
PerfHD: Efficient ViT Architecture Performance Ranking using
Hyperdimensional Computing

Dongning Ma
Villanova University
Villanova, PA 19085
dma2@villanova.edu

Pengfei Zhao
Beijing Xiaochuan Technology Co., Ltd.

Haidian, Beijing 100191, China
zhaopengfei2014@xiaochuankeji.cn

Xun Jiao
Villanova University
Villanova, PA 19085

xun.jiao@villanova.edu

Abstract

Neural Architecture Search (NAS) aims at identifying the
optimal network architecture for a specific need in an auto-
mated manner, which serves as an alternative to the man-
ual process of model development, selection, evaluation
and performance estimation. However, evaluating perfor-
mance of candidate architectures in the search space dur-
ing NAS, which often requires training and ranking a mass
amount of architectures, is often prohibitively computation-
demanding. To reduce this cost, recent works propose
to estimate and rank the architecture performance with-
out actual training or inference. In this paper, we present
PerfHD, an efficient-while-accurate architecture perfor-
mance ranking approach using hyperdimensional comput-
ing for the emerging vision transformer (ViT), which has
demonstrated state-of-the-art (SOTA) performance in vi-
sion tasks. Given a set of ViT models, PerfHD can accu-
rately and quickly rank their performance solely based on
their hyper-parameters without training. We develop two
encoding schemes for PerfHD, Gram-based and Record-
based, to encode the features from candidate ViT archi-
tecture parameters. Using the VIMER-UFO benchmark
dataset of eight tasks from a diverse range of domains, we
compare PerfHD with four SOTA methods. Experimental
results show that PerfHD can rank nearly 100K ViT mod-
els in about just 1 minute, which is up to 10X faster than
SOTA methods, while achieving comparable or even su-
perior ranking accuracy. We open-source PerfHD in Py-
Torch implementation at https://github.com/VU-
DETAIL/PerfHD.

1. Introduction

As deep learning models broaden their applications and
enhance their capability to various domains, there is a grow-
ing demand of developing and optimizing architectures for
higher model performance. However, with the architec-

tures evolving increasingly deep, the architecture engineer-
ing usually requires enormous effort due to the expansion
of design space, which is hardly possible using manual ef-
fort. To address this issue, neural architecture search (NAS)
has been proposed and adopted to identify the optimal neu-
ral network architecture in an automated manner [12, 15].
Recently, vision transformer (ViT) emerges as a promising
algorithm and receives wide attention as it achieves SOTA
performance in vision tasks [5]. NAS is particularly useful
and necessary for ViT because of the heterogeneity of com-
ponents and blocks, which serves as the potential knobs in
the search process.

Generally speaking, NAS can be summarized as shown
in Fig. 1: First, system designers set custom constraints
which defines the search space. Then, within this search
space, candidate architectures are sampled using search
strategies iteratively. Lastly, the performance of candi-
date architecture will get evaluated/estimated to obtain a
performance ranking, which determines the optimal archi-
tecture for this NAS task. NAS process itself can be a
resource-demanding process. For example, NAS has spent
days or even weeks using clusters of hundreds of GPUs
to identify architectures that can achieve comparable re-
sults on challenging computer vision tasks [16]. One ma-
jor computation-expensive process in NAS is the process of
evaluating the performance of neural architectures sampled
from the predefined search space. A canonical training and
validation flow can be applied to evaluate the performance
of an architecture. However, this is prohibitively slow, thus
many recent works develop various efficient performance
evaluation techniques such as sharing weights from a su-
pernet to avoid training models afresh [3, 20, 21]. How-
ever, this still cannot avoid the process of evaluating the
performance of sampled architectures by running inference
on each one of them. To address this issue, multiple works
have been proposed to use machine learning for predicting
the performance of a given architecture without training or
inference [11, 22].

