
Is Multimodal Vision Supervision Beneficial to Language?

Avinash Madasu
Department of Computer Science

UNC Chapel Hill, USA
avinashmadasu17@gmail.com

Vasudev Lal
Cognitive Computing Research

Intel Labs, USA
vasudev.lal@intel.com

Abstract

Vision (image & video) - Language (VL) pre-training
is the recent popular paradigm that achieved state-of-the-
art results on multi-modal tasks like image-retrieval, video-
retrieval, visual question answering etc. These models are
trained in an unsupervised way and greatly benefit from the
complementary modality supervision. In this paper, we ex-
plore if the language representations trained using vision
supervision perform better than vanilla language represen-
tations on Natural Language Understanding and common-
sense reasoning benchmarks. We experiment with a diverse
set of image-text models such as ALBEF, BLIP, METER and
video-text models like ALPRO, Frozen in Time, VIOLET. We
compare the performance of language representations of
stand-alone text encoders of these models to the language
representations of text encoders learnt through vision su-
pervision. Our experiments suggest that vanilla language
representations show superior performance on most of the
tasks. These results shed light on the current drawbacks
of the vision-language models. The code is available at
https://github.com/avinashsai/MML

1. Introduction
Vision-language (VL) pre-training [1, 5, 11, 12, 22] has

shown tremendous success in the areas of image-text re-
trieval [11, 12], visual question answering [4, 31], video
retrieval [1, 5, 17, 18]. These models benefit from the mu-
tual supervision of vision and language leading to the supe-
rior results on multi-modal tasks. So, the natural question
arises: “Are vision supervised language representations
beneficial compared to vanilla language representations on
Natural Language Understanding (NLU) tasks?” To under-
stand this, we conduct a study comparing the language rep-
resentations trained using only the text to the language rep-
resentations trained using vision supervision. More specifi-
cally, we compare the performance of the text encoders used
in vision-language models to the vanilla pre-trained text en-
coders.

Few works [7, 27] evaluated the performance of vision-
language and vanilla language models on GLUE. However,
there exists a data discrepancy as these models are pre-
trained on different domains of data making the compar-
isons unfair. To overcome this, we pre-train all the vanilla
language models with the text captions used in multi-modal
pre-training while keeping the identical training setting.
Therefore, the only difference in training between vision-
language and vanilla language models is the use of vision
data.

For our experiments we use a diverse set of image-text
models: ALBEF [12], BLIP [11] and METER [4] and
video-text models: ALPRO [10], Frozen-in-time (FiT) [1]
and VIOLET [5]. We evaluate these models on NLU
benchmarks GLUE [29], Superglue [28] and Common
sense reasoning datasets such as SocialIQA [25], Cos-
mosQA [6], WinoGrande [23], CODAH [2] and Hel-
laSwag [33].

Our experiments show that (i) vision supervised lan-
guage representations under perform compared to vanilla
language representations on most of the Natural Lan-
guage Understanding tasks like Natural Language Inference
(NLI), sentence similarity, reading comprehension, linguis-
tic probe and textual entailment. (ii) A similar trend is ob-
served for commonsense reasoning benchmarks.

2. Related Work
Over the recent years there has been a tremendous

progress in training vision and language together using
large-scale multi-modal data. [3, 13, 14]. These models
combine both the modalities into a single input and are
trained using objectives similar to masked language mod-
elling. Another line of work [1, 11, 12, 22] explore dual
stream architectures in which there is a separate encoder for
each of the modalities and the final representations are min-
imized using contrastive loss.

Natural Language Understanding involves several tasks
such as text classification [19,30], sentence similarity [20],
Natural Language Inference [32] etc. However to evalu-
ate the capability of models towards a broad range of NLU
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tasks, benchmarks such as GLUE [29], Superglue [28] are
introduced. Since then, these benchmarks are being used
to comprehensively evaluate the performance of language
models.

3. Experiments
3.1. Models

We experiment with a diverse set of image-text and
video-text models. These models differ in the type of pre-
training data used, in the architecture of the text encoder
and in the sizes the text encoder. The comparison among
the models is shown in the table 1.

