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Abstract

Data augmentation is a promising way to enhance the
generalization ability of deep learning models. Many proxy-
free and proxy-based automated augmentation methods are
proposed to search for the best augmentation for target
datasets. However, the proxy-free methods require lots of
searching overhead, while the proxy-based methods intro-
duce optimization gaps with the actual task. In this paper,
we explore a new proxy-free approach that only needs a
small number of searches ( ∼ 5 vs 100 of RandAugment)
to alleviate these issues. Specifically, we propose Adaptive
Automated Augmentation (A2-Aug), a simple and effective
proxy-free framework, which seeks to mine the adaptive
ensemble knowledge of multiple augmentations to further
improve the adaptability of each candidate augmentation.
Firstly, A2-Aug automatically learns the ensemble logit from
multiple candidate augmentations, which is jointly optimized
and adaptive to target tasks. Secondly, the adaptive ensem-
ble logit is used to distill each logit of input augmentation via
KL divergence. In this way, these a few candidate augmenta-
tions can implicitly learn strong adaptability for the target
datasets, which enjoy similar effects with many searches
of RandAugment. Finally, equipped with joint training via
separate BatchNorm and normalized distillation, A2-Aug
obtains state-of-the-art performance with less training bud-
get. In experiments, our A2-Aug achieves 4% performance
gain on CIFAR-100, which substantially outperforms other
methods. On ImageNet, we obtain a top-1 accuracy of 79.2%
for ResNet-50, a 1.6% boosting over the AutoAugment with
at least 25× faster training speed.

1. Introduction
Convolutional neural network has become a state-of-the-

art technique for computer vision, but it always suffers from
the over-fitting problem without sufficient labelled images.
Data augmentation [36, 2, 3], such as cropping , flipping,
and color jittering, is an effective training technique, which
is widely used for many computer vision tasks ( e.g., clas-
sification [21, 42], detection [9] , and segmentation [29]).
Data augmentation has been shown as a useful regularizer
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Table 1: Accuracy results on CIFAR-10 [19], CIFAR-
100 [19] and ImageNet [6] classification tasks, respectively.
N/A means no published result is available. The total cost
is estimated from the report of the original paper (see the
Table 4 for more details).

Method
Total cost CIFAR-10 CIFAR-100 ImageNet
(GPU-h) PyramidNet WRN-28-10 ResNet-50

Baseline 384 97.3 81.2 76.3

AA [4] 15,640 98.5 82.9 77.6
Fast AA [26] 1,026 98.3 82.7 77.6
PBA [14] N/A 98.3 83.3 N/A
RA [5] 10,368 98.5 83.3 77.6
A2-Aug 624 98.9 85.2 79.2

that reduces over-fitting by transforming images to increase
the quantity and diversity of training data. Notably, applying
well-designed augmentations rather than naive random trans-
formations in training improves the generalization ability
[33]. However, in most cases, designing such augmentations
requires human experts with prior knowledge of the dataset.

With the recent advancement of AutoML [52, 34, 47],
there are a series of methods to search for an automated
augmentation policy, including proxy-based and proxy-free
automated augmentation methods. The pioneering proxy-
based method, AutoAugment (AA) [4] uses reinforcement
learning to search for the best policy from the huge search
space. Although AutoAugment achieves excellent perfor-
mance, it requires lots of training cost (see the Table 1). The
latter proxy-based methods use a smaller proxy task with
weight sharing for each policy to reduce costs, such as Fast
AutoAugment (Fast AA) [26] and Population Based Aug-
mentation (PBA) [14]. As shown in the Figure 1 (a), these
proxy-based automated augmentation methods include the
separate searching and training stage. However, the weight
sharing leads to a serious gap between proxy tasks and actual
tasks, which is a common challenge in most areas of Au-
toML [17, 16]. To address this issue, the proxy-free method
(e.g., RandAugment (RA) [5]) reduces the search space dra-
matically, allowing it to be trained on the target task with no
need for a separate proxy task (see the Figure 1 (b)). How-
ever, RandAugment still requires lots of training costs for
the grid search.