In this work, we depart from the conventional learning

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2230

Custom
Constraints

Design Space

Candidate
Architectures

Performance
Ranking

Search
Strategy

Estimation
Strategy

Optimal
Architecture

System
Designer

iterate

Figure 1. A typical NAS flow.

algorithms and embrace the hyperdimensional computing
(HDC), to develop an efficient-yet-accurate performance
ranking approach for ViT architectures. HDC is an emerg-
ing non von Neumann computation paradigm, leveraging
the learning and representation capabilities of extremely
high dimensional vectors inspired from the abstract brain
activity functionalities [18]. We identify two highlighted
characteristics of HDC which is suitable to address the
performance ranking problem during NAS. First, HDC is
known for its efficiency over existing machine learning al-
gorithms such as neural networks, including smaller model
size, faster model convergence and less computational in-
tensity [6,10,13,17]. This can reduce the overhead of NAS
performance ranking. Second, HDC is better at learning
with limited data such as one-shot learning tasks and are
less likely to over-fit [1, 14]. This can enable HDC models
to learn how to rank the performance of a large set of unseen
architectures with only a handful of training samples, which
is usually the realistic case [2,7]. The main contributions of
this paper are as follows:

• In this paper, we propose PerfHD, a supervised
ViT performance ranking algorithm using HDC.
PerfHD can efficiently rank the performance of ar-
chitectures given the configurations of ViTs. To the
best of our knowledge, this is the first work to leverage
HDC for NAS.

• We propose two different HDC encoding schemes
(Gram and Record) based on the architecture of ViT
and evaluate and compare their performance. We also
propose retraining methods based on weight-update to
enhance model performance after initial training.

• We evaluate PerfHD performance on the architectures
curated from VIMER-UFO benchmark of eight com-
puter vision applications from different domains and
compare with four SOTA baselines. Experimental re-
sults show that PerfHD can rank around 100K archi-
tectures in about 1 minute, which is up to 10X faster
than SOTA methods.

2. Related Works
Different machine learning algorithms are proposed to

estimate and rank performance of sampled architectures
during NAS, particularly given there is a limited training
dataset, e.g., just a few architectures with their performance.
For example, widely used gradient boosting algorithms for
ranking such as LightGBM and Catboost have been ap-
plied to rank the ViT architecture performance where the
hyper-parameters of ViT models are used as categorical fea-
tures [7]. TF-TAS leverages two theoretical perspectives of
synaptic diversity and synaptic saliency to evaluate and rank
ViT architectures which speeds up the architecture search
by up to 48X [22]. On the other hand, GP-NAS leverage
the capability of Gaussian process and mutual information
to accurately model the performance correlations using a
small amount of samples [11]. Ensemble learning is also
used to enhance the GP-NAS performance, however as en-
semble learning usually incorporates a large set of models
and require extensive hyper-parameter fine-tuning [2]. This
drastically increases the overhead of the algorithm such as
run-time by orders of magnitude, which can potentially off-
set the benefit of efficiency. Therefore, it is of great sig-
nificance to explore methods that are able to rank the per-
formance of ViT models with desirable accuracy and effi-
ciency.

3. Hyperdimensional Computing
3.1. Notions and Operations

3.1.1 Hypervector

Hypervectors (HV) are the fundamental elements of an
HDC model. HVs are numerical vectors with several spe-
cific characteristics. 1). high-dimensional: the dimension
(the amount of elements) of HVs is extremely high, usu-
ally reaching 10,000 and above; 2). holographic: each HV
is recognized as the minimal unit in an HDC model, indi-
vidual number inside HV does not own unique representa-
tion; 3). (pseudo-)random: for the initial generated HVs,
the numbers are i.i.d., thus two randomly generated HVs
are approximately orthogonal to each other due to the ex-
tremely high dimensionality. We use V⃗ = (v1, v2, ..., vD)
as the notion of a D-dimensional HV in which vi is the i-
th number inside the HV. For differentiation purposes, HVs
are marked with arrows in this paper, while other vectors
such as features are bold instead.

3.1.2 HV Operations

In reality, the information can originate from diverse modal-
ities, and different sources of information can correlate.
To aggregate information of the same modality or to com-
bine information from different modalities to also provide

2231

hierarchy of information, we use HDC operations. The
three mostly used HDC operations are addition, multipli-
cation and permutation. The addition and multiplication
operations take two HVs as inputs and perform linear and
element-wise vector operations correspondingly. The per-
mutation operation takes only one HV as input and perform
cyclic shift of a specific amount n. Note that the dimensions
of input HVs and output HVs are the same for all the three
operations.

