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Abstract

The short-form videos have explosive popularity and
have dominated the new social media trends. Prevailing
short-video platforms, e.g., Kuaishou (Kwai), TikTok, In-
stagram Reels, and YouTube Shorts, have changed the way
we consume and create content. For video content creation
and understanding, the shot boundary detection (SBD) is
one of the most essential components in various scenar-
ios. In this work, we release a new public Short video
sHot bOundary deTection dataset, named SHOT, consisting
of 853 complete short videos and 11,606 shot annotations,
with 2,716 high quality shot boundary annotations in 200
test videos. Leveraging this new data wealth, we propose
to optimize the model design for video SBD, by conduct-
ing neural architecture search in a search space encapsulat-
ing various advanced 3D ConvNets and Transformers. Our
proposed approach, named AutoShot, achieves higher F1
scores than previous state-of-the-art approaches, e.g., out-
performing TransNetV2 by 4.2%, when being derived and
evaluated on our newly constructed SHOT dataset. More-
over, to validate the generalizability of the AutoShot ar-
chitecture, we directly evaluate it on another three public
datasets: ClipShots, BBC and RAI, and the F1 scores of
AutoShot outperform previous state-of-the-art approaches
by 1.1%, 0.9% and 1.2%, respectively. The SHOT dataset
and code can be found in https://github.com/
wentaozhu/AutoShot.git.

1. Introduction
Short-form videos have been widely digested among the

entire age groups all over the world. The percentage of short
videos and video-form ads has an explosive growth in the
era of 5G, due to the richer contents, better delivery and
more persuasive effects of short videos than the image and
text modalities [36]. This strong trend leads to a significant
and urgent demand for a temporally accurate and compre-
hensive video analysis in addition to a simple video classi-
fication category [39,42]. Shot boundary detection is a fun-
damental component for temporally comprehensive video

analysis and can be a basic block for various tasks, e.g.,
scene boundary detection [6,26], video structuring [36], and
event segmentation [29]. For instance, rewarded videos can
be automated created of desired lengths for different plat-
forms, leveraging the accurate shot boundary detection in
the intelligent video creation.

To accelerate the development of video temporal bound-
ary detection, several datasets have been collected with la-
boriously manual annotation. Conventional shot bound-
ary detection datasets, e.g., BBC Planet Earth Documen-
tary series [1] and RAI [2], only consist of documen-
taries or talk shows where the scenes are relatively static.
Tang et al. [32] further contribute a large-scale video shot
database, ClipShots, consisting of different types of videos
collected from YouTube and Weibo covering more than
20 categories, including sports, TV shows, animals, etc.
Shou et al. [29] construct a generic event boundary detec-
tion (GEBD) dataset, Kinetics-GEBD, which defines a clip
as the moment where humans naturally perceive an event.
Since the video lengths of short and conventional videos
differ extensively, i.e., 90% short videos of length less than
one minute versus videos in other datasets having length
of 2-60 minutes as shown in Table 1 and Fig. 1 Right, it
dramatically leads to significant content, display, temporal
dynamics and shot transition differences as shown in Fig. 1
Left. A short video dataset is necessary to accelerate the de-
velopment and proper evaluation of short video based shot
boundary detection.

On the other hand, several endeavors have been made
to improve the accuracy of video shot boundary detec-
tion (SBD). DeepSBD [11] firstly applies a deep spatio-
temporal ConvNet to the video SBD. Deep structured model
(DSM) [32] designs a cascade framework to accelerate
the speed of SBD. TransNet [21] uses dilated convolu-
tional cells [38] to process a sequence of resized frames.
TransNetV2 [30] incorporates techniques, e.g., convolution
kernel factorization [37], batch normalization [14], skip
connection [12], and further improves F1 scores on Clip-
Shots [32] and BBC [1].

