This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Abstract Visual Reasoning Enabled by Language

Giacomo Camposampiero*

Loic Houmard*

Benjamin Estermann Joél Mathys

Roger Wattenhofer
ETH Ziirich, Switzerland

{gcamposampie, lhoumard, estermann, jmathys, wattenhofer}@ethz.ch

Abstract

While artificial intelligence (Al) models have achieved
human or even superhuman performance in many well-
defined applications, they still struggle to show signs of
broad and flexible intelligence. The Abstraction and Rea-
soning Corpus (ARC), a visual intelligence benchmark in-
troduced by Frangois Chollet, aims to assess how close
Al systems are to human-like cognitive abilities. Most
current approaches rely on carefully handcrafted domain-
specific program searches to brute-force solutions for the
tasks present in ARC. In this work, we propose a general
learning-based framework for solving ARC. It is centered
on transforming tasks from the vision to the language do-
main. This composition of language and vision allows for
pre-trained models to be leveraged at each stage, enabling
a shift from handcrafted priors towards the learned priors
of the models. While not yet beating state-of-the-art mod-
els on ARC, we demonstrate the potential of our approach,
for instance, by solving some ARC tasks that have not been
solved previously.

1. Introduction

The Abstraction and Reasoning Corpus (ARC), intro-
duced by Chollet [6], is designed to measure the progress
of artificial intelligence (AI) by testing the ability to learn
and adapt to unseen tasks. ARC consists of a small dataset
of only 1000 tasks similar to the example in Figure 1. For
each task, two to six demonstrations are given and the solu-
tion of a given test input has to be predicted. By design, the
number of tasks is very limited, which makes it especially
challenging for learning based approaches to be successful
on ARC. Usually, state of the art models have to rely on
enormous amounts of data to correctly estimate and learn
the underlying functions directly from the given data.

Learning only from the provided tasks to solve ARC is
most likely not sufficient. As argued by Chollet [0], prior

*Equal Contribution

knowledge closely aligned to human intelligence should be
incorporated into the approaches. The most important pri-
ors cover objectness, goal-directness, numbers and counting
as well as elementary geometry [0, 13]. These include the
concept of objects, that they can persist, comparing sizes or
checking for symmetries. The main challenge lies in how
to incorporate these priors in an approach to solve ARC.

One can make them explicit through handcrafted heuris-
tics, for example with domain-specific languages (DSLs) [2,

, 14]. These DSLs can then be used to brute-force pro-
grams that search and propose correct solutions. However,
it is extremely difficult to capture all important priors ex-
plicitly and apply them correctly. Further, an exhaustive
search is computationally expensive and might even yield
wrong results, as not all combinations of priors are equally
likely to appear at the same time.

We believe that another promising path to include such
priors is through a learning-based approach centered on nat-
ural language. Natural language itself has evolved to in-
corporate human priors as an efficient way to describe our
world. Furthermore, natural language has been shown to al-
low for better generalization across different tasks [11]. Re-
cently, the emergence of Large Language Models (LLMs)
has demonstrated success in understanding and producing
natural language. Because these models have seen incredi-
bly large amounts of human-generated text during their un-

1}_’ H"
Fll \M\

=5

Figure 1. Each ARC task consists of pairs of input and output
images that describe the task. To solve the task, the missing output
image corresponding to the given test input must be predicted.

2643

Task
Description

Solution

Description Decoder

::'. Language Model .'::

Figure 2. The original tasks are given as image pairs in the visual domain (red) and are then transformed to the text domain (blue) using
the encoder. The textual form of the task description allows a language model to propose a solution which is decoded back to the visual

domain.

supervised pre-training, they have implicitly incorporated
human priors.

We motivate to leverage these insights and capabilities to
automate the usage of language as a tool to create the foun-
dation for a learning-centric approach to tackle ARC. We
propose a general framework by first transforming an ARC
task into a textual description of the entire task. A generic
language model can then be used in a black-box fashion to
output a description of the missing solution. Finally, the
predicted solution can be translated back to the visual do-
main. An illustration of the entire framework is shown in
Figure 2. Furthermore, we implement a first pipeline based
on this framework to demonstrate the viability of this ap-
proach using a variety of available language models. In par-
ticular, through our learning-centric approach, we are able
to solve tasks which could not be solved by any of the ex-
isting state-of-the-art DSL solutions.

2. Related Work

The Abstraction and Reasoning Corpus, proposed by
Chollet [6], consists of 400 training tasks, 400 validation
tasks and 200 tasks which are withheld for private evalu-
ation. Each of the 800 publicly available tasks consists of
two to six image pairs. Given these few example demonstra-
tions, the goal is to come up with the missing solution of a
specific test input image. Initially, the challenge was hosted
as a Kaggle competition [7] and has recently seen a revival
by Lab42 [10]. Many of the top performing solutions rely
on an ensemble of heuristic program searches using hand-
crafted domain specific languages [2, 8, 14] and achieve up
to 30 percent accuracy on the private evaluation set. How-
ever, there is still a large gap to match human performance,
which is estimated to be at least around 80 percent [©]. Be-
sides these approaches, there exist other proposals which
incorporate some sort of learning based techniques such as
neurosymbolic approaches [3], graph representations [16]
or object-centric approaches [4, 15]. In addition, recent ef-
forts have started to investigate how natural language can
help solve ARC tasks [1]. However, they provide a human-
generated text guidance on how to solve a task, whereas in
this work we focus on describing and solving the complete
task in an automated way in the language domain.