In this paper, we propose A2-Aug, an Adaptive proxy-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1: Comparison between the proxy-based automated augmentation methods, RandAugment and our approach. (a) The
proxy-based automated augmentation methods first search for the optimal augmentation θbest on the proxy task and then apply
θbest for augmented training on the actual task. (b) RandAugment implements a lot of grid search on the actual task. (c) Our
A2-Aug only samples a small amount of augmentation and jointly optimizes their adaptive ensemble augmentation θens on
actual task with weight factor µ to get further improvement.

free Automated Augmentation method that only needs a few
searches. As shown in the Figure 1 (c), A2-Aug does not
require a separate search phase and a large number of grid
searches, which can dramatically reduce the training budget.
We find that misclassified input samples under one augmen-
tation may be correctly classified by other augmentations.
Thus, the adaptive ensemble of multiple augmentations can
obtain stronger performance. Therefore, A2-Aug jointly
optimizes multiple augmentations and uses their adaptive
ensemble logit to distill each candidate augmentation. This
allows A2-Aug to achieve significant performance gains
without lots of searches. Specifically, we first randomly
sample multiple augmentations and perform joint training
with a single model with separate BatchNorm parameters
for different augmentations. Then each logit of multiple
augmentations is ensembled by an adaptive weight factor,
which is co-optimized on the fly with the target task. Finally,
we force the strong adaptive ensemble logit (i.e., teacher) to
perform distillation for each logit (i.e., student). In this way,
each candidate augmentation obtains similar adaptability to
the best searched augmentation from many searches for the
target dataset. We normalize each logit before mimicking
the KL divergence, effectively improving the distillation
performance.

In principle, our A2-Aug is different from other auto-
mated augmentation methods because it maximizes the en-
semble knowledge of multiple augmentations to further
adapt to the target dataset. The merits of A2-Aug lie in
three-fold. First, it does not require a separate search stage
compared to proxy-based methods, so there are no optimiza-
tion gaps for A2-Aug training. Second, each augmentation
of A2-Aug can be effectively improved and implicit adap-
tively optimized for the target dataset under the distillation
training. Finally, A2-Aug only needs a small number of
searches to achieve significant performance improvements.
Furthermore, A2-Aug is easy to implement using joint train-
ing and does not require domain knowledge.

We conduct extensive experiments on different deep mod-
els and datasets to verify the superiority of the proposed
method. As shown in the Table 1, A2-Aug achieves a con-
sistent and significant accuracy boost in various neural net-
works and datasets, which outperforms other methods by a
large margin with less training overhead. For example, A2-
Aug obtains 1.6% accuracy gains on CIFAR-10 and 4.0%
accuracy gains on CIFAR-100. On the challenging Ima-
geNet dataset, A2-Aug can improve the top-1 accuracy of
ResNet-50 from 76.3% to 79.2%, which is a state-of-the-art
performance among automated augmentation methods.

The contributions of this work are three-folds:

• We propose A2-Aug, a new proxy-free automated aug-
mentation framework that only needs a limited number
of searches. A2-Aug enjoys a better trade-off between
performance and computation than conventional proxy-
free methods, significantly boosting its application.

• A2-Aug maximizes the ensemble logit of multiple aug-
mentations to improve the adaptability of each candi-
date augmentation for the target dataset. With joint
training and normalized distillation, A2-Aug can effi-
ciently and significantly improve the performance with
less training budget.

• We perform a thorough evaluation of CIFAR-10,
CIFAR-100, and ImageNet. A2-Aug achieves state-
of-the-art performances in various neural networks and
datasets. Specifically, we achieve 79.2% top-1 accu-
racy for ResNet-50 on ImageNet, which outperforms
AutoAugment with 1.6% significant margin and 25×
faster training speed.

