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Abstract

SCONE-GAN presents an end-to-end image translation,
which is shown to be effective for learning to generate re-
alistic and diverse scenery images. Most current image-to-
image translation approaches are devised as two mappings:
a translation from the source to target domain and another
to represent its inverse. While successful in many applica-
tions, these approaches may suffer from generating trivial
solutions with limited diversity. That is because these meth-
ods learn more frequent associations rather than the scene
structures. To mitigate the problem, we propose SCONE-
GAN that utilises graph convolutional networks to learn
the objects dependencies, maintain the image structure and
preserve its semantics while transferring images into the
target domain. For more realistic and diverse image gen-
eration we introduce style reference image. We enforce the
model to maximize the mutual information between the style
image and output. The proposed method explicitly maxi-
mizes the mutual information between the related patches,
thus encouraging the generator to produce more diverse
images. We validate the proposed algorithm for image-to-
image translation and stylizing outdoor images. Both quali-
tative and quantitative results demonstrate the effectiveness
of our approach on four dataset.

1. Introduction
Generative Adversarial Networks (GANs) [12] are suc-

cessful in generating high quality image samples from a
random noise vector [21, 22]. However, generating scenery
images with high-fidelity in complex domains with multiple
factors of variation using a noise vector remains challeng-
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Figure 1. Overview of our proposed model. Given an input im-
age (red rectangle), a reference style image (blue rectangle) and
a domain (e.g. winter), our model can realistically generate im-
ages in the new domain (yellow rectangle). We establish a graph
on the input and generated image for maintaining dependencies
between objects (GCNin and GCNout). We also maximize the
mutual information between the reference and generated images
for enhancing the diversity of generated images.

ing. One such application is generating an outdoor scene
under different weather conditions in either conditional or
unconditional case. For example, image translation (i.e.
conditional sampling) of an outdoor scene taken in sum-
mer (i.e. domain A) into a realistic image of the same scene
in winter (i.e. domain B) [35,49]. This image generation is
useful for practical applications where it is necessarily to vi-
sualise scenery in different weather conditions, but it is not
feasible or costly efficient to revisit and recapture the same
location under multiple conditions. The majority of current
state-of-the-art image-to-image translations try to compute
a mapping function fAB and an estimate of its inverse func-
tion f−1

BA which is combined with a cycle-consistency loss
for synthesising image in the target domain [17,19,29,49].

Despite the success of cycle-consistent loss, they have
a major drawback. The reconstruction loss forces the gen-
erator to hide the information necessary to accurately re-
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construct the input image due to a bias towards more fre-
quent patterns rather than the structural consistencies [8].
The problem is particularly severe in high-frequency sig-
nals, such as outdoor scene synthesis, where the model must
reconstruct too many features (including sky, clouds, moun-
tains, etc.) and are unable to blend these elements together
into a realistic image under the new domain. Therefore,
cycle-consistent GANs can not be easily used to extract
these information since all attributes such as objects, tex-
tures and colors are entangled. The lack of such control
limits usage of image-to-image translation methods in many
areas and may result in generating low quality with limited
diversity images.

Various studies have been conducted to address these
limitations. [17] used global structural consistency through
pixel cycle-consistency and semantic losses to adapt rep-
resentations at both the pixel-level and feature-level for
scenery image translation. [19] decomposed the image rep-
resentation into a content code, the information that should
be preserved during translation, and a style code, the re-
maining variations that are not in the input image and should
be mapped during translation, and generated images by
combining content and style codes. [29] demonstrated by
maximizing the distance between generated images with
respect to their corresponding latent codes, generator pro-
duces more diverse images. [24] decomposed the input im-
age into a domain-invariant content space and a domain
specific attribute space for generating diverse images. [35]
maximized the mutual information between input and out-
put patches using contrastive learning for learning the com-
monalities between two domains.