3.1.1 ALBEF

ALBEF [12] is an image-text model pretrained on concep-
tual captions 12M (CC12M) [26], COCO [15], SBU cap-
tions [21] and visual genome [9]. It’s text encoder has
a pre-trained BERT [8] architecture with six transformer
encoder layers.

3.1.2 BLIP

BLIP [10] is proposed as an extension to ALBEF model
pretrained using the same data albeit with a large text en-
coder. It’s text encoder has the same configuration as pre-
trained BERT.

3.1.3 METER

METER [4] is an image-text model pretrained on con-
ceptual captions 3M (CC3M), SBU captions and visual
genome. Pre-trained RoBERTa [16] with six transformer
encoder layers is used as the text encoder.

3.1.4 ALPRO

ALPRO [12] is a video-text model whose text encoder has
a pre-trained BERT architecture with six transformer en-
coders. It is pre-trained on a combined data of conceptual
captions 3M (CC3M) and WebVid-2M [1].

3.1.5 Frozen-in-time (FiT)

Frozen-in-time [1] is a dual stream transformer model pre-
trained on both image data conceptual captions 3M (CC3M)
and video data WebVid-2M. DistillBERT [24] is used as the
text encoder.

3.1.6 VIOLET

VIOLET [5] is a multi-modal transformer model pre-
trained end-to-end on YouTube 180M (YT180M) [34],

conceptual captions 3M (CC3M) and WebVid-2M. The text
encoder follows the BERT architecture.

3.2. Datasets

For our analysis, we use GLUE, Superglue and common-
sense reasoning datasets such as SocialQA, CosmosQA,
WinoGrande, CODAH and HellaSwag. For all these
datasets, we evaluate the models on the dev data.

3.3. Implementation

For fair comparison between the vision supervised text
models and vanilla text models, we pre-train the vanilla
text models with the text captions from the datasets used
for large scale training of image-text and video-text mod-
els. Now, the only difference between these models is the
use of vision data. We pre-train vanilla text models in the
exact setup as the original vision-language models. We then
fine-tune both the vision supervised text models and vanilla
text models on downstream tasks. For GLUE, the maximum
sentence length used is 200 and the models are trained for 5
epochs. In case of superglue, 250 is the maximum sentence
length and the model are trained for 25 epochs. For com-
monsense reasoning, the models are trained for 10 epochs
and 300 is the maximum sentence length. Unless otherwise
stated, the results reported are the average of 5 runs.

4. Results
Table 2 shows the results on GLUE benchmark. From

the tables, it is evident that vanilla language representa-
tions show superior performance compared to vision super-
vised language representations on most of the tasks across
all the models. The drop in performance is significant
for NLI tasks like MNLI and MNLI-mismatched (MNLI-
mis). A similar trend is observed for sentence similarity
(QQP), sentiment classification (SST2), reading compre-
hension (MRPC), linguistic probe (CoLA) and textual en-
tailment (RTE). However, we see a huge improvement in
performance for the Winograd NLI (WNLI) task.

Table 3 illustrates the results on superglue benchmark.
From the table, we observe that vision supervised lan-
guage representations under perform compared to vanilla
language representations. For the tasks question answer-
ing (BoolQ), word in context (WiC), discourse (CB) we see
a huge drop in performance. However, we see a signifi-
cant improvement in performance for the casual reasoning
(COPA) task. It is worth-noting that the performance is
same for both the vanilla and vision supervised language
representations on winograd schema challenge (WSC).

Table 4 demonstrates the results on commonsense rea-
soning datasets. As shown in the table, the performance of
vanilla language representations surpass vision supervised
language representations. There is a notable difference in
performance on SocialQA, CosmosQA, WinoGrande and
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Table 1. Comparison among different image-text and video-text models in-terms of pre-training data, architecture of the text encoders and
size of the text encoder. CC denotes Conceptual captions [1], SBU denotes SBU captions [21] and VG represents visual genome [9].