2. Related work
Our A2-Aug is a new data augmentation framework,

which ensembles multiple augmentations and performs distil-
lation. In this section, we introduce related work about data
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augmentation, model ensemble, and knowledge distillation.
Data augmentation. Data augmentation [23, 3, 41, 39, 22]
is a prevailing regularization method to curb overfitting and
improve network generalization. It increases the amount and
diversity of training data using linear or non-linear trans-
formations over the original data. Some specially-designed
augmentation methods like Mixup [51], CutOut [7], and
CutMix [48] have been shown to improve the performance
of the trained model. However, such augmentation strate-
gies always require domain knowledge and manual design.
Inspired by neural architecture search [1, 15], many data aug-
mentation methods automatically search for optimal strate-
gies on a specific dataset. AutoAugment [4] samples the
best policies with reinforce learning. Although AutoAug-
ment achieves excellent performance, its search process is
computationally expensive. To improve the search efficiency,
several proxy-based search algorithms [26, 14, 25], have
been proposed. For example, Population Based Augmenta-
tion [14] employes an efficient population-based optimiza-
tion to search data augmentation schedules. However, these
methods all implement the search on the proxy task, which
does not always achieve a significant improvement in the
actual taskt [5]. Therefore, the proxy-free method, such as
RandAugment [5], implements a simple search on the ac-
tual task and achieves considerable performance. However,
RandAugment still brings huge training costs for its grid
search. Our A2-Aug is a proxy-free automated augmenta-
tion method, which does not rely on proxy tasks. Different
from RandAugment, A2-Aug jointly optimizes various aug-
mentations and uses their ensemble knowledge to further
improve the performance of each augmentation. This allows
A2-Aug to achieve significant performance gains without
lots of training cost.

Model ensemble. Model ensemble [28, 18] is an effec-
tive machine training method, which combines several well-
trained models to boost performance. Most existing ensem-
ble methods [30, 24, 11] average the output of each model,
which neglects the diversity. Different from these methods,
A2-Aug performs an adaptive ensemble using a learnable
weight factor, which strengthens the weight of powerful
augmentation and can be updated during training.

Konwlegde distillation. Knowledge distillation is a simple
yet effective training strategy, which works by transferring
the knowledge (e.g., outputted logits [13, 10], intermediate
feature [35, 46, 50, 43], and relational information [37, 31])
from the teacher model to student model. In our A2-Aug,
each logit of different augmentations acts as a student model,
while their adaptive ensemble logit acts as a teacher model.
We use ensemble logit to distill each model to learn from
the implicit adaptive ensemble augmentation to fit the target
dataset.

3. Review of automated augmentation
In this section, we review the conventional automated

augmentation methods. Similar to the AutoML meth-
ods [52, 34], these methods (e.g., proxy-free methods and
proxy-based methods) evaluate and search for the best aug-
mentation policy θ within a huge search space A(θ) to fur-
ther fit the target dataset. For the neural network F(·, w)
with weights w, train dataset Xtrain = {(xi, yi)}Ntrain

i=1 , and
validation dataset Xval = {(x̂i, ŷi)}Nval

i=1 , the purpose of au-
tomated augmentation is to find the optimal policy θ. Such
that when the weights are optimized on the training set, the
validation loss is minimized. Generally, the proxy-free auto-
mated augmentation needs to optimize the network weight
w first, as:

wθ = argmin
w

Ltrain(F(θ(x), w), y), (1)

where Ltrain(·) refers to the loss function on the training
set. Then, it searches the best augmentation policy θ on the
validation set, as:

θ∗ = argmax
θ∈A

ACCval (wθ) , (2)

where ACCval(·) refers to the accuracy on the validation
set. For different policy θ sampled from the search space
A(θ), its corresponding optimal weights need to be trained
independently from scratch. When A(θ) is very large, the
total training cost is expensive. Only small datasets and small
search space are affordable. For example, RandAugment [5]
implements a grid search on the small search space (102)
and small dataset (CIFAR-10).