Although some improvements have been made, the ma-
jority of previous techniques do not perform well on the
complex outdoor scenery images. One common reason
stems from the fact that, previous models did not fully rep-
resent an embedding space where the input image content
is well preserved and fully mapped with the target domain
information. To overcome these limitations, we propose
a generative model that obtained state-of-the-art results on
synthesizing outdoor scenery images given a domain and a
style image. Unlike previous models that manipulate im-
ages in the target domain using a noise variable, our model
generates more realistic images where a user can control
the output style image using a reference image. Our model
learns the semantic relationship between the objects in an
end-to-end framework. To maintain the dependency be-
tween the objects we construct a graph convolutional net-
work on the source and target images. For more realis-
tic and diverse image creation, we encourage the network
to maximize the mutual information between the reference
and output images. We put weights on the mutual objects
in the style image and output and penalize those that are
different. We learn this through contrastive learning frame-

work which has driven recent advances in learning repre-
sentations [7, 13, 35]. Figure 1 illustrates an overview of
our proposed model. In this paper we make the following
contributions:

• We introduce SCONE-GAN which can synthesize an
image in the highly complex natural scenery in an end-
to-end framework using unpaired images.

• Maintaining the content and image structure between
the input and output images is critical in a realistic
image translation. We utilise graph convolutional net-
works to build the object dependencies to preserve and
maintain the image structure during translation.

• We demonstrate the efficiency of contrastive learning
for a diverse image-to-image translation. We lever-
age the power of contrastive learning by putting more
weight on the objects that are perceptually similar and
penalize those objects that are different for a realistic
and diverse image-to-image translation.

• Controlling the style and content of generated images
cannot be simply achieved by manipulating a noise
vector. Therefore, we introduce a style-reference im-
age that is used for stylizing the target image.

2. Related work

The image-to-image translation approaches can be clas-
sified into two categories of paired [20, 31, 36, 37] and un-
paired training methods [2,17,19,24,27,35]. [20] introduced
a General-purposed conditional GAN model [31] to learn a
one-side mapping function from the input images to target
images. [33] synthesised images using random noise and
a corresponding class label. [36] learned to synthesise im-
age given a segmentation mask and a style reference image.
One common problem with the paired training approaches
is that they only operate in a supervised setting when the
paired training data is available.

Since providing a paired training sample is difficult, nu-
merous methods have been introduced to tackle this lim-
itation [4, 17, 19, 24, 27, 35, 43]. [27] considered coupled-
GANs for learning a joint probability distribution of two
unpaired examples to learn translation. [4] used a weight-
sharing strategy to learn a common representation across
domains. [49] used a cycle-consistency loss [48] to learn
a mapping from translation and reconstruction of the input
and output images. [46] enforced a smoothness regular-
ization term over the CycleGAN network to preserve con-
sistent mappings during the translation. They showed for a
better translation, the inherent property of samples should
be preserved. [43] considered a self-supervised module to
preserve image content during translation.
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While maintaining image content is crucial for image
translation, a successful translator should be able to accu-
rately transform the image appearance conditioned on the
target domain information. It has been shown that [5, 16,
35, 42] maximizing mutual information between the input
data and image representations, can improve the visual rep-
resentation learning and reconstruction performance. [42]
showed for image colorization, maximizing the similarity
between the reference and target images can improve the
results. [35] maximized the mutual information between in-
put and output patches for one-sided image translation, and
obtained better results.

In this work we build our unpaired image-to-image trans-
lator based on the assumption that a successful method
should maintain the image content and be more reliant on
the input image [43, 46]. To enforce the generator learn
the input contents we build a graph on the semantic seg-
ments extracted from the image. This encourages generator
to maintain the objects as well as their relationship during
translation. For generating more diverse and higher quality
images, we introduce style reference image and maximize
the similarity between the output image and reference im-
age. By maximizing the mutual information between the
matched objects, we ensure the generator inherits the sig-
nificant representations that are crucial for image creation.
This enforces the generator to produce more diverse and re-
alistic images. Finally, our model allows user control over
the style of input image using style images.