Type Model Pre-training Data Text Encoder Num. layers

Image-text
ALBEF CC12M + COCO + SBU + VG (14M) BERT 6
BLIP CC12M + COCO + SBU + VG (14M) BERT 12
METER CC3M + SBU + VG (4M) RoBERTa 6

Video-text
ALPRO CC3M + WebVid-2M (5M) BERT 6
FiT CC3M + WebVid-2M (5M) DistilBERT 6
VIOLET YT180M + CC3M + WebVid-2M (11M) BERT 12

Table 2. Results on GLUE benchmark. MNLI-mis refers to the task MNLI mismatched and WNLI denotes the Winograd Schema Chal-
lenge. We see that language representations learnt through vision supervision under performs compared to vanilla language representations
on all the tasks except WNLI.

Model Type MNLI MNLI-mis QQP SST2 MRPC CoLA RTE WNLI

ALBEF Text 82.77 82.68 90.54 91.44 72.81 81.50 58.12 46.01
Image-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

BLIP Text 83.04 82.70 90.54 91.44 72.81 81.50 58.12 46.01
Image-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

METER Text 86.59 86.15 90.99 93.27 76.06 82.58 64.02 56.34
Image-text 31.82 31.82 77.91 81.12 66.49 69.13 47.29 56.34

ALPRO Text 82.96 82.81 90.64 92.05 70.96 79.93 60.41 45.07
Video-text 62.53 63.26 79.35 80.96 66.49 69.13 54.39 56.34

FiT Text 79.10 80.23 89.51 52.03 72.58 69.13 57.28 48.83
Video-text 59.54 59.45 79.01 52.18 66.78 69.13 48.01 56.34

VIOLET Text 83.19 83.59 90.68 92.74 71.92 81.66 59.93 52.58
Video-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

Table 3. Results on Superglue benchmark. WiC represents Word-in-Context, CB represents CommitmentBank, COPA denotes Choice of
Plausible Alternatives and WSC means The Winograd Schema Challenge.

Model Type BoolQ WiC CB COPA WSC

ALBEF Text 70.41 63.13 76.79 48.00 63.46
Image-text 63.30 55.02 63.93 51.60 63.46

BLIP Text 70.41 63.13 76.43 48.00 63.46
Image-text 63.30 55.02 63.93 51.60 63.46

METER Text 72.40 66.11 75.00 46.80 63.46
Image-text 66.87 53.98 69.64 50.80 63.46

ALPRO Text 71.16 67.18 76.79 42.20 63.46
Video-text 65.17 53.17 62.50 50.60 62.50

FiT Text 68.91 62.38 69.29 44.80 63.46
Video-text 64.69 53.20 70.71 53.80 63.46

VIOLET Text 63.85 57.37 66.07 56.00 63.46
Video-text 63.44 54.11 63.93 52.60 63.46
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Table 4. Results on Commonsense reasoning tasks.

Model Type SocialQA CosmosQA WinoGrande CODAH HellaSwag

ALBEF Text 40.50 26.45 53.12 25.72 25.04
Image-text 33.47 25.24 49.57 25.72 24.48

BLIP Text 52.27 25.72 56.88 26.02 25.24
Image-text 33.47 25.24 49.57 25.72 24.48

METER Text 58.39 31.32 59.59 24.40 25.04
Image-text 33.47 25.00 49.57 25.72 24.48

ALPRO Text 49.90 27.45 56.56 24.10 24.89
Video-text 33.96 25.70 50.28 25.72 24.48

FiT Text 45.46 30.87 56.75 25.12 26.54
Video-text 33.35 25.77 50.33 24.52 24.59

VIOLET Text 43.36 33.17 57.09 24.28 25.27
Video-text 33.47 25.24 49.57 25.72 24.48

HellaSwag commonsense tasks. However for the CODA
dataset, we observe vision supervised language representa-
tions outperform vanilla language representations for ME-
TER, ALPRO and VIOLET models.

5. CONCLUSION AND FUTURE DIREC-
TIONS

In this paper we comprehensively evaluated if the vision
supervised language representations are beneficial to the
language. We experimented with three image-text models
ALBEF, BLIP, METER and three video-text models AL-
PRO, FiT, VIOLET on NLU benchmarks GLUE, super-
glue and commonsense reasoning tasks. Our experiments
showed that vanilla language representations significantly
outperform vision supervised language representations on
most of the tasks. We believe these findings can shed light
on the future directions to improve the vision-language pre-
training that is beneficial to understanding the language.
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