To avoid the substantial cost of individual training, most
proxy-based automated augmentation methods [25, 26]
make various augmentation policies θ to inherit their weights
directly from a proxy task F(·,W ), where W is the shared
weight. To facilitate optimization, these methods relax the
discrete search space A(θ) into a continuous one A(θ̃),
where θ̃ denotes the continuous policies that represent the
distribution of the θ. In such a continuous search space,
augmentation policy θ̃ can be flexibly sampled from A(θ̃)
and optimized together with weights, as

(θ̃∗,Wθ̃∗) = argmin
θ̃,w

Ltrain(F(θ̃(x),W ), y), (3)

After optimization, the best policy θ̃∗ is sampled from A(θ̃)
and performs augmentation training on the actual tasks.

Although these proxy-based methods are fast and save
many training costs, the weight sharing leads to a perfor-
mance gap for the augmentation policy θ between the proxy
and the actual tasks. Because the weights of different policy
θ in the proxy task depend on each other and become deeply
coupled. Recent studies [5] show that the gap will limit the
performance improvement of these proxy-based methods.
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Figure 2: The overview of A2-Aug. During training, we first perform joint training for each input augmentation θ with a single
model, which has separate BatchNorm parameters (γi, βi) for different augmentations. Then, we obtain ensemble logit Qens

with adaptive weight factor µ and apply it to distill each logit Qi with KL divergence. After training, the model of the best
augmentation can be employed separately in model inference.

Different from the proxy-based method using the proxy
model to speed up the training speed, A2-Aug avoids the
massive overhead of the proxy-free method by significantly
reducing the number of searches. Instead of searching on the
proxy task, reducing the number of searches is another way
to speed up the search process. Most automated augmenta-
tion methods ignore this because the current augmentation
methods rely on many searches to fit the target dataset in the
augmentation space. And a few explorations will lead to in-
stability and limited performance improvement. The recent
multi-scale methods [44, 45, 40, 38] have been shown robust
regular effects via simultaneous multi-resolution input. This
indicates that a small number of augmentations can also fur-
ther fit the target dataset under the joint training paradigm.
Therefore, A2-Aug jointly optimizes multiple augmentations
and uses their ensemble logit to enhance the adaptability of
each augmentation for the target dataset, which leads to a
significant improvement and less training overhead.

4. Adaptive automated data augmentation

4.1. Overview of A2-Aug

The overview of the framework is shown in the Figure 2,
including joint training with separate BatchNorm (S-BN)
and adaptive ensemble distillation. During training, the im-
ages with multiple augmentations are trained with shared
convolution/classifiers and separate BatchNorm. The adap-
tive ensemble logit is learned on the fly from each logit of
input augmentation. Then the ensemble logit distills each
output using KL divergence. After training, the ensemble dis-
tillation of multiple augmentations can be discarded, and the
trained model of best augmentation can be used separately
in model inference.

4.2. Formulation of A2-Aug

As § 3 mentioned, A2-Aug employs the proxy-free train-
ing paradigm, which is formulated in the Equation (1) and
(2). Different from the other proxy-free method (e.g., Ran-
dAugment [5]), we jointly optimize multiple candidate aug-
mentations and use their adaptive ensemble logit to distill
each augmentation for more performance gain, which mainly
includes ensemble and distillation parts.
For the ensemble part, we first randomly sample N aug-
mentations (θ1, θ2,··· ,θN

) from the search space A(θ) and
use them for augmenting training images to train the model
F (·, w). Thus, there are multiple individual logits {Qi =
F (θi(x), wi)|i ∈ {1, 2, · · · , N}}. Next, we obtain the adap-
tive ensemble logit Qens =

∑N
i=1 µiQi for the N logits

using the weight factors µ = {µ1, µ2, · · · , µN}. The dif-
ferentiable µ is first normalized via softmax transformation
and then optimized by label as:

µ = argmin
µ

Ltrain(

N∑
i=1

µiF (θi(x), wi), y), (4)

Note that the gradients of the logits Qi are detached when
optimizing µ. The weight factor µ can reduce the weight of
weak augmentation and strengthen the influence of beneficial
augmentation. From the perspective of input augmentation,
we obtain the implicit ensemble augmentation θens in this
process and θens is optimized together with the target dataset
in an online manner.
For the distillation part, each logit Qi of different aug-
mentations is allowed to mimic the ensemble logit Qens by
optimizing the KL loss as Lkl

(
Qens,Qi

)
.

