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Abstract

Multi-task learning has shown considerable promise for
improving the performance of deep learning-driven vision
systems for the purpose of robotic grasping. However, high
architectural and computational complexity can result in
poor suitability for deployment on embedded devices that
are typically leveraged in robotic arms for real-world man-
ufacturing and warehouse environments. As such, the de-
sign of highly efficient multi-task deep neural network ar-
chitectures tailored for computer vision tasks for robotic
grasping on the edge is highly desired for widespread adop-
tion in manufacturing environments. Motivated by this, we
propose Fast GraspNeXt, a fast self-attention neural net-
work architecture tailored for embedded multi-task learning
in computer vision tasks for robotic grasping. To build Fast
GraspNeXt, we leverage a generative network architec-
ture search strategy with a set of architectural constraints
customized to achieve a strong balance between multi-
task learning performance and embedded inference effi-
ciency. Experimental results on the MetaGraspNet bench-
mark dataset show that the Fast GraspNeXt network design
achieves the highest performance (average precision (AP),
accuracy, and mean squared error (MSE)) across multi-
ple computer vision tasks when compared to other efficient
multi-task network architecture designs, while having only
17.8M parameters (about >5× smaller), 259 GFLOPs (as
much as >5× lower) and as much as >3.15× faster on a
NVIDIA Jetson TX2 embedded processor.

1. Introduction
Significant advances have been made in recent years to

take advantage of deep neural networks for robotic grasp-
ing. In particular, multi-task learning has shown con-
siderable promise for improving the performance of deep

(a) Visible mask. (b) Amodal mask.

(c) Center of mass. (d) Suction grasp heatmap.

Figure 1. Example multi-task outputs from Fast GraspNeXt. (a)
and (b) Detected occluded objects are shown in blue and non-
occluded objects are shown in red. (c) The detected center of mass
of each object is shown in blue. (d) Applicability of suction grasp
is labelled from high to low in red, green, and blue as a heatmap.

learning-driven vision systems for robotic grasping [3,7,8],
where the underlying goal is to learn to perform additional
tasks during the model training process. Multi-task learn-
ing has enabled not only greater precision and versatility
in deep learning-driven vision systems for robotic grasping,
but also enabled such systems to perform a wide range of
computer vision tasks that are important for robotic grasp-
ing (see Fig. 1 for example tasks that need to be performed
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Figure 2. Overall network architecture design for Fast GraspNeXt, which possess a self-attention neural network architecture with highly
optimized macroarchitecture and microarchitecture designs for all components. Fast GraspNeXt consists of a generated self-attention
backbone architecture feeding into a generated feature pyramid network architecture followed by generated head network architecture
designs for multi-task learning. The numbers in brackets are channel sizes of the feature maps in the heads.

by such deep learning-driven vision systems for robotic
grasping such as visible object mask detection, amodal ob-
ject detection [1], center of mass prediction, and suction
grasp heatmap generation [2]). However, while multi-task
learning can greatly improve the performance of computer
vision tasks for robotic grasping, high architectural and
computational complexity can limit operational use in real-
world manufacturing and warehouse environments on em-
bedded devices.

Motivated to address these challenges with embedded
deployment for robotic grasping in real-world manufactur-
ing and supply chain environments, we leverage a genera-
tive network architecture search strategy with a set of archi-
tectural design constraints defined to achieve a strong bal-
ance between multi-task learning performance and embed-
ded operational efficiency. The result of this generative net-
work architecture search approach is Fast GraspNeXt, a fast
self-attention neural network architecture tailored specifi-
cally for multi-task learning in robotic grasping under em-
bedded scenarios.

The paper is organized as follows. Section 2 describes
the methodology behind the creation of the proposed Fast
GraspNeXt via generative network architecture search, as
well as a description of the resulting deep neural network
architecture. Section 3 describes the dataset used in this

study, the training and testing setup, as well as the experi-
mental results and complexity comparisons.

2. Methods
2.1. Generative Network Architecture Search

In this paper, we take a generative network architec-
ture search approach to creating the optimal multi-task deep
neural network architecture for Fast GraspNeXt. More
specifically, we leveraged the concept of generative syn-
thesis [13], an iterative method that generates highly tai-
lored architectural designs that satisfy given requirements
and constraints (e.g., model performance targets). Genera-
tive synthesis can be formulated as a constrained optimiza-
tion problem:

G = max
G

U(G(s)) subject to 1r(G(s)) = 1, ∀ ∈ S.
(1)

where the underlying objective is to learn an expression G(·)
that, given seeds {s|s ∈ S}, can generate network archi-
tectures {Ns|s ∈ S} that maximizes a universal perfor-
mance metric U (e.g., [11]) while adhering to operational
constraints set by the indicator function 1r(·). This con-
strained optimization is solved iteratively through a collab-
oration between a generator G and an inquisitor I which
inspects the generated network architectures and guides the
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generator to improve its generation performance towards
operational requirements (see [13] for details).