Bipolarization (or binarization) is another important op-
eration for HV beyond the three basic operations. Bipolar-
ization takes the sign bit of the HV elements that any num-
ber larger than 0 is bipolarized into 1, while any number
smaller than 0 is bipolarized into −1. Binarization is simi-
lar, but numbers are binarized into 1 and 0 instead. Bipolar-
ization and binarization introduces additional non-linearity
into HDC models, and also to limit the range of elements in-
side each HV to prevent overflow issues during aggregation.
In PerfHD, we slightly modify the bipolarization behavior
that any number larger than 1 or smaller than −1 will be
capped into 1 and −1 while the numbers within (−1, 1) are
kept as-is.

3.1.3 Similarity

With HVs representing information and HDC operations
aggregating and combining information, there is then a need
of metric that can quantitatively measure the similarity be-
tween information that different HVs accommodate. Cosine
similarity is one of the most frequently used metrics while
other similarities such as Euclidean distance and Hamming
distance can also be used. A higher cosine similarity indi-
cates that the two HVs compared share more similar infor-
mation, thus are more alike.

3.2. HDC Memories

HDC leverages memories to host information. HDC
memories are specialized clusters of HVs with different ob-
jectives during a learning task. There are two major cat-
egories of HDC memories: the item memory and the as-
sociative memory. Item memories are related with the in-
put realistic features: each item memory hosts item HVs at
the same amount of possible feature values K of the corre-
sponding features as shown by I = {I⃗1, I⃗2, ...I⃗K}. If the
feature is a continuous variable, quantization can be applied
beforehand to avoid item memories of infinite size. Asso-
ciative memory, on the other hand, is related to the output of
the model. For a classification task, the associative memory
hosts class HVs, each of which represents a class of the task,
as shown by A = {A⃗1, A⃗2, ...A⃗T }. For this paper, since we
are ranking the performance of various ViT architectures,
the associative memory of PerfHD hosts an HV aiming to
represent high performance architectures. Details of how

the associative memory can help with ranking architecture
performance are present in Sec. 4.

4. PerfHD Methodology
4.1. Problem Formulation and Motivation

In NAS, architectures are usually sampled from a super-
net. Instead of training every sampled architecture to obtain
the performance, designers usually have a small set of ar-
chitectures trained with their performance ranked, and want
to rank a larger set without actually training them. Addi-
tionally the algorithm or method to rank the larger set of
architecture should be efficient and fast. We found that two
highlighted characteristics of HDC match the requirements
and can potentially enable a new direction of addressing this
problem: 1. HDC is known for its efficiency over existing
machine learning algorithms such as neural networks, in-
cluding smaller model size, faster model convergence and
less computational intensity [10, 13, 17]. 2. HDC is better
at learning with limited data such as one-shot or few-shot
learning tasks and are less likely to over-fit [1, 14].

4.2. Overview of PerfHD

An overview of PerfHD is present in Fig. 2.
PerfHD first iterates through the training set, takes param-
eters of all the architectures and encodes them into the
corresponding HVs referred to as the architecture HVs.
PerfHD also converts the task rankings into weights of each
architecture in the training set. PerfHD uses the weights to
perform weighted sum to establish the associative memory
which accommodates the task HVs. In brief, architectures
with higher rankings are assigned with larger weights thus
having more information impact on the task HVs after the
weighted sum. When predicting rankings of architectures
from the test set, PerfHD performs the same architecture
encoding to obtain the architecture HV. Then, PerfHD com-
putes and checks the similarity between the HV and each
task HV in the associative memory. Once the similarity
metrics of all the architectures from the test set are obtained,
PerfHD can obtain the ranking of the similarity metrics as
the predicted rankings. To enhance PerfHD performance,
we also propose “retraining by weight-difference” to update
the associative memory accordingly.