For the overall optimization objective, A2-Aug mimics
the classification loss of each logit Qi, the ensemble loss of
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Figure 3: Training curves of ResNet-50 on ImageNet.

Qens and the distillation loss, as:

(µ̃∗,Wµ̃∗) = argmin
µ̃,w

S∑
i=1

{Ltrain(F(θi(x), wi), y)︸ ︷︷ ︸
cross-entropy of each logit Qi

+ Ltrain((

S∑
i=1

µiF(θi(x), wi), y)︸ ︷︷ ︸
cross-entropy of ensemble logit Qens

+ Ltrain((

S∑
i=1

µiF(θi(x), wi),F(θi(x), wi)︸ ︷︷ ︸
KL divergence between ensemble Qens and each logit Qi

},

(5)
where W = [w1, w2, · · · , wN ] is the weight of each net-
work, µ∗ represents the optimal weight factor µ of multiple
augmentations. From the Equation (5), the optimization of
µ means that the implicit ensemble augmentation θens is dy-
namically updated to better adapt to the target dataset, which
is similar to policy sampling in the Equation (3). The ensem-
ble and distillation of multiple augmentations exist during
training and disappear in the inference, which does not in-
crease any inference overhead. After training, we choose the
best policy θbest for inference according to the accuracy on
the validation set as the Equation (2).
Comparison with RandAugment. The Equation (1)
and (5) demonstrate the difference between A2-Aug and
RandAugment. In A2-Aug, different policies are distilled by
the adaptive ensemble augmentation θens defined in Equa-
tion (4). While each policy in RandAugment is only updated
by label under independent training. As shown in Figure 3,
the ensemble augmentation θens performs stable improve-
ments compared with each augmentation. With the distil-
lation of θens, the performance of the same policies under
A2-Aug training achieve significant gain compared to the
baseline model. Although the best policy θbest of A2-Aug
is searched from a small number of input augmentations, it
enjoys similar adaptability with the best augmentation from
a large number of searches for the target dataset under distil-
lation training. This indicates that A2-Aug does not require
a grid search like RandAugment, which reduces costs and
expands its application. Moreover, A2-Aug is easy to imple-
ment with some efficient training approaches introduced in
the following section.

5. Experiments
In this section, we first evaluate the proposed A2-Aug

on CIFAR-10 [20] and CIFAR-100 [20] in § 5.1 and Ima-
geNet [6] in § 5.2, and compare the performance against
existing data augmentation methods. For fair comparisons,
we adopt the same training setting as AA [4], Fast AA [26],
PBA [14] and RA [5] throughout the experiments. Then we
isolate the influence of each element of A2-Aug in § 5.3. All
experiments are performed with PyTorch [32]. Full imple-
mentation details are referred to supplementary materials.