3. SCONE-GAN
Problem Definition: Given the input domain X , the out-

put domain Y , a reference style image S, trainable param-
eters θ, and a set of unpaired examples X ∈ RH×W×C

and Y ∈ RH×W×C , the goal is to learn a mapping func-
tion f(X,Y,S; θ) : RH×W×C −→ RH×W×C from X to Y .
This mapping function is an extension to a typical image-
to-image translation as defined in [1, 3, 27, 46, 49] where
f(X,Y; θ) maps X to a new domain Y using a Gaussian
noise distribution. However, synthesizing a scene under
new conditions cannot be easily controlled by using only
a Gaussian noise vector, since more realistic and diverse
image generation is required in the output domain. In our
work, we introduce style image S for image manipulation,
with the goal to synthesise images in the target domain us-
ing a reference style image, control the style and content of
Y ∈ Y . For more realistic and diverse image generation
we consider S having mutual properties as the input image
(for example it is drawn from the same dataset as {X,Y});
however, we can ease this constraint and assume S is com-
ing from any arbitrary distribution.

Overview of Approach: As explained earlier, a success-
ful image translator should maintain the image structure in
X ∈ X and Y ∈ Y . To encourage the generator to main-

tain the structural relationship between the objects, we build
a graph on the semantic segments extracted from the in-
put and output images. For generating more diverse and
higher quality images, we introduce style reference image
and maximize the mutual information between the matched
objects in the output and the style reference image. This
encourages the generator to inherit the significant features
for stylizing images in the new domain. We generate style-
vector from S to reflect the feature vector in the output im-
ages. There are two benefits in this setting: (i) during train-
ing the generator learns to output diverse images; (ii) it en-
ables users to control the style of images in the target space.
For example, not only can a user translate images between
domains e.g. summer2winter, but she can also control the
style of the output image (e.g., less snow on the mountain
and more on the ground).

3.1. Network architecture

This section explains details regarding the modules that
are used in this work.
Generator: Since the generator needs to learn style refer-
ence image characteristics as well as synthesising images
using random noise, we feed the input image x ∈ X, style-
vector s ∈ R and the latent code z ∈ R to the generator.
The generator consists of four down-sampling blocks, four
intermediate blocks, and four up-sampling blocks, which
use pre-activation residual units [14]. We use the instance
normalization (IN) [41] while down-sampling and utilize
the adaptive instance normalization (AdaIN) [18] for up-
sampling blocks. The style-vector and latent code are con-
catenated and injected into all AdaIN layers.
Style encoder: The encoder maps the reference style im-
age to the style-vector s ∈ R. The encoder has a CNN layer
and six pre-activation residual units [14] followed by two
branches of fully connected layer size 64 × 2. We set the
number of branches as two (binary translation).
Latent mapping network: The input of the mapping net-
work is Gaussian noise vector and a domain. The output of
the mapping encoder is a vector that feeds into the genera-
tor. The mapping network has eight fully-connected layers
that takes the input vector and outputs a vector of size 64×2.
Discriminator: The discriminator has a CNN layer and
six pre-activation residual units [14] and a fully-connected
layer that is applied to the last residual block. The output of
discriminator is a real/fake classifier for each branch.

3.2. Learning spatial dependencies

As mentioned earlier, a successful image-to-image trans-
lator should maintain the image structure while synthesiz-
ing the input image in the new domain [6, 46]. Therefore,
learning the spatial relationship between the objects in the
input image is vital for an accurate and realistic image gen-
eration. We learn the image structure using graph convo-
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Figure 2. a. The graph convolutional network which learns the
structures among the objects. We build two GCN on the input im-
age and generated image. We use simCLR [7] to extract features
from the segmented images., b. Our mutual information maxi-
mization, tries to learn the feature contents from the ”Reference
Style Image” in order to generate more realistic and diverse im-
ages. We segment the objects from both reference image and the
output. We put weight on the objects that are similar and penalize
the objects that are different.

lutional networks (GCN) which have been widely used in
different computer vision problems [11, 32]. See [47] for a
recent survey on models and applications of graph convolu-
tional networks.