In this work, we firstly collect a short video dataset,
named SHOT, consisting of 853 short videos with 11,606
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Figure 1. Left: Detecting a shot boundary can be a challenging task in short videos. The shot transition can be a combination of several
complicated gradual transitions (the first row) and a quick transition of the subject in two shots (the second row). The visual effect of the
intra-shot can vary greatly in game videos (the third row). Right: Video and shot length (s) comparison of test sets in ClipShots and our
collected SHOT. There rarely has a video length range overlap between short videos in SHOT and test videos in ClipShots (up). The shot
lengths of short videos are within six seconds, while the shot lengths of ClipShots can range from two seconds to 30 seconds (bottom).

manually shot boundary fine annotations. The 200 test
videos with 2,716 shot boundary annotations are labeled by
experts with two rounds. Leveraging this new data wealth,
we aim to improve the accuracy of video shot boundary
detection, by conducting neural architecture search [41] in
a search space encapsulating various advanced 3D Con-
vNets [25, 40, 43, 45] and Transformers [35, 39]. Single
path one-shot SuperNet strategy [9] and Bayesian optimiza-
tion [28] are employed. The searched model, named Au-
toShot, outperforms TransNetV2 by 4.2% on our SHOT
in terms of F1 score, and by 3.5% in terms of precision
metric with a fixed recall rate as TransNetV2, respectively.
We further evaluate the searched AutoShot architecture on
ClipShots, BBC and RAI, and F1 score of AutoShot sur-
passes previous state-of-the-art approaches by 1.1%, 0.9%
and 1.2%, respectively. Our contributions are summarized
as follows:

• We collect a short video shot boundary detection
dataset (SHOT), which consists of 853 short videos
and 11,606 shot boundary annotations. The SHOT will
be released and can be employed to advance the devel-
opment of various short video understanding tasks.

• We design a video shot boundary detection search

space encapsulating various advanced 3D ConvNets
and Transformers, and build a neural architecture
search pipeline for shot boundary detection.

• The searched model, named AutoShot, proves to be
a highly competitive shot boundary detection archi-
tecture, that significantly outperforms previous state-
of-the-art approaches not only on its derived SHOT
dataset, but also on other public benchmarks.

To the best of our knowledge, the collected SHOT dataset
is the first dataset for short video shot boundary detection,
and AutoShot is the firstly specially designed neural archi-
tecture search method for shot boundary detection.

2. Related Work
Extensive efforts have been made to collect video shot

boundary detection datasets [1, 2, 4, 16, 27, 32], which have
significantly accelerated the development of advanced shot
boundary detection methods. A specific type of video
boundary detection attempts to parse the video into pieces
of human actions, where instructional videos with human
performing diverse actions are commonly used [18, 31, 33].
Another widely studied type of video boundary detection
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is scene boundary detection, where videos are split into
several semantically independent clips. Movies and TV
episodes are commonly used for scene boundary detection,
and MovieScenes [26] and AdCuepoints [6] are two large-
scale movie datasets for scene boundary detection. Further-
more, Shou et al. [29] collect a new benchmark, Kinectics-
GEBD, for generic event boundary detection. For video ads
scene boundary detection, Wang et al. [36] recently col-
lect a multi-modal video ads understanding dataset, which
involves scene boundary detection and multi-modal scene
classification. However, scene boundary detection is typi-
cally based on the pre-extracted shots and the evaluation of
scene segmentation is shot-level instead of frame-level.

The TV series and talk shows have also been used for
shot boundary detection, where BBC Planet Earth Docu-
mentary series [1] and RAI [2] are two commonly used
datasets consists of tens of videos having length from half
an hour to one hour. ClipShots [32] enhances the conven-
tional shot boundary detection datasets by collecting diverse
videos from various media platforms, e.g., YouTube and
Weibo, and it is one of the most challenging large-scale shot
boundary detection datasets. The shot transitions in short
videos, are quite different from that of movies as shown in
Fig. 1 Right and Table 1, and it is extremely necessary that
a short video dataset is collected to advance the develop-
ment of short video shot boundary detection. The only short
video dataset publicly available so far, to our best knowl-
edge, is the SVD dataset [15]; yet that is developed for a
completely different task for near-duplicate video retrieval.

The accuracy of shot boundary detection has been
improved, leveraging the aforementioned high quality
datasets and deep learning. Before the deep learning era,
PySceneDetect [3] is a popular shot boundary detection li-
brary, which relies on conventional features, e.g., changes
between frames in the HSV color space. Recent progresses
on video boundary detection can be divided into two cate-
gories, scene boundary detection and shot boundary detec-
tion. Rao et al. [26] propose a local-to-global scene seg-
mentation framework integrating multi-modal information
across clip, segment, and movie. Chen et al. [6] further
propose a shot contrastive self-supervised learning [44] to
learn a shot representation that maximizes the similarity be-
tween nearby shots compared to randomly selected shots,
then apply the learned shot representation for scene bound-
ary detection.