To build Fast GraspNeXt, we enforce essential design
constraints through 1r(·) in Eq. 1 to achieve the desired bal-
ance between i) accuracy, ii) architectural complexity, and
iii) computational complexity to yield high-performance,
compact, and low-footprint neural network architectures
such as:

1. Encouraging the implementation of anti-aliased down-
sampling (AADS) [14] to enhance network stability
and robustness.

2. Encouraging the use of attention condensers [12],
which are highly efficient self-attention mechanisms
designed to learn condensed embeddings characteriz-
ing joint local and cross-channel activation relation-
ships for selective attention. They have been shown to
improve representational performance while improv-
ing efficiency at the same time.

3. Enforce a FLOPs requirement of less than 300B
FLOPs and an accuracy requirement of no lower AP
across all assessable tasks than a ResNet-50 variant of
the multi-task network for robotic grasping (which we
call ResNet-GraspNeXt) by 0.5%.

2.2. Network Architecture

The resulting Fast GraspNeXt network architecture de-
sign is shown in Fig. 2. It possesses a self-attention neural
network architecture with highly optimized macroarchitec-
ture and microarchitecture designs for all its components.
The network architecture adheres to the constraints we im-
posed, with the generated backbone architecture feeding
into a generated feature pyramid network architecture de-
sign followed by generated head network architecture de-
signs for predicting the multi-task outputs: i) amodal object
bounding boxes, ii) visible object masks, iii) amodal object
masks, iv) occlusion predictions, v) object center of mass,
vi) and suction grasp heatmap.

More specifically, the multi-scale features from the gen-
erated backbone architecture are provided as input directly
to each level of the generated feature pyramid network ar-
chitecture, followed by the generated bounding box head,
visible mask head, amodal mask head and occlusion pre-
diction head. Each level of the feature pyramid network are
also upsampled to reach the same scale and summed as in-
put for the center of mass head and suction grasp heatmap
head.

The multi-task training loss, denoted as Lmt, used to
train Fast GraspNeXt is a weighted combination of task-
specific losses and can be expressed by

Lmt = lrpn + λ1labox + λ2lsegm v + λ3lsegm a

+ λ4locc + λ5lcom + λ6lsuc,
(2)

where λ1, λ2, . . . , λ6 denote task-specific weight coeffi-
cients used to balance the contribution of individual task-
specific losses. The individual task-specific losses are de-
fined as follows:

• lrpn: Region Proposal Network loss [9]

• labox: Amodal bounding box prediction loss [1]

• lsegm v: Visible mask segmentation loss [1]

• lsegm a: Amodal mask segmentation loss [1]

• locc: Occlusion classification loss [1]

• lcom: Center of mass heatmap prediction loss imple-
mented with the modified focal loss proposed by Cen-
terNet [15]

• lsuc: Suction grasp heatmap prediction loss imple-
mented with pixel-wise averaged mean squared error
(MSE) loss

.
It can be observed that the architecture design is highly

heterogeneous and columnar for high architectural and
computational efficiency. It can also be observed that the ar-
chitecture design possesses attention condensers at different
stages of the architecture for improved attentional efficacy
and efficiency. Furthermore, the architecture design pos-
sesses AADS at strategic locations for greater robustness.
Finally, it can be observed that the macroarchitecture for
each task-specific head is unique, thus tailored around the
specific balance between accuracy and efficiency for each
individual task. As such, these characteristics make the
Fast GraspNeXt architecture design well-suited for high-
performance yet highly efficient multi-task robotic grasp
applications on the edge.

3. Experiments

3.1. Dataset

We evaluate the performance of the proposed Fast Grasp-
NeXt on the MetaGraspNet [4] benchmark dataset to ex-
plore the efficacy. This large-scale robotic grasping bench-
mark dataset contains 217k images across 5884 scenes fea-
turing 82 different objects. We use 60%, 20%, and 20%
of the scenes for training, validation, and testing respec-
tively. Average precision (AP) evaluation was conducted for
amodal object bounding box, visible object mask, amodal
object mask, and object center of mass. Occlusion accuracy
evaluation was conducted to evaluate occlusion predictions,
while mean squared error (MSE) evaluation was conducted
to evaluate suction grasp heatmap predictions. Our exper-
iments use the class agnostic labels which put all objects
into one class category, so that it can be readily deployed in
industrial scenarios with novel, unseen items.
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Table 1. Summary of quantitative performance results on MetaGraspNet dataset and network complexity.