3.2.1 Graph Convolutional Networks

Typically graph convolutional networks (GCN), G(V,A)
can be defined as a set of vertex nodes V = {v1, ..., vn}
and A ∈ Rn×n, a symmetric (typically sparse) adjacency
matrix. Each node vi in the graph has a corresponding d-
dimensional feature vector obtained from a linear opera-
tion on the k−th input Qk = [qk

1 , ...,q
k
n] ∈ Rn×d where

Q0 is the input and k ∈ {0, . . . , L} for each layer L.
Given the input to a GCN layer Qk ∈ Rn×d, it produces
Qk+1 ∈ Rn×dk+1 as the k + 1-th output of the GCN(.)
layer:

Qk+1 = ρ(AQkΘ), (1)

where ρ is a non-linearity function (Leaky ReLU [44] in our
case) and Θ ∈ Rdk×dk+1 is a set of GCN parameters. For
simplicity we consider adjacency operator learned as:

Ak
i,j = ϕ(|qk

i − qk
j |), (2)

where ϕ is a symmetric function. Here we consider a neural
network that has 5 layers of convolutional layers and a fully
connected layer which works on the absolute difference be-
tween two feature vectors. Ak

i,j = 1 if i = j implies each
vertex in the graph is self-connected. The final graph would
be obtained by stacking Eq. 1 for L times:

G(Q;Θ) = σ(GCNL(...GCN1(Q
0))), (3)

where σ is a softmax function.

3.2.2 Graph convolution for spatial dependencies

As introduced in Section 3.2.1, a GCN can model the re-
lations among different objects and learn powerful repre-
sentations for object localization. Therefore, we use a GCN
module for learning the spatial relations between the objects
in the input and generated images.

We assume Q0 as the input signal to a GCN1 module.
We select n objects from the input image and pass them

to a constractive learning module. We use a segmentation
model to extract n objects from each image. Objects are
selected as the most prominent objects per dataset. We use
simCLR [7] which learns representations that are invariant
under a set of augmentations through a contrastive loss. The
intuition behind using a contractive learning framework is
that, the output of an image-to-image translator must be
a variation of the input image, therefore simCLR should
consider the extracted segments from input and output as
different views of same objects and should generate same
d−dimensional features. If an object doesn’t exist in the
image a vector of zeros is put as the extracted features. We
build two GCN on the input and output images (see Fig-
ure 2a. for an example) and minimize the following loss for
learning the spatial dependencies between the objects:

Lspatio = ∥G(Q;Θ)− G(Q′;Θ′)∥22, (4)

where Q and Q′ are the features extracted from n seg-
mented objects from input and output images respectively.

3.3. Mutual information maximization

As explained earlier, we intend to introduce a robust,
realistic and diverse image generator. GCN can maintain
the image structure between the input and output images,
however it doesn’t capture the necessary information (e.g.
texture, color and etc.) for generating diverse images. In
addition, we would like SCONE-GAN learns the style of
reference image for image manipulation in the target do-
main. As introduced in [16] mutual information maximiza-
tion between the reference image and generated output can
improve the reconstruction quality. With mutual informa-
tion maximization, the generator’s prediction distribution
will be balanced and better reflect the style of reference im-
age in the output space. Inspired by [25] we use mutual in-
formation maximization for our image-to-image translation.
Followed by [25] the mutual information maximization can
be broken in two parts: I(S;Y) = H(S)−H(Y|S), maxi-
mizing the info-entropy H(Y) and minimizing the condi-
tional entropy H(Y|S), where Y ∈ Y is the generated
image. This objective will enforce the generator to gen-
erate more diverse images in the target domain [10]. As
is shown in [34] Noise-Contrastive Estimation (NCE) is a
lower bound for maximizing mutual information. Therefore
for maximizng the mutual information between the style
image and the output we use the following loss function:

Linfo(Y) = Ex

− log

 ∑Sp

j=1 e
s̃j

ỹ+

η∑Sp

j=1 e
s̃j .