The scene boundary detection highly depends on the ac-
curate shot boundary detection. DeepSBD [11] predicts
a likelihood of transitions in a clip of 16 frames by the
C3D network [34]. DSM [32] utilizes a cascade frame-
work to accelerate the speed of shot boundary detection.
Gygli [10] constructs a fast shot boundary detection with-
out any post-processing. TransNet [21] uses dilated con-
volution blocks [38] and achieves comparable accuracy as

DeepSBD without post-processing. TransNetV2 [30] sur-
passes previous state-of-the-art approaches with advanced
components, e.g., skip connection [12], batch normaliza-
tion [14], kernel factorization [37], frame similarities as
features and multiple classification heads. Leveraging the
progress of 3D ConvNets [25], Transformers [35] and neu-
ral architecture search [9], AutoShot automatically identi-
fies the optimal shot boundary detection architecture from
the designed search space, which achieves better accuracy
than previous methods on the collected SHOT, ClipShots,
BBC and RAI datasets.

3. SHOT: Short Video Shot Boundary Detec-
tion Dataset

Short video is one of the most prevailing medias in these
days because of its richer contents and more vivid effects
than its conventional counterparts, i.e., pure text and static
picture medias. The easy and affordable access to fast
mobile networks in the 5G era accelerates the widespread
adoption of short video platforms, e.g., Instagram Reels,
YouTube Shorts, and TikTok. With the large number of
users and video ads in these main-stream short video plat-
forms, it is critical to advance the current development of
video temporal segmentation, especially short video shot
boundary detection task, which is a fundamental task for
many following semantic understanding tasks.

3.1. Challenges of Short Video Shot Boundary De-
tection

A short video is typically defined as a video of length less
than two minutes. The short video length leads to a much
easier spread of these videos and more popular short videos
than conventional movies of hours long. On the other hand,
the short video length forces the whole events to occur in a
short time period, which causes much faster pace of events.
This in turn leads to a much shorter length of a shot in the
short video as shown in Fig. 1 Right, which aggregates the
difficulty of short video shot boundary detection.

The giant difference of video lengths between the test
sets in the collected SHOT dataset and ClipShots [32] is vi-
sualized in Fig. 1 Right. Almost all the test short videos
have lengths less than 100 seconds, while almost all the test
videos in the ClipShots have lengths greater than 120 sec-
onds. The short total video length directly leads to rapid
shot transitions in the SHOT dataset as indicated in Fig. 1
Right. Most shot lengths are within five seconds in the test
set of SHOT dataset, and the shot lengths of test set in the
ClipShots can range from two seconds to 30 seconds. The
conventional shot boundary detection dataset may be inap-
propriate for the development of short video shot boundary
detection because of the great difference of video and shot
length distributions.
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Short video shot boundary detection is much more chal-
lenging and difficult as illustrated in Fig. 1 Left and Fig. 2
because the scene of the short video is much more com-
plicated than conventional videos. For instance, the shot
transition commonly utilizes a combination of several com-
plicated shot gradual transitions for the persuasive effect in
the short video (the first row). The second common chal-
lenge is for vertically ternary structured videos (the second
row of Fig. 2), where only the middle part of the video
changes. The uppermost and lowermost regions display the
download link or brand in the video ads. The vertically
ternary structured video increases shot boundary detection
difficulty greatly due to the relatively small region change
in the squeezed content region. The exaggerated expression
in the virtual scene causes false alarms in the game video
shot boundary detection (the third row). Actually, the game
video takes a large proportion of video ads and short videos.
Therefore, collecting a short video dataset is nontrivial for
the challenging short video shot boundary detection.

3.2. SHOT Dataset

To accelerate the study of short video related shot bound-
ary detection, we collect 853 short videos from one of the
most widely used short video platforms. The dataset prop-
erty comparison is listed in Table 1. The total number of
frames is 960,794, close to one million frames. The frame-
wise shot boundary annotation is a heavy task. The data
annotation and quality control strategy are in appendix. To
remove human private information, we employ the state-of-
the-art face detector [7,24] to detect and obscure the human
face region.

