these optimisation metrics.

7. Conclusion

In this paper we explored the benefits of expanding a
NAS algorithm with a state of the art DSE framework. The
DSE framework provides accurate hardware performance
metrics, such as latency and energy, for DNN accelerators.
Our experiments have shown that using these metrics leads
to a significant reduction in consumed energy and latency,
because the NAS optimisation can exploit the hardware-
specific properties. Additionally, we note that these reduc-
tions are on average more pronounced for a task-specific

dataset. As future work, we plan to investigate the possi-
bility to also involve parameters of the actual hardware ar-
chitecture into the genetic optimisation, hence transforming
this method to hardware/software co-optimisation finding
simultaneously the optimal neural network architecture and
the best hardware architecture for a specific application.
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