ỹ+

η +
∑Sn

j=1 e
s̃j .

ỹ−
η

 ,

(5)

where η is a constant, Sp and Sn correspond to the set of
positive and negative samples extracted from the encoded
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reference style image s̃ and encoded generated image ỹ.
Positive samples are defined as those objects that are same
in the style image and output image, and negative ones are
those that are different. In other words, we put weights on
the objects that are mutual in the style reference image and
the output and penalized the objects that are different. Fig-
ure 2b. visualizes the concept of our proposed mutual infor-
mation maximization setting.

3.4. Final objective

In addition to the objectives we presented in Sec-
tion 3.2.2 and Section 3.3, we use the Adversarial loss, Cy-
cle consistency and Style modelling loss.
Adversarial loss: We use the adversarial loss [12] for train-
ing the generator and discriminator simultaneously:

Ladv(G,D) = Ex,y[logD(x)]+ (6)
Ex,y,z[log(1 −Dy(G(x, ŝ)))],

where G tries to minimize this objective against an adver-
sarial D that tries to maximize it. In Eq. 6, ŝ is the output
of the style encoder given the style image, S, and target
domain y. During training, the generator learns to predict
images that are indistinguishable from the real images of
domain y given the style image S.
Cycle consistency loss: In image-to-image translation to
learn the mapping between the unpaired input and output
images a cycle-consistency loss is required [49]:

Lcycle = ∥x−G(G(x, ŝ), s̃)∥1, (7)

where s̃ = E(x) is the output of the encoder given the input
image x.
Style modelling: As mentioned in Section 3.3, the gener-
ator is encouraged to generate realistic and diverse images.
However, style reference image and the output may have a
very little mutual information. This may result very large
values in Eq. 5 and promotes mode collapse for the genera-
tor. To reduce this behaviour we introduce style modelling
loss as follows:

Lstyle = ∥ŝ− Ey(G(x, ŝ))∥1, (8)

Final objective: Finally we optimize the weight summation
of the losses in Section 3.2.1, Section 3.3 and Section 3.4.
The entire loss function is defined as follows:

min
G,E,M

max
D

λadvLadv + λspatioLspatio+ (9)

λinfoLinfo + λcycleLcycle + λstyleLstyle

where λ are a set of hypo-parameters that are tuned manu-
ally during training.

4. Optimization and Inference
For network training similar to [12], instead of mini-

mizing log(1 − Dy(G(x, ŝ)) for training G, we maximize
logD(x, G(x, ŝ)). We also use R1 regularization [30] with
γ = 1. Furthermore, we set λadv = 1, λspatio = 1,
λinfo = 2, λcycle = 2 and λstyle = 2. We use the
Adam optimizer with β1 = 0 and β2 = 0.99. The learn-
ing rates for generator, discriminator, and the encoder, are
set to 10−4, and for the mapping network is set to 10−6. We
initialize all weights of the convolutional, fully-connected,
and affine transform layers using N (0, 1). The biases and
noise scaling factors are initialized to zero, except biases
associated with the scaling vectors of AdaIN that are set to
one. For our encoder, we use leaky ReLU with α = 0.2 [28]
and equalized learning rate [21] for all layers. We do not
use batch normalization, spectral normalization, attention
mechanisms, dropout, or pixelwise feature vector normal-
ization [22].