Inspired by the frame processing in TransNetV2 [30], we
develop a video thumbnail image based annotation by resiz-
ing each frame to be 48×27 as shown in Fig. 3. The frame
number is adaptively displayed in the upper left corner of
each frame, which significantly reduces the annotator’s ef-
forts for frame number check. If the pixel value is dark in
the frame number position, we display the frame number
in light color. Otherwise, we display the frame number in
dark color. We have three experts and an annotation team
to complete all the annotation of 960,794 frames. The an-
notation team conducts the annotation for 459 short videos
and obtains 6,111 shots totally. After the annotation, we
conduct an expert inspection for the 6,111 annotations. We
randomly choose 200 shot annotations, and find that 2% er-
ror rate for the 6,111 shot annotations exists. Considering
the ambiguity of the shot definition and the annotation dif-
ference of annotators, we believe that the 2% error rate of
the 6,111 shots is acceptable.

The quality of annotations on the test set directly af-
fects the accurate evaluation of benchmark methods, i.e.,
the quality of the short video dataset. To guarantee the
high quality of the shot boundary annotations on the test

Dataset BBC RAI Clip. SHOT

Complex
Grad. Trans. ✗ ✗ ✗ ✓

Virt. Scene ✗ ✗ ✗ ✓
Tern. Video ✗ ✗ ✗ ✓
Avg. Video
Len. (s) 2945 591 237 39.5

Avg. Shot
Len. (s) 6.57 5.65 15.34 2.59

Table 1. Comparison of different short boundary detection
datasets, i.e., BBC, RAI, ClipShots and SHOT, w.r.t. complex
gradual transition, virtual scene, ternary video, average video
length and average shot length.

Figure 2. Unique challenges of short video shot boundary de-
tection in SHOT, e.g., a combination of complicated shot gradual
transitions, vertically ternary structured video, and great intra-shot
change in virtual scenes of game video.

Figure 3. A thumbnail image for one case from our collected
SHOT dataset. The frame number is displayed in the upper left
corner of each frame.

set, we randomly choose 200 short videos from the rest 394
short videos annotated by the three experts as the test set.
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For the 200 test short videos, we employ two round an-
notations, where the first round yields 2,616 shots. In the
second round, we conduct a rigorous check for the annota-
tions. In addition to fixing a handful of false positive an-
notations, which cannot be corrected by our manually de-
signed rules for the automated inspection, the second round
totally yields 2,716 shots, i.e., re-collecting 100 shots from
false negatives.

The cases from the SHOT dataset can be found in Fig. 1
Left, Fig. 2, and Fig. 5. The annotation records the start and
end frame numbers of each shot, which is visualized by the
pink and light/white colors in Fig. 5. All the training and
testing short videos, shot boundary annotations, the evalua-
tion metric scripts and the explicit video-level data split will
be publicly available.

4. Automated Shot Boundary Detection

4.1. Shot Boundary Detection Search Space Design

We design a SuperNet based on one of the previous
state-of-the-art approaches, TransNetV2 [30], where the
feature representational learning network can be consid-
ered as a sequence of six factorized dilated deep 3D convo-
lutional neural network (DDCNNV2) blocks. Leveraging
the advanced 3D ConvNets [25] and Transformers [35], we
deign a shot boundary detection neural architecture search
space. Specifically, AutoShot conducts architecture search
on seven blocks, where we add a self-attention layer number
search after the sixth block. The search blocks in the first
six blocks are illustrated in Fig. 4. We firstly design four
types of factorized 3D convolutions in the search space. Let
x be the input for the current block, the four kinds of search
blocks can be formulated as following:

(1) DDCNNV2: We conduct the search on the number
of dilated convolution branches nd, i.e., 4 and 5, and the
channel number of 2D spatial convolution nc, i.e., 1, 2 and
3 times of the input channel numbers, for the original DD-
CNNV2 block in the TransNetV2 as illustrated in Fig. 4a.
The DDCNNV2 can be formulated as

h = ReLU(BN(Concat([h1,h2, · · · ,hnd
]))),

hi = (Ti · Si) · x = Ti(Si(x)), i = 1, · · · , nd,
(1)

where h is the output of the current block, Si is the 2D spa-
tial convolution with the channel number ⌈nc

nd
⌉, Ti is the 1D

temporal convolution with the channel number ⌈ 4F
nd

⌉ and
dilation rate 2i−1, and F is a pre-defined channel number
in Fig. 4a. The key components in DDCNNV2 are dilated
temporal 1D convolutions, and factorized 3D convolutions
with spatial 2D convolutions and temporal 1D convolutions.
The design enforces diverse contextual temporal feature ex-
traction and reduces the number of learnable parameters,
which might reduce the over-fitting.