5.1. Experiments on CIFAR

Dataset. CIFAR-10 dataset consists of natural images with a
size of 32×32. There are totally 60,000 images in 10 classes.
Moreover, CIFAR-100 contains 50,000 training images and
10,000 test images with 100 classes, respectively.
Implementation. Following RA [5] and AA [4], we use the
same training settings for different models, including weight
decay, learning rate, batch size and total training epochs.
For A2-Aug, we randomly sample 4 augmentations from
the same search space as RA. More implementation details,
including detailed training and augmentation settings, are
available in supplementary materials.
CIFAR-10 results. Table 2 shows the results of our exper-
iments using A2-Aug on Wide-ResNet-40-2 (WRN-40-2),
Wide-ResNet-28-10 (WRN-28-10) [49] and Shake-Shake [8]
models. Specifically, for WRN-40-2, our method obtains
2.3% absolute accuracy gain and outperforms AA with 0.4%
obvious margins. Note that AA and CutOut are strong base-
lines for CIFAR-10. For WRN-28-10 with a wider channel,
the accuracy of A2-Aug is between 1.9% better than the
baseline and 0.6% ∼ 1.1% higher than other augmenta-
tion methods. For Shake-Shake with different widths/depths
and PyramidNet, our method obtains 1.4% ∼ 1.6% abso-
lute accuracy gains and outperforms other methods with
0.3% ∼ 0.6% obvious margins.
CIFAR-100 results. Different from CIFAR-100, CIFAR-
100 is more challenging for more categories, and our method
obtains more obvious performance improvements. As shown
in Table 2, A2-Aug achieves 7.3% absolute accuracy gain
and outperforms AA with 2.0% obvious margins for WRN-
40-2. For the high-capacity models such as WRN-28-10 and
Shake-Shake (26 2×96d), A2-Aug achieve 4.0% and 3.9%
accuracy gain compared to baseline.

5.2. Experiments on ImageNet

Dataset. We also perform experiments on the ImageNet
dataset, known as the most challenging image classification
dataset. It contains about 1.2 million training images and 50
thousand validation images, and each image belongs to one
of 1,000 categories.
Implementation. Experiments are conducted on standard
ResNet-50 and ResNet-200 with 120 training epochs, less
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Table 2: The top-1 accuracy of different augmentation methods on CIFAR-10 and CIFAR-100. SS (26 2 × 32d) refers to
Shake-Shake (i.e., the network has a depth of 26, 2 residual branches and the first residual block has a width of 32). Gain
refers to the performance gain compared to the baseline. We report top-1 mean (std) accuracy (%) over 3 runs.

Dataset Model Baseline CutOut [7] AA [4] PBA [14] Fast AA [26] RA [5] DADA [25] A2-Aug Gain

CIFAR-10 WRN-40-2 94.4 95.9 96.3 N/A 96.4 N/A 96.4 96.7±0.2 2.3
WRN-28-10 96.1 96.9 97.4 97.4 97.3 97.3 97.3 98.0±0.3 1.9
SS (26 2× 32d) 96.4 97.0 97.5 97.5 97.5 N/A 97.3 97.7±0.1 1.3
SS (26 2× 96d) 97.1 97.4 98.0 98.0 98.0 98.0 98.0 98.5±0.1 1.4
PyramidNet 97.3 NA 98.5 98.3 98.3 98.5 98.3 98.9±0.2 1.6

CIFAR-100 WRN-40-2 74.0 74.8 79.3 N/A 79.4 N/A 79.1 81.3±0.3 7.3
WRN-28-10 81.2 81.6 82.9 83.3 82.7 83.3 82.5 85.2±0.4 4.0
SS (26 2× 96d) 82.9 84.0 85.7 84.7 85.4 N/A 84.7 86.8±0.3 3.9

Table 3: Top-1 accuracy of different augmentation methods on ImageNet for ResNet-50 and ResNet-200. Note that these
results refer to the published report of the original papers. We report top-1 mean (std) accuracy (%) over 3 runs.

Model Baseline AA [4] Fast AA [26] RA [5] OHL AA [27] DADA [25] A2-Aug Gain

ResNet-50 76.3 77.6 77.6 77.6 78.9 77.5 79.2±0.4 2.9
ResNet-200 78.5 80.0 80.6 N/A N/A N/A 81.5±0.5 3.0