5. Experiments
This section provides details regarding the datasets we

used for evaluation, the evaluation metrics and the results.
To explore the performance of SCONE-GAN, we evalu-

ate our method on a variety of unpaired datasets that contain
several objects with different shapes:
Yosemite dataset: This dataset contains 854 winter images
and 1273 summer images of Yosemite national park [49].
Monet2photo dataset: This dataset has 1072 images of
painting and 6287 images of landscape [49].
Nordlandsbanen dataset: [39] This dataset consists videos
from a train journey on the same railway track once in ev-
ery season (spring, summer, autumn, winter). Each video
features seasonal effects like snow, color changing foliage
and different weather and lighting conditions. We select
5500 unpaired frames from the summer and winter videos
for training and 280 paired images for testing.
Cityscape dataset: The dataset contains 2975 training and
500 testing images from the Cityscapes dataset [9].

5.1. Evaluation Metrics

We use the following evaluation metrics:
FID: To evaluate the quality of the generated images, we
use FID [15]. FID measures the distance between the gen-
erated distribution and the real one through the extracted
features by Inception Network [40]. Lower FID values in-
dicate better quality of the generated images.
LPIPS: We use LPIPS [45] to evaluate the diversity of the
generated images. LIPIS measures the average feature dis-
tances between generated samples. Higher LPIPS score in-
dicates better diversity among the generated images.
NDB and JSD: Measure the similarity between the distri-
bution between real images and generated samples [38] and
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Input

SCONE-GAN

CUT [35]

Cycle-GAN [49]

MUNIT [19]

DRIT++ [24]

MSGAN [29]

CyCADA [17]

Figure 3. Examples of generated images using our proposed framework. The top row shows the original images in summer domain and
the lower images shows the generated winter image using different methods.

Yosemite [49] Cityscape [9] Monet2photo [49]
Method FID LPIPS NDB JSD FID LPIPS NDB JSD FID LPIPS NDB JSD

CUT [35] 64.17 0.31 31.74 0.049 57.14 0.14 27.05 0.029 66.51 0.28 28.79 0.085

DRIT++ [24] 61.12 0.24 28.03 0.056 72.47 0.17 22.62 0.049 71.65 0.53 21.14 0.087

MUNIT [19] 66.64 0.21 33.61 0.062 84.53 0.22 34.54 0.065 72.42 0.51 23.47 0.091

CycleGAN [49] 71.20 0.13 45.73 0.057 76.30 0.13 29.67 0.058 77.85 0.35 26.78 0.098

MSGAN [29] 52.65 0.13 25.30 0.042 79.15 0.26 23.61 0.034 71.73 0.41 24.65 0.079

CyCADA [17] 54.69 0.33 25.18 0.034 69.31 0.20 21.15 0.028 68.41 0.42 27.46 0.075

SCONE-GAN 51.70 0.40 22.51 0.031 56.37 0.19 20.54 0.021 63.24 0.49 22.76 0.074

Table 1. Quantitative results for the Yosemite, Cityscape and Monet2photo datasets. We report FID (lower is better ↓), LPIPS (higher is
better ↑) NDP (lower is better ↓), and JSD (lower is better ↓).

also evaluate the extent of mode missing of generative mod-
els. Following [38], the training samples are first clustered
using K-means into different bins. Then each synthesized
sample is assigned to the bin of its nearest neighbor. Then
the bin-proportions of the training samples and the synthe-
sized samples are calculated to evaluate the difference be-
tween the generated distribution and the training distribu-
tion. Lower NDB and JSD values mean the generated data
distribution approaches the real data distribution better.

5.2. Setup

During training we use data augmentation. We flip im-
ages horizontally with a probability of 0.5. We resize all
the images to 256 × 256, the batch size is set to 8 and all
models are trained for 100K iterations. We use [23] method
for segmenting the images.