(2) DDCNNV2A: To unify the feature extractor of the
spatial 2D convolutions, we can employ a shared 2D convo-
lution instead of multiple branches of spatial 2D convolu-
tions, as illustrated in Fig. 4b. The shared spatial 2D convo-
lution aims to extract a unified spatial feature for the follow-
ing diverse temporal feature extractions. The DDCNNV2A
can be expressed as

h = ReLU(BN(Concat([h1,h2, · · · ,hnd
]))),

hi = (Ti · S) · x = Ti(S(x)), i = 1, · · · , nd,
(2)

where S is a shared 2D spatial convolution with searched
channel number nc.

(3) DDCNNV2B: Inspired by the design of Pseudo-3D
network [25], we construct another two search blocks to
learn various spatio-temporal representations as illustrated
in Fig. 4c and 4d. The DDCNNV2B can be given by

h = ReLU(BN((S + T) · x)) = ReLU(BN(S(x) + T(x))),
T(x) = Concat([T1(x),T2(x), · · · ,Tnd

(x)]).
(3)

To ensure the channel numbers of spatial features and tem-
poral features are equal, the channel number of 2D spatial
convolution is fixed to be four times of the current block’s
input dimension number 4F .

(4) DDCNNV2C: Different from DDCNNV2B, the tem-
poral convolution of DDCNNV2C can still utilize the fea-
ture of spatial convolution as illustrated in Fig. 4d, which
can be formulated as

h = ReLU(BN((S + T · S) · x))
= ReLU(BN(S(x) + T(S(x)))),

T(S(x)) = Concat([T1(S(x)),T2(S(x)), · · · ,Tnd
(S(x))]).

(4)
We further construct a 1D temporal Transformer block

after six factorized convolution layers to enhance the tem-
poral modeling, whose input is a flattened frame-wise con-
volutional feature. We conduct the number of self-attention
layers search {0, 1, 2, 3, 4} in the Transformer block.

In summary, AutoShot has seven search blocks. In the
first six search blocks, it conducts the channel number
search and branch/dilation number search for DDCNNV2
and DDCNNV2A. Limited by the dimension number con-
sistency of element-wise addition, DDCNNV2B and DD-
CNNV2C searches the branch number. Consequently, we
have 3× 2× 2 + 2× 2 = 16 options for each search block
in the first six search blocks. The search space of AutoShot
totally has (166)× 5 = 8.39× 107 candidate architectures.

4.2. AutoShot Training and Search

After the construction of the base network for represen-
tational learning, we concatenate representations from the
base network with RGB histogram similarity of raw input
frame and learnable cosine similarity of concatenated block
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(a) DDCNNV2 (b) DDCNNV2A (c) DDCNNV2B (d) DDCNNV2C

Figure 4. Illustration of the search blocks for the first six blocks in the AutoShot. It consists of four types of factorized 3D convolution
blocks, (a) DDCNNV2 with 2D spatial convolutions followed by 1D temporal convolutions, (b) DDCNNV2A with a shared 2D spatial
convolution and 1D temporal convolutions, (c) DDCNNV2B accumulating a 2D spatial convolution and 1D temporal convolutions, and
(d) DDCNNV2C compromising between DDCNNV2A and DDCNNV2B.

features [5, 30] to construct a 4,864 dimension feature vec-
tor. Then a fully connected layer of 1,024 neurons with
ReLU activation [23] is added. Next a dropout layer [17]
with a dropout rate 0.5 is used before the final two frame-
wise classification heads for a single middle frame of a tran-
sition y and all transition z.