4.3. Feature Description

The features used in PerfHD are the architectural param-
eters of the ViT model. The available training data consists
of three architectural parameters including the depth of en-
coders (depth), number of attention heads (#head) and the
dilation ratio of the MLP (mlp ratio) of each layer. Each
parameter has three possible values: depth: {10, 11, 12};
#head: {10, 11, 12}; mlp ratio: {3.0, 3.5, 4.0}. There-
fore, for each encoder, there are 3 × 3 possible parameter

2232

arch. params task rankings

depth, #head, mlp_ratio 52 117 16…

arch. 2 9 453 28…

arch. N task 1 task 2 task T

…

…

…

training set, N = 500

arch.
params

task
rankings

test set, N = 99500

arch
params

task
rankings

PerfHD (trained) PerfHD

predicttrain/retrain

arch. params arch. encoding arch. HV

task rankings to weights

Associative Memory

task 1 HV

task 2 HV

task T HV

…
weighted sum

similarity
check

*arch. encoding is the same for train/retrain/predict

arch. HV

retraining by
weight update

similarities
predicted
rankings

retrain AM

Figure 2. Training PerfHD to rank ViT performance based on architecture parameters.

combinations, so the number of possible architectures in the
search space are (3 × 3)10 + (3 × 3)11 + (3 × 3)12. For
convenience in data processing, the parameters are (label-
)encoded into numbers of {1, 2, 3}. The labels are the per-
formance rankings of the architecture on different tasks.
Smaller number refers to higher performance, e.g., a rank-
ing of 0 means this architecture is the best-performing ar-
chitecture of this task.

4.4. ViT Architecture Encoding

In this subsection, we introduce the architecture encod-
ing in detail. Specifically, we propose two schemes of en-
coding: Gram-based encoding and Record-based encoding,
as indicated by Fig. 3. Note that the architecture HVs V⃗ are
initialized with 0.

4.4.1 Gram-based Encoding

Gram-based encoding recognizes each block inside a ViT as
a “gram” and groups parameters by tuples based on which
block they belong to. It features two item memories: the
#head memory and the mlp ratio memory. Since each pa-
rameter has three possible values as introduced in Sec. 4.3,
each item memory hosts three item HVs, each representing
a possible value in the high-dimensional space.

Gram-based encoding first obtains the corresponding
item HVs from the item memory based on the parameter
tuples of #head and mlp ratio. The two indexed HVs are
then aggregated by HV multiplication, forming the gram
HV. Then, the gram HVs are permuted where the shift
amount is based on the depth index of the encoder, i.e., en-
coders closer to the output of the ViT model are shifted for
more dimensions, or vice versa. The permuted gram HVs
are summed up into the architecture HV V⃗ . Encoded HVs
are bipolarized (or binarized).

Note that the Gram-based encoding can be paralleled,
since the encoding within each gram is independent from
each other, and the shift amount of permutation is solely de-
pendent on the depth index. A major disadvantage of Gram-
based encoding, however, is that the permutation operation
is not very straightforward for implementation of accelera-
tion, since the cyclic rotation of high dimensional vectors
are not linear vector operations like addition and multipli-
cation. Therefore, Record-based encoding is an alternative
to the Gram-based encoding which eliminates the use of
permutation, but only keeps addition and multiplication of
HVs.

4.4.2 Record-based Encoding

Record-based encoding uses one additional item memory,
the depth memory as an alternative to the gram-based per-
mutation. The depth memory hosts item HVs at the number
of depth index, therefore, there are 12 item HVs in the depth
memory given the max possible depth is 12 for this dataset.
Within each encoder, the HV aggregation is the same as
Gram-based encoding. However, instead of permutation by
the depth index, the HV of each encoder is multiplied by
the item HV of the corresponding depth, indexed from the
depth memory. Then the HVs are summed up to obtain the
architecture HV, which is also bipolarized (or binarized). In
realistic implementation, based on the commutative prop-
erties of multiplication, the item HVs in the item memo-
ries can encode first and stored as a unified item memory to
avoid repetitive index and HV multiplications.

4.5. PerfHD Training

Training is to establish the associative memory that ac-
commodates the task HVs which are initialized with ze-
ros. In PerfHD, training is the weighted sum of the HVs

2233

PE

FC

En
co

d
er 1

MHA

MLP

Encoder 2

Encoder N

①
d

ep
th

②
#h

ead

…

③
m

lp
_ratio

item memories

depth memory

#head memory

mlp_ratio memory

①

② ③ ② ③ ② ③…

x x x

multiplication by block index based on depth
arch. params

index by value

#head memory

item HV (#head = 10)

item HV (#head = 11)

item HV (#head = 12)

item memories

#head memory

mlp_ratio memory

② ③ ② ③ ② ③…

x x x
arch. params

index by value

ρ + ρ +…

Record-based

Gram-based

arch. HV

sum

typical ViT arch.