5.3. Results

Qualitatively: First we qualitatively compare our
method with six baselines MUNIT [19], CycleGAN [49],
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DRIT++ [24], CUT [35], MSGAN [29] and CyCADA [17].
Since previous approaches mostly synthesised images in
the output domain given a noise variable, in this experi-
ment we do not use any reference image. Figure 3 com-
pares SCONE-GAN with the introduced baselines for sum-
mer2winter evaluation. Our method encourages the gener-
ator to preserve the image structure while transforming im-
ages between domains. Therefore, during translation, the
artifacts are minimum in the output images. In addition,
we enforce the model to maximize the mutual information
between the output and reference images for enhancing the
diversity of generated images in the output space. As is
shown in Figure 3, the generated images by SCONE-GAN
are almost more meaningful and have less artifacts than
other methods and better representing an image in winter
domain (the trees, mountain and ground are better covered
by snow). We also test SCONE-GAN on Nordlandsbanen
dataset [39]. The results for this experiment are illustrated
in Figure 4a. For this experiment we compare our results
with the ground truth images which have been captured
in winter. As is visualized in Figure 4a the generated re-
sults are realistic, and statistically similar to the real im-
ages. We have also compared our model on Monet2photo
dataset [49]. The generated results for this experiment is
shown in Figure 4b. For this evaluation we compare our
model with ”CUT” [35] which have obtained state-of-the-
art results on Monet2photo dastset [35]. As can be seen
from the figure, SCONE-GAN preserves the image content
and better translates the input image in the target domain.

Quantitative: As the quantitative results exhibited in
Table 1, SCONE-GAN is outperforming the selected base-
line in almost all metrics. We obtain the lowest FID [15]
against the baseline, suggesting that the generated images
are more realistic and have better image quality. We have
also achieved improvements on LPIPS [45], NDB and JSD
[38] values in comparison with the baseline confirming that
our method can generate more diverse images. We observed
that for Cityscape [9] and Monet2photo [49] datasets the
segmentation module [23] sometimes fail to extract the ac-
curate objects. In addition, simCLR [7] did not generate
robust features on some classes because it was not trained
on such images.

5.4. Amazon Mechanical Turk Experiment

We conducted a user study through Amazon Mechan-
ical Turk where users were asked to measure the percep-
tual realism of the generated images. We show 180 images
from Yosemite test dataset [49], 90 real and 90 fake, to 50
participants and asked to distinguish real from fake. We
report average classification Accuracytime score, the mini-
mum time in second that participants need to see an image
and classify it as a real or fake image, in Table 2. In this
experiment, we compare our method with CyCADA [17]

(a) Nordlandsbanen dataset

(b) Monet painting dataset

Figure 4. a. Examples of generated images on the Nordlandsbanen
dataset. The top row shows the input images. The middle row
shows the generated images in the winter domain and the third
row shows the ground truth (recorded by a camera in winter). b.
Transferring images into Monet painting photos. First row is the
original image, second row and third row show the transformed
images using SCONE-GAN and CUT [35] respectively.

Accuracy20% Accuracy∞% Accuracy20% Accuracy∞%

Method Real Fake Real Fake Real Fake Real Fake

SCONE-GAN 95.82 28.26 93.54 41.94 60.13 47.58 61.04 47.28

CUT [35] 95.85 40.78 93.25 45.01 59.78 51.46 60.64 50.25

CyCADA [17] 95.70 30.46 93.68 49.92 60.72 51.23 60.48 50.91

Table 2. AMT experiment. This table shows the average classifi-
cation accuracy for SCONE-GAN, CUT [35] and CyCADA [17].
Higher classification accuracy on real images means the partici-
pants were more successful on classifying real images and lower
classification accuracy on fake images shows the method were
more successful on fooling the evaluators.

and CUT [35]. In the gray columns we report the average
classification accuracy of all participants. To have a better
comparison and ensure that the participants have a better
judgment, we choose the participants who have gained av-
erage classification accuracy of 80% or above on the real
images. This experiment is shown in the cyan color col-
umn. As can be seen from this experiment, SCONE-GAN
has obtained better results on human