The SuperNet training of AutoShot utilizes an efficient
weight sharing strategy. The weight sharing strategy [9, 20]
encodes the search space in a SuperNet, and all the candi-
date architectures share the weights of the SuperNet. One
shot NAS [9] decouples the SuperNet training and architec-
ture search, which yields a better accuracy. We also conduct
two sequential steps for SuperNet training and architecture
search. We utilize a single path and uniform sampling strat-
egy to reduce the co-adaptation between node weights [9].

We implement a Bayesian optimization [28] based ar-
chitecture search for AutoShot. Bayesian optimization iter-
ates between fitting probabilistic surrogate models and de-
termining which configuration to evaluate next by maximiz-
ing an acquisition function. Gaussian process with a Ham-
ming kernel is utilized as the surrogate function. We employ
a random exploration in the initialization to obtain a good
Gaussian process model. For the acquisition function, we
use probability of feasibility [8].

p|a ∼ N (µ,K), Acc|p, σ2 ∼ N (p, σ2I), (5)

where variables p are jointly Gaussian, a are a set of ob-
served architectures, Hamming kernel Kij = k(ai, aj), and
Acc are the evaluated accuracy metric, i.e., F1 or precision
with a fixed recall, for these architectures with weight shar-
ing. The parameters of GP, µ and σ, can be estimated by
maximizing the marginal log-likelihood.

For the candidate architecture retraining, we firstly em-
ploy the same two classification, i.e., single middle frame y
of a transition and all transition z, cross-entropy losses as

the SuperNet training

Lretrain = −
N∑
i=1

NF∑
j=1

[λ1yi,j log ŷi,j + λ2zi,j log ẑi,j ] ,

(6)
where N is the batch size in the stochastic gradient descent
(SGD), NF is the pre-defined number of frames for each
training sample which is processed in each batch of training,
λ1 and λ2 are trade-offs between two classification heads,
and ŷi,j and ẑi,j are two frame-wise predictions of single
middle frame of a transition and all transition, respectively.

After retraining with the plain multi-head cross-entropy
classification loss in Eq. (6), we further enhance the candi-
date networks by employing the best performing candidate
network as a teacher network in knowledge distillation [13],
and utilize weight grafting [22] to further improve the best
accuracy. The knowledge distillation is used to align can-
didate networks with a desired accuracy, and the weight
grafting adaptively balances the grafted information among
aligned networks, which improves the representation capa-
bility and boosts the accuracy. The entropy-based weight
grafting can be formulated as

L(W ) = −
N∑
i=1

NF∑
j=1

[λ1ỹi,j log ŷi,j + λ2z̃i,j log ẑi,j ] ,

α = A× (arctan(c× (H(WM2

l )−H(WM1

l )))) + 0.5,

WM2

l = αWM2

l + (1− α)WM1

l ,
(7)

where ỹi,j and z̃i,j are two frame-wise predictions of sin-
gle middle frame of a transition and all transition from the
teacher network, A and c are fixed hyperparameters, α is
the coefficient based on entropy to balance networks, H(·)
is the entropy based on the bins of network weights WM1

l

or WM2

l , l is the layer in the network, M1 and M2 are two
networks where network M2 accepts the information from
network M1.
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5. Experiments
We conduct neural architecture search based on the eval-

uation metrics on the collected SHOT and validate the ef-
fectiveness of the searched optimal architecture on SHOT,
ClipShots [32], BBC [1], and RAI [2]. In both Super-
Net training and candidate network retraining, we construct
each training sample by concatenating two shots randomly
and the number of frames NF in each training sample is
set as 60. The hyperparameters λ1, λ2, A, c, the number
of bins in the entropy calculation and the number of graft-
ing networks in Eq. (7) are set as 5, 0.1, 0.4, 1.0, 10 and
3, respectively, which are generally followed the setting of
previous works [22,30]. We use stochastic gradient descent
with learning rate 0.1, momentum 0.9, batch size 16 and the
number of epochs 12. In the search, the number of popula-
tions per epoch is 48 and the total number of epochs is 100
with 20 epochs for the initialization. We utilize the Open-
Box library [19] to implement the Bayesian optimization in
the search. We use one 32 GB NVIDIA Tesla V100 GPU
for both SuperNet and candidate network training, and use
eight 32 GB NVIDIA Tesla V100 GPUs to accelerate the
search speed. All the code, data and trained models will be
released for the reproducibility.

Neural architecture search on SHOT We train the
SuperNet on the combined training set of SHOT and Clip-
Shots, and conduct the search based on the evaluation met-
rics on the collected SHOT dataset. For a fair comparison,
we closely follow the dataset protocol and metric calcula-
tion of previous work [2,30]. Additionally, we also conduct
a search based on the precision metric given a fixed recall
rate 0.71 same as TransNetV2, because a higher F1 metric
cannot guarantee higher precision and recall scores simul-
taneously in practice. From Table 2 Left, AutoShot out-
performs TransNetV2 by 4.2% and 3.5% based on F1 and
precision metrics. Note that the F1 score of PySceneDe-
tect [3] on SHOT is less than 0.6, which is far behind Au-
toShot, and it can hardly handle challenging gradual tran-
sitions. For AutoShot, we find that 54% of missed shots
are gradual transitions, and gradual transitions take 30% of
shots in SHOT. Gradual transition has no huge inter-frame
difference, which is difficult to be fully detected. In the fol-
lowing, we only compare AutoShot based on the F1 metric
with other methods for consistency.

To compare the predictions visually, we employ video
thumbnail images to clearly demonstrate the difference.
The ground truth boundary is shown in the pink or
light/white color as shown in Fig. 5. The detected bound-
ary of AutoShot is marked as pink, cyan or light, and the
detected boundary of TransNetV2 is visualized as cyan or
light. AutoShot successfully detects minor shot transitions
as shown in the pink color, where the TransNetV2 fails. For
the clear transitions, both the TransNetV2 and AutoShot
succeed, as shown in the light color. The false positives of

Figure 5. Visual comparison of shot boundaries of ground truth
(pink, light/white), TransNetV2 (cyan, light/white), and AutoShot
(pink, cyan, light/white) on four clips from SHOT dataset. Au-
toShot detects minor transition, shown in the pink color. The
light/white color denotes that both the TransNetV2 and AutoShot
successfully detects the shot boundary. The cyan denotes the false
positives of both TransNetV2 and AutoShot, which might require
adaptively understanding of contextual semantics across the video.

both TransNetV2 and AutoShot are shown in cyan, which
are hard negative shots. Reducing the false positives might
require adaptively understanding of contextual semantics
across the whole video, and some false positives are am-
biguous even for human annotators.

Generalization on other datasets After obtaining the
optimal network architecture from the SHOT dataset, we
validate the network generalizability on other three pub-
licly and widely used datasets, ClipShots [32], BBC [1], and
RAI [2]. The three existing datasets are quite different from
our SHOT dataset, as shown in the section 3. BBC Planet
Earth Documentary series [1] consists of 11 episodes from
the BBC educational TV series Planet Earth. Each episode
is approximately 50 minutes long, and the whole dataset
contains around 4900 shots and 670 scenes. RAI [2] dataset
is based on a collection of ten randomly selected broadcast-
ing videos from the Rai Scuola video archive, where the
length of each video is around half an hour. The ClipShots
collects thousands of online conventional videos, not short
videos, from YouTube, which is a much more challenging
dataset than BBC and RAI. We use the same dataset split
and protocol as previous work [2, 30].

From Table 2 Right, simply applying the searched Au-
toShot architecture to the three datasets obtains better F1
scores than previous state-of-the-art approaches consis-
tently, which sufficiently validates the effectiveness and
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Method TransNetV2
AutoShot
@F1

AutoShot
@Precision

F1 0.799 0.841 0.826
Prec. 0.904 0.923 0.939

Dataset ClipShots BBC RAI

DSMs 0.761 0.893 0.928
ST ConvNets 0.759 0.926 0.939
TransNet 0.735 0.929 0.943
TransNetV2 0.776 0.962 0.939

AutoShot 0.787 0.971 0.955

Table 2. Left: AutoShot surpasses TransNetV2 by 4.2% and 3.5%
based on the F1 score and precision metric with a fixed recall
as TransNetV2. Right: the searched optimal architecture is val-
idated on three widely used shot boundary detection datasets. Au-
toShot consistently achieves the best F1 compared to DSMs [32],
ST ConvNets [11], TransNet [21] and TransNetV2 [30]. The best
F1 scores are indicated in bold.

good generalizability of AutoShot. Specially, AutoShot
outperforms previous state-of-the-art approaches by 1.1%,
0.9% and 1.2% on ClipShots, BBC and RAI. Note that we
reproduce TransNetV2 based on PyTorch and obtain a F1
score of 0.776 on ClipShots, while the original paper [30]
reports 0.779 based on TensorFlow.

Effect of search space We investigate the effect of three
different search spaces, i.e., AutoShot-S, -M and -L, in Ta-
ble 3 (Left). AutoShot-S only employs DDCNNV2A com-
ponents in the search space, which has six search options
per block. AutoShot-M employs DDCNNV2 and DDC-
NNV2A components in the search space, which has 12
search options per block. The AutoShot-L denotes the
search space defined in section 4.1, which achieves the best
F1 score. The combined various 3D ConvNet variants, i.e.,
DDCNNV2, DDCNNV2A, B and C, in each search block
improves F1 score in both retraining and candidate archi-
tectures after search, since the optimal blocks for different
layers vary and more search options in AutoShot permit to
identify the optimal composition.

Searched architectures Specifically, the obtained
architecture based on F1 score, AutoShot@F1, is
DDCNNV2{(nc=4F , nd=4), A(nc=4F , nd=5), A(nc=4F ,
nd=5), A(nc=4F , nd=5), (nc=12F , nd=5), (nc=8F ,
nd=5)}, which has floating-point operations (FLOPs) of
37 GMACs. The obtained architecture based on precision
metric, AutoShot@Prec., is DDCNNV2{(nc=12F , nd=4),
(nc=8F , nd=4), B(nd=4), C(nd=4), B(nd=5), B(nd=4)},
which has FLOPs of 30 GMACs. We find that the op-
timal architectures indeed employ diverse blocks and less
number of operations than TransNetV2 of 41 GMACs.
The search on SHOT chooses more dilated convolutional

AutoShot- S M L

w/o retrain 0.816 0.822 0.831
w/ retrain 0.833 0.837 0.841

Method w/o KD w/ KD
w/ KD+
weight graft

F1 0.825-0.837 0.832-0.838 0.841

Table 3. F1 scores of different search spaces (Left), knowledge
distillation (KD) and weight grafting (Right) on the collected
SHOT dataset. The best F1 scores are indicated in bold.

branches nd and diverse blocks, because more dilated con-
volutional branches nd and diverse blocks enhances the rep-
resentational learning power for various temporal granular
shot transitions, which vastly exist in short videos. This is
probably another reason that AutoShot on SHOT achieves
much bigger improvement than that on the conventional
video datasets. Although the two optimal architectures use
no self-attention layer, the training of SuperNet and archi-
tectures with close F1 or precision scores utilize the self-
attention.

Effect of knowledge distillation and weight grafting
We ablate knowledge distillation and weight grafting in Ta-
ble 3 (Right) based on the constructed search space in sec-
tion 4.1. Without knowledge distillation in Eq. (6), the
range of F1 scores after retraining can be 0.825-0.837. We
use the best performing, i.e., F1 score of 0.837, architecture
as the teacher network, and knowledge distillation aligns the
candidate architectures with F1 score of range 0.832-0.838.
Then, the weight grafting in Eq. (7) further improves the
best F1 score by 0.3%.

6. Conclusion
In this work, we collect a new short video shot boundary

detection dataset, named SHOT, which is a quite different
scenario from conventional long video based shot boundary
detection. The SHOT can significantly accelerate the devel-
opment and evaluation of various short video based appli-
cations, e.g., intelligent creation, and video scene segmen-
tation and understanding. Leveraging this new asset, we
propose to optimize the model design for the task of video
shot boundary detection, by conducting neural architecture
search in a search space encapsulating various advanced
3D ConvNets and Transformers. AutoShot surpasses pre-
vious best shot boundary detection method by 4.2% and
3.5% based on the F1 and precision scores, respectively. We
further validate the generalizability of the searched optimal
architecture on ClipShots, BBC and RAI. Experimental re-
sults demonstrate that, AutoShot has a good generalizability
and outperforms previous state-of-the-art approaches on the
three existing public datasets.
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