Model
Inf. Time

(ms)
Amodal
Bbox AP

Visible
Mask AP

Amodal
Mask AP

Occlusion
Accuracy

Center of
Mass AP

Heatmap
MSE

Parameters
(M)

FLOPs
(B)

ResNet-GraspNeXt 3501 85.0% 84.9% 84.1% 77.2% 75.3% 0.0113 92.1 1314
EfficientNet-GraspNeXt 2972 84.6% 85.0% 83.8% 81.7% 82.6% 0.0189 72.0 1183
MobileNet-GraspNeXt 2712 84.3% 84.6% 83.7% 80.7% 81.2% 0.0104 70.9 1189
Fast GraspNeXt 1106 87.9% 85.4% 85.0% 85.1% 84.6% 0.0095 17.8 259

Figure 3. (top) Predicted suction grasp heatmaps produced by the proposed Fast GraspNeXt. (bottom) Example ground truth suction grasp
heatmaps.

3.2. Training and Testing Setup

In addition to the proposed Fast GraspNeXt, we eval-
uated the performance of efficient multi-task network de-
signs leveraging ResNet-50 [5], EfficientNet-B0 [10], and
MobileNetV3-Large [6] as backbones paired with our
multi-task network architecture design but without utilizing
the generative network architecture search strategy. Both
EfficientNet and MobileNetV3 are widely-used, state-of-
the-art efficient backbones, making them well-suited for
this comparison. Those network architectures are desig-
nated as ResNet-GraspNeXt, EfficientNet-GraspNeXt, and
MobileNet-GraspNeXt, respectively.

For training, we use a base learning rate of 0.03, SGD op-
timizer with momentum of 0.9, and weight decay of 0.0001
for all experiments. Learning rate step decay are performed
at 67% and 92% of the total epochs with gamma of 0.1. All
network architectures are trained with the full image size of
1200×1200 pixels with batch size of 2. Empirical results
found that the above training strategy yielded the best per-

formance for all tested architectures.
Inference time evaluations are executed with batch size

of 1 to reflect the robotic grasping environment which pri-
oritise lowest possible inference latency instead of potential
speed benefit of batched inference. We evaluate the infer-
ence time on the NVIDIA Jetson TX2 embedded processor
with 8 GB of memory, which is widely used for embedded
robotics applications in manufacturing and warehouse sce-
narios.

3.3. Results and Analysis

Tab. 1 shows the quantitative performance results
and model complexity of the proposed Fast GraspNeXt
compared to ResNet-GraspNeXt, EfficientNet-GraspNeXt,
and MobileNet-GraspNeXt. We can observe that lever-
aging state-of-the-art efficient backbone architectures
EfficientNet-B0 and MobileNetV3-Large enables notice-
ably faster inference time and lower architectural complex-
ity when compared to leveraging ResNet-50 but results in
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a noticeable drops in amodal bbox AP and amodal mask
AP performance. In contrast, the proposed Fast Grasp-
NeXt is >3.15×, >2.68×, and >2.45× faster on the Jetson
TX2 embedded processor compared to ResNet-GraspNeXt,
EfficientNet-GraspNeXt, and MobileNet-GraspNeXt, re-
spectively, while improves the performance across all test
tasks. Specifically, Fast GraspNeXt improves the amodal
bbox AP, visible mask AP, amodal mask AP, occlusion ac-
curacy, center of mass AP, and averaged heatmap MSE by
2.9%, 0.4%, 0.6%, 3.4%, 2.0%, and 8.7% respectively com-
pared to the second best results.

In terms of architectural complexity, Fast GraspNeXt is
5.2× smaller then ResNet-GraspNeXt which has the sec-
ond best amodal bbox AP and amodal mask AP, 4× smaller
then EfficientNet-GraspNeXt which has the second best vis-
ible mask AP and center of mass AP, and 4× smaller then
MobileNet-GraspNeXt. In terms of computational com-
plexity, Fast GraspNeXt is 5.1×, 4.6×, and 4.6× lower
FLOPs than ResNet-GraspNeXt, EfficientNet-GraspNeXt,
and MobileNet-GraspNeXt respectively. Example ground
truth suction grasp heatmaps along with the predicted suc-
tion grasp heatmaps produced by proposed Fast GraspNeXt
are shown in Fig. 3.

As such, the above experimental results demonstrated
that the proposed Fast GraspNeXt achieves significantly
lower architectural complexity and computational complex-
ity while possessing improved AP across test tasks com-
pared to designs based on state-of-the-art efficient archi-
tectures. Furthermore, these experiments demonstrated that
Fast GraspNeXt achieves significantly faster inference time
on the NVIDIA Jetson TX2 embedded processor, making
it well-suited for robotic grasping on embedded devices in
real-world manufacturing environments. Future work in-
volves exploring this generative approach to network archi-
tecture search for other embedded robotics applications in
manufacturing and warehouse scenarios.
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