Figure 3. PerfHD encoding schemes to encode the ViT parameters into an HV. Two schemes are introduced: Gram-based and Record-
based encoding.

obtained from the encoding phase as described in Eq. (1),
where A⃗t is the HV of task t in the associative memory,
w

(t)
n is the task t weight of the n-th architecture in the train-

ing set, and V⃗n is the encoded HV of the n-th architecture
as well. Architectures with higher ranks of a specific task
are assigned with higher weights, while architectures with
lower ranks are assigned with lower weights. A custom
learning rate γ can be specified, however, during training we
use the constant 1. The objective of training is to incorpo-
rate more information about high performing architectures
into the task HV, while still trying to consider information
from others HVs as much as possible to avoid over-fitting,
since there are only 500 architectures in the training set.

A⃗t = A⃗t + γ × w(t)
n × V⃗n (n = 1, 2, · · · , N) (1)

Intuitively, we convert the ranking into weights using a
straightforward inverse number method as Eq. (2). wn =
{wn1, wn2, · · · , wnT } is the weight vector of the n-th ar-
chitecture, in which wit refers to the weight of t-th task.
rn = {rn1, rn2, · · · , rnT } is the ranking vector from the
training set, with rankings of each task correspondingly,
as shown in Fig. 2. µ is a constant scaling factor and we
use 1.0 during the experiments. Therefore, worse-than-
average performing architectures are assigned with negative
weights and better-than-average ones are assigned with pos-
itive weights.

wn = µ(1 − 2
rn + 1

) (2)

4.6. PerfHD Prediction

Instead of directly predicting the actual ranking,
PerfHD uses the similarity metrics to determine the ranking
of the test set. For an architecture with unknown ranking,
PerfHD first encodes its parameters into the architecture
HV using the same item memories and encoding scheme for
training. Then, PerfHD checks the similarity between the
architecture HV and the task HVs in the associative mem-
ory. For each task, the similarity of all the architectures
are recorded and then used to rank the task performance.
Specifically, as the task HV in the associative memory is the
aggregation of architectures with high performance, there-
fore, a higher similarity will then be predicted with higher
ranking by PerfHD.

4.7. PerfHD Retraining

In HDC, training usually takes one epoch (a full itera-
tion of the entire training set). Additional epochs of retrain-
ing (still using the training set) can be optionally performed
to enhance the performance of the model. HDC models
for classification tasks leverages prediction labels to update
the associative memory when a mis-classification is identi-
fied [17]. However, PerfHD targets at a ranking task, there-
fore we propose a novel retraining methodology referred to
as retraining by weight update to increase the consistency
of predicted rankings and the ground-truth.

PerfHD retraining is based on updating the associative
memory by weight-difference. The main concept is to make
sure the similarity ranking of each architecture is consis-

2234

tent with the ground-truth ranking to minimize the Kendall
tau [9] score difference between the prediction and the
ground-truth. First after the training epoch, PerfHD calcu-
lates the similarity metrics of all the N architectures in the
training set which is referred to as δ = {δ1, δ2, · · · , δN}.
Based on the similarity metrics we are able to obtain the
predicted rankings r̂ = {r̂1, r̂2, · · · , r̂N}, which can be
subsequently converted into the speculated weights ŵ =
{ŵ1, ŵ2, · · · , ŵN} according to Eq. (2).

We use the difference between the speculated weights
and the ground-truth weights ∆w = {w1 − ŵ1, w2 −
ŵ2, · · · , wN − ŵN} to perform training again to update the
associative memory based on Eq. (1). A negative weight
difference means the architecture is “under-ranked” and its
HV should be added into the task HV during retraining,
on the other hand, a positive difference means the archi-
tecture is “over-ranked” and its HV should be subtracted
instead. Retraining can iterate for multiple epochs and can
be stopped when the (average) difference is smaller than a
threshold to prevent over-fitting. We use the starting learn-
ing rate of 1 for consistency with training, however, for ad-
ditional epochs in retraining we apply a decay of 0.8.