than AA (200 epochs) and RA (180 epochs). A2-Aug ran-
domly samples 3 augmentations from the same search space
as RA, which only introduces the training overhead of 1.6×
compared to the baseline. Please refer to the supplementary
materials for more details.
Results. Table 3 shows the top-1 accuracy of A2-Aug com-
pared to other augmentation methods for ResNet-50 [12] and
ResNet-200 [12] models on ImageNet. For ResNet-50, our
method achieves 2.9% absolute accuracy gains, which out-
performs AA with 1.6% obvious margins. For ResNet-200,
our method achieves 81.5% accuracy, which is the state-of-
the-art performer in data augmentation methods.
Comparison on training efficiency. Besides the significant
performance gains, A2-Aug also enjoys considerable train-
ing efficiency. As shown in Table 4, A2-Aug only introduces
1.6× training overhead compared to baseline and achieves
16× reduction in cost than RandAugment. Moreover, the
A2-Aug without search phase also presents less total cost
than some proxy-based methods (e.g., AA, FastAA and OHL
AA) and obtains a 1.7% accuracy gain compared to DADA
with a similar cost. Note that DADA is the fastest automated
augmentation method so far.

5.3. Ablation study

In this section, we analyze the impact of the key parts of
A2-Aug, including the joint training, ensemble distillation
method and multiple augmentations.
Importance of adaptive ensemble method. As the adap-
tive ensemble with weight factor µ is essential to A2-Aug,
we compare the average ensemble and adaptive ensemble in
the Table 5. For A2-Aug, the accuracy gain of the adaptive
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Figure 4: Effect of number of multiple augmentations for
WRN-40-2 on CIFAR-100 with 10 different seeds.

ensemble outperforms the average ensemble on the Ima-
geNet dataset for ResNet-50.
Sensitivity study on the number of multiple augmenta-
tions. We evaluate the different number of initial augmen-
tations for A2-Aug for 10 different seeds. In Figure 4, we
observe that the number 4 ∼ 5 seems to be a considerable
choice on CIFAR-100 . Furthermore, the performances un-
der different seeds (see error bar in Figure 4) is small when
there are more than 5 augmentations.
Compare to the multi-scale method. In the field of model
design and compression, multi-scale methods (e.g., Mutual-
Net [45]) use multiple input resolutions to achieve dynamic
accuracy-efficiency trade-offs at runtime. However, our
approach focuses on improving the performance of ran-
dom candidates in automated data augmentation and
has clear differences with these methods in the motiva-
tion and contribution. Furthermore, we also compare A2-
Aug with the same multi-resolution and training settings with
MutualNet in the Table 6. The result shows that A2-Aug
obtains 2.8% gains and outperforms MutualNet.
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Table 4: Search and training cost of different augmentation methods on ImageNet for ResNet-50. Search cost is the result of
the original paper report. The training cost is estimated according to the training epoch reported in the original paper. The
training cost of our method is measured on an 8× 2080Ti GPU server with a batch size of 1,024.

Method Baseline AA [4] Fast AA [26] OHL AA [27] DADA [25] RA [5] A2-Aug

Search cost (GPU-h) 0 15,000 450 625 1.3 0 0
Training cost (GPU-h) 384 640 576 400 576 10,368 624
Total cost (GPU-h) 384 15,640 1,026 1,025 577.3 10,368 624

Compared baseline - 40.7× 2.7× 2.7× 1.5× 27× 1.6×

Table 5: Comparison of average ensemble method and adap-
tive ensemble method of ResNet-50 on ImageNet.

Method Top-1 Gain

Baseline 76.3%
Average ensemble 78.1% 1.8%
Adaptive ensemble 79.2% 2.9%

Table 6: The results of A2-Aug with multi-resolution inputs
for ResNet-50 on ImageNet.

Method Top-1 Gain

Baseline 76.3%
MutualNet [45] 78.6% 2.3%
A2-Aug (Multi-scale) 79.1% 2.8%

6. Conclusions

In this paper, we propose A2-Aug, a simple and effective
proxy-free framework. A2-Aug can significantly improve
performance and only need to search for a few augmenta-
tions. With the adaptive ensemble distillation of multiple
augmentations, A2-Aug can obtain similar effects compared
to the grid search of RandAugment. Our method achieves
state-of-the-art performance on CIFAR-10, CIFAR-100, and
ImageNet via less training overhead. These improvements
and perspectives show a novel and potential method. We
hope this elegant and practical approach would facilitate the
research for data augmentation.
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