Model Size | Layers | Hidden Dim.
bloom-560m [12] | 560M 24 1024
bloom-1b1 [12] 1.1B 24 1536
bloom-1b7 [12] 1.7B 24 2048
bloom-3b [12] 3B 30 2560
bloom-7b1 [12] 7.1B 30 4096
GPT-3 [5] 175B 96 12228

Table 1. Summary of the language models used in the experiments.
The size of each model is given as number of parameters.

3. Approach

We propose a learning-centric approach for the ARC
challenge, which relies on a pipeline that can utilize unsu-
pervised pre-trained models. The primary goal is to enable
the learning of important priors, such as goal-directedness,
numbers and counting, rather than requiring the model de-
signer to encode them manually. Our prototype uses a mod-
ular design, decomposing the language and vision com-
ponents. Currently, the vision module utilizes a heuristic
approach, while the language module relies on pre-trained
language models. We leave the development of a learning-
based vision module to future work and focus on this spe-
cific setting to demonstrate the potential of tackling ARC
using this pipeline to combine vision and natural language.

Vision Module The vision module in our approach uses
a fixed heuristic based on human visual priors, including ob-
jectness, basic geometry, and symmetry. The module con-
sists of an encoder and decoder, extracting different objects
present in the task images and describing them in natural
language. The inverse rules of encoding are applied to de-
code a description. First, the encoder checks if the full input
image appears as a subset of the output and vice versa, tak-
ing into account different rotations, reflections and scales.
In this case, the whole image is regarded as a single com-
plex object. Otherwise, it predicts the background color us-
ing a convolutional neural network (CNN) and retrieves all
objects present in the images (see Table 2), by detecting
monochromatic or multichromatic contiguous sets of pixels
different from the background, independent of scale. To de-

2644

Rectangle Line

Square Pixel

Cross Diagonal Cross | Complex

Table 2. Different types of objects that the encoder recognizes with their corresponding monochromatic blue image. Complex objects
could capture any objects that do not fit any of the other categories, here two examples are shown. Complex objects are assigned individual
IDs which are used consistently across textual descriptions of different images within a task.

Input 1: 10x10 grid, black background.
Objects: continuous random object, of
shape ’'B’ with symmetric shape along both
axis with upper left corner in position
(2,1), of size 3x4, monochromatic of color
cyan. continuous random object, of shape
"B’ with symmetric shape along both axis
with upper left corner in position (7,5),
of size 3x4, monochromatic of color cyan.
continuous random object, of shape ’"A’ with
symmetric shape along both axis with upper
left corner in position (1,7), of size 3x3,
monochromatic of color cyan.

Output 1: 10x10 grid, black background.
Objects: continuous random object, of
shape ’'B’ with symmetric shape along both
axis with upper left corner in position
(2,1), of size 3x4, monochromatic of color
blue. continuous random object, of shape
"B’ with symmetric shape along both axis
with upper left corner in position (7,5),
of size 3x4, monochromatic of color blue.
continuous random object, of shape ’"A’ with
symmetric shape along both axis with upper
left corner in position (1,7), of size 3x3,
monochromatic of color red.

Figure 3. Textual description for the first input output pair of the
task shown in Figure 1. The complete task description includes all
pairs in combination with the input for the test image. The missing
output has to be completed by the language model.

rive the textual description, the encoder first describes the
size of the grid and the background color. It then groups
all objects by similar shape and color patterns, and orders
them by size to generate the description. The encoder and
decoder could be replaced with learned modules, for exam-
ple a pre-trained image captioner.

Language Module The language module receives a tex-
tual description for each task consisting of all input output
pairs as well as the input test image. The description of
the missing output image has to be predicted by the lan-
guage model. We can use any pre-trained generative lan-

guage model in a black-box fashion as part of our pipeline.
We summarize all evaluated language models in Table 1.
Throughout our evaluation, none of the used models were
fine-tuned and have not seen ARC descriptions. Note, that
even though multiple input output image descriptions are
provided, the language model has no access to entire pre-
vious task descriptions which makes this a zero-shot set-
ting. We include minimal pre- and post-processing steps of
the textual descriptions such as trimming trailing text and
skipping lenghty descriptions. To reduce variance resulting
from the stochastic text generation process of the language
models, we allowed 10 guesses per model and count a task
as solved if at least 1 of the guesses is correct.

4. Results

To empirically evaluate our framework and imple-
mented pipeline, we carried out experiments using vari-
ous language models of different sizes of the open-source
Bloom architecture [12] as well as GPT-3 [5], namely
text-davinci-003.

Note that for all our experiments, we generate the so-
lutions in a zero-shot setting and did not fine-tune any of
the language models. We evaluate our pipeline on the ARC
training set and report the accuracy in Figure 5.