5. Experimental Results
5.1. Experimental Setup

The dataset of architecture performance is curated
from the multi-task VIMER-UFO benchmark, with eight
different computer vision tasks: CPLFW, Market1501,
DukeMTMC, MSMT-17, Veri-776, VehicleId, VeriWild,
and SOP [19], provided by the Second Lightweight NAS
Challenge1. There are 500 architectures in the training
set with performance ranked on each of the task, and
99,500 for ranking prediction as the test set. We imple-
ment PerfHD using PyTorch and evaluate PerfHD with one
NVIDIA P100 GPU. We also compare PerfHD with four
baseline methods:

• GP-NAS [11], is Gaussian Process Neural Architec-
ture Search where the correlation between perfor-
mances and architectures and the correlation between
different architectures are explicitly modeled. An effi-
cient sampling method is also proposed which enables
GP-NAS learning on a small set of samples.

• LightGBM [7, 8], which is a widely adopted gradient
boosting decision tree.

• CatBoost [4], is another gradient boosting baseline but
with categorical features support.

• GP-NAS Ensemble [2], which is an ensemble version
of GP-NAS [11], it applies enhancements such as ad-

1https : / / aistudio . baidu . com / aistudio /
datasetdetail/134077

ditional feature engineering, label transformation and
weighted ensemble kernels.

τ =
nc − nd

n(n− 1)/2
(3)

Kendall tau score is used to describe the consistency be-
tween the model prediction and the ground-truth, a higher
scores means the ranking predictions are more accurate.
Kendall tau τ between two vectors of ranking can be cal-
culated by Eq. (3), where nc and nd are the number of con-
cordant and discordant pairs, respectively and n is the total
number of pairs [9].

5.2. Comparison on Accuracy

We present the comparison between PerfHD and the
baselines on the VIMER-UFO benchmark in Tab. 1. Based
on this table, we observe several important facts. First, we
want to mention that the average performance across all
models can drastically vary amongst different datasets. For
CPLFW, all the models are having significantly lower score
than the other 7 tasks, making this face related dataset the
most challenging task in this benchmark. MSMT, on the
contrary, is the easiest task amongst all that all the methods
evaluated can achieve over 0.75 in score.

Moreover, GP-NAS and LightGBM are the two sub-
performing baselines as their average scores are less than
0.7. On the other hand, CatBoost and GP-NAS Ensem-
ble can achieve higher accuracy with scores achieving over
0.785. As to HDC-based methods, PerfHD-Record out-
performs PerfHD-Gram on all the tasks and in general
shows a superior score by around 0.03. We discuss that
such advantage comes from the additional depth memory in
PerfHD-Record, which provide an additional hyperdimen-
sional space to represent different encoder blocks compared
with PerfHD-Gram which only uses permutation in fixed
amount of vector shift.

Comparing PerfHD with other baselines, we can notice
that across all the methods evaluated, PerfHD-Record is
able to achieve the second highest score on average, and is
only 0.0079 lower than the GP-NAS Ensemble and around
0.0050 higher than the third place Catboost. Specifically,
PerfHD-Record achieves 0.6634 score on VehicleId, which
is the highest score of this task across all the compared mod-
els. For VeriWild, PerfHD-Record also achieves near-top
performance of around 0.92. PerfHD-Gram on the other
hand, has relatively inferior performance compared with
Catboost and GP-NAS Ensemble by 0.0243 and 0.0370 re-
spectively, however still performs better than GP-NAS and
LightGBM for over 0.08.

5.3. Comparison on Efficiency

We also compare the execution time of PerfHD and
baselines to show the efficiency of PerfHD. The execu-

2235

Table 1. Comparison of Models on Kendall Tau Scores of the VIMER-UFO Benchmark

Model Average CPLFW Market MTMC MSMT Veri VehicleId VeriWild SOP

GP-NAS 0.6196 0.2350 0.7391 0.7052 0.8063 0.6319 0.4012 0.6731 0.7654
LightGBM 0.6810 0.2755 0.7742 0.7723 0.7599 0.7469 0.5900 0.7860 0.7433
Catboost 0.7851 0.3220 0.8687 0.8883 0.9430 0.8930 0.6576 0.9099 0.7980

GP-NAS Ensemble 0.7978 0.3188 0.8864 0.9045 0.9678 0.9106 0.6624 0.9199 0.8119

PerfHD-Gram 0.7608 0.2927 0.8489 0.8580 0.9004 0.8571 0.6598 0.8819 0.7874
PerfHD-Record 0.7899 0.3074 0.8754 0.8945 0.9555 0.8974 0.6634 0.9195 0.8060

Table 2. Comparison of Execution Time of the VIMER-UFO Benchmark

Model GP-NAS LightGBM CatBoost GP-NAS Ensemble PerfHD-Gram PerfHD-Record

Execution Time (second) 92 69 80 >600 425 62

tion time for training the model and making predictions are
listed in Tab. 2. Less sophisticated models such as GP-NAS
and LightGBM are faster to learn and predict, however their
performance is relatively sub-par. CatBoost, based on the
time reported, uses relatively short execution time. How-
ever, to achieve such enhanced performance, it requires ex-
tensive parameter tuning which also takes much longer time
than just training and prediction. This parameter optimiza-
tion is required for each task, which also limits the flexibil-
ity of this algorithm. GP-NAS Ensemble, the more com-
plicated model, achieves the highest performance overall
however during our evaluation, it spends way more than 10
minutes for training and prediction since each of the en-
semble models require intensive training effort. We mark
the execution time with >600 since it is already much time-
consuming than most of the baselines.

The time reported for both of the PerfHD implemen-
tations include the entire process of all the tasks, i.e., no
additional pre-training or fine-tuning is required. PerfHD-
Gram requires considerably long processing time compared
to most of the baselines, as the permutation operations of
HVs occupy most of the time spent. As PerfHD-Gram
also shows sub-par ranking scores, so we conclude that
PerfHD-Record is preferred for this benchmark. Specifi-
cally, PerfHD-Record can finish training and prediction to-
gether with around 1 minute, which is the fastest method
across all the compared baselines and is more than 10X
faster than GP-NAS Ensemble which is the baseline with
highest score.

5.4. Impact of HV Dimension

We also present a case study on the Record-based encod-
ing to analyze the impact of using different HV dimensions
on PerfHD performance. In related HDC literature, dimen-
sions of 10,000 – 20,000 is usually used as the dimension
range and higher dimensions may not guarantee a higher

performance. Therefore, we choose 10,000 as the starting
point of HV dimension analysis on PerfHD. However, we
observed that the dimension of HVs can be increased to
over 100,000 without performance saturation. Experiments
show that a dimension around 100,000 achieves the best
performance across all the dimensions evaluated, as shown
in Fig. 4.

10000 20000 40000 60000 80000 100000 120000
HV dimension

0.75

0.76

0.77

0.78

0.79

0.80

Ke
nd

al
l t

au

Figure 4. PerfHD-Record task-average scores under different HV
dimensions.

5.5. Discussion

The efficiency of PerfHD comes from the simplicity of
HDC training and retraining, which follows a concise linear
operations with matrices (record-based encoding). This can
hugely benefit from the high parallelism of GPU process-
ing that significantly accelerates the PerfHD. PerfHD also
does not need back-propagation like neural networks, which
requires maintaining a complicated computation graph. In-
stead, PerfHD retraining is via the update to the associa-
tive memory which is also a weighted sum with much less
computational overhead. Another advantage is that when
evaluating different tasks, PerfHD can share the same item
memory and encoding process. This grants a tremendous
advantage over other baselines that different tasks are re-
quired to train individual models or apply relatively more
complicated transfer processing.

2236

6. Conclusion

Efficiency of neural architecture search (NAS) algo-
rithms has been one major bottleneck for this automated
model engineering process. Specifically, the performance
estimation of searched architectures often requires signifi-
cant effort. How to efficiently and accurately rank a large
set of ViT model performance given a small amount of
training set is a realistic and important problem. In this
paper we leverage the hyperdimensional computing (HDC)
computing and propose PerfHD for ViT performance rank-
ing. On the VIMER-UFO benchmark with eight different
tasks, PerfHD is able to achieve top-level results yet also
has tremendous acceleration compared with four baselines.
The future work will focus on exploring more encoding
schemes and hardware-specific designs for further acceler-
ation and/or more energy-efficiency.

References
[1] Alessio Burrello, Kaspar Schindler, Luca Benini, and Abbas

Rahimi. One-shot learning for ieeg seizure detection using
end-to-end binary operations: Local binary patterns with hy-
perdimensional computing. In BioCAS. IEEE, 2018. 2, 3

[2] Kunlong Chen, Liu Yang, Yitian Chen, Kunjin Chen, Yidan
Xu, and Lujun Li. Gp-nas-ensemble: a model for the nas per-
formance prediction. Third workshop on Neural Architecture
Search, 2022. 2, 6

[3] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A theo-
retically inspired perspective. arXiv:2102.11535, 2021. 1

[4] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin.
Catboost: gradient boosting with categorical features sup-
port. arXiv:1810.11363, 2018. 6

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv:2010.11929,
2020. 1

[6] Eman Hassan, Yasmin Halawani, Baker Mohammad, and
Hani Saleh. Hyper-dimensional computing challenges and
opportunities for ai applications. IEEE Access, 2021. 2

[7] Di He. Skt-nas: Soft kendall’s tau based neural architec-
ture search. Third workshop on Neural Architecture Search,
2022. 2, 6

[8] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm:
A highly efficient gradient boosting decision tree. NeuIPS,
30, 2017. 6

[9] Maurice George Kendall. Rank correlation methods. 1948.
6

[10] Yeseong Kim, Mohsen Imani, Niema Moshiri, and Tajana
Rosing. Geniehd: Efficient dna pattern matching accelerator
using hyperdimensional computing. In DATE, pages 115–
120. IEEE, 2020. 2, 3

[11] Zhihang Li, Teng Xi, Jiankang Deng, Gang Zhang,
Shengzhao Wen, and Ran He. Gp-nas: Gaussian process
based neural architecture search. In CVPR, pages 11933–
11942, 2020. 1, 2, 6

[12] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G
Yen, and Kay Chen Tan. A survey on evolutionary neural
architecture search. TNNLS, 2021. 1

[13] Dongning Ma, Rahul Thapa, and Xun Jiao. Molehd: Drug
discovery using brain-inspired hyperdimensional computing.
arXiv preprint arXiv:2106.02894, 2021. 2, 3

[14] Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M
Rabaey. Efficient biosignal processing using hyperdimen-
sional computing: Network templates for combined learning
and classification of exg signals. Proceedings of the IEEE,
107(1):123–143, 2018. 2, 3

[15] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehen-
sive survey of neural architecture search: Challenges and so-
lutions. CSUR, 54(4):1–34, 2021. 1

[16] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, pages 2820–2828, 2019. 1

[17] Rahul Thapa, Bikal Lamichhane, Dongning Ma, and Xun
Jiao. Spamhd: Memory-efficient text spam detection us-
ing brain-inspired hyperdimensional computing. In ISVLSI,
pages 84–89. IEEE, 2021. 2, 3, 5

[18] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing.
Theoretical foundations of hyperdimensional computing.
JAIR, 72:215–249, 2021. 2

[19] Teng Xi, Yifan Sun, Deli Yu, Bi Li, Nan Peng, and Gang
Zhang. Ufo:unified feature optimization. In ECCV, 2022. 6

[20] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu,
Lanfei Wang, Zhengsu Chen, An Xiao, Jianlong Chang, Xi-
aopeng Zhang, et al. Weight-sharing neural architecture
search: A battle to shrink the optimization gap. CSUR,
54(9):1–37, 2021. 1

[21] Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian,
and Zhouchen Lin. Towards improving the consistency, ef-
ficiency, and flexibility of differentiable neural architecture
search. In CVPR, pages 6667–6676, 2021. 1

[22] Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing
Sun, Yonghong Tian, Jie Chen, and Rongrong Ji. Training-
free transformer architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10894–10903, 2022. 1, 2

2237