20 7 @ BLOOM *
% GPT-3

§\15*
z
& _ []
5 10 ° o
<L:) o

51 @

0 T TTT] T T T TTT] T T T T TTT]

10° 101 10t
Parameters

Figure 5. Accuracy of our approach using language models of
different sizes on the ARC training set. The accuracy follows a
log-improvement as the number of parameters increases.

2645

train input train input train input train input test input

train output train output train output train output

o

(a) 995c5fa3.json

test output

train input train input test input

train output train output test output

(c) 29¢11459.json

train input train input

test input

train output test output

(b) ab1ba2ce.json

train input train input test input

train output train output test output

(d) a61{2674.json

Figure 4. A collection of ARC tasks that were solved using our approach but not by the top performing solutions [2, 8, 14]

Without ever encountering an ARC task during training,
even the smallest language models can solve a non-trivial
amount of tasks. However, most notably, the accuracy in-
creases roughly linear with the logarithm of the number of
parameters of the LLM.

Therefore, using our proposed framework it is possible
to solve entire ARC tasks in an automated fashion that lever-
ages pre-trained learned models. Moreover, larger models
seem to perform better which hints at a potential increase in
their capabilities. However, another key aspect of this ap-
proach compared to hand-crafted program searches is that
the priors can be implicitly learned and are not fixed by the
designer. This has the advantage that we could solve novel
tasks which cannot be captured by existing approaches, as
they do not match their specified priors exactly. We com-
pare the set of successfully solved tasks of our approach
with the top performing solutions of the original Kaggle
competition [2, 8, 14]. We find that using our approach, we
were able to solve tasks which could not be solved by any
of the mentioned top performing solutions. A selection of

such newly solved examples is shown in Figure 4.

5. Conclusion

Current learning based approaches to solve ARC fail to
be competitive, one reason being the limited number of
tasks. We motivate to focus on natural language as a source
of important human aligned priors to alleviate this lack of
data. We present a general framework to combine visual
abstraction and leverage language as a reasoning tool in or-
der to tackle ARC. Furthermore, we implement a pipeline
to solve tasks in an automatic end-to-end fashion based on
large language models as zero-shot reasoners. The obtained
results are a promising demonstration of the framework and
indicate the viability of our approach. In particular, we were
able to solve new tasks compared to state-of-the-art DSL
approaches. Moreover, we highlight that there exist many
possibilities for extensions such as a learned encoding or
decoding step, fine-tuned LLMs or even end-to-end train-
ing of the entire pipeline.

2646

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]
(11]

[12]

(13]

(14]

[15]

Samuel Acquaviva, Yewen Pu, Marta Kryven, Theodoros Se-
chopoulos, Catherine Wong, Gabrielle E Ecanow, Maxwell
Nye, Michael Henry Tessler, and Joshua B. Tenenbaum.
Communicating natural programs to humans and machines,
2021. 2

Roderic Guigo Corominas Alejandro de Miquel,
Yuji Ariyasu. Arc kaggle competition, 2020. 1, 2,
4

Simon Alford, Anshula Gandhi, Akshay Rangamani, An-
drzej Banburski, Tony Wang, Sylee Dandekar, John Chin,
Tomaso Poggio, and Peter Chin. Neural-guided, bidirec-
tional program search for abstraction and reasoning, 2021.
2

Rim Assouel, Pau Rodriguez, Perouz Taslakian, David
Vazquez, and Yoshua Bengio. Object-centric compositional
imagination for visual abstract reasoning. In ICLR2022
Workshop on the Elements of Reasoning: Objects, Structure
and Causality, 2022. 2

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. 2, 3

Frangois Chollet. On the measure of intelligence, 2019. 1,2

fchollet, inversion, Julia Elliott, and Katherine Tong. Ab-
straction and reasoning challenge, 2020. 2

Vlad Golubev Ilia Larchenko. Abstract reasoning, 2020. 1,
2,4

Aysja Johnson, Wai Keen Vong, Brenden M. Lake, and
Todd M. Gureckis. Fast and flexible: Human program in-
duction in abstract reasoning tasks, 2021. 2

Lab42. Arc abstraction & reasoning corpus, 2022. 2
Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola.
Grounding language for transfer in deep reinforcement learn-
ing. Journal of Artificial Intelligence Research, 63:849-874,
2018. 1

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ili¢, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, Frangois Yvon, Matthias Gallé,
et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022. 2,
3

Elizabeth S Spelke and Katherine D Kinzler. Core knowl-
edge. Dev. Sci., 10(1):89-96, Jan. 2007. 1

Johan Sokrates Wind. Dsl solution to the arc challenge,
2020. 1,2, 4

Yudong Xu, Elias B. Khalil, and Scott Sanner. Graphs, con-
straints, and search for the abstraction and reasoning corpus,
2022. 2

[16] Daniel Zeng, Tailin Wu, and Jure Leskovec. Virel: Unsu-

2647

pervised visual relations discovery with graph-level analogy,
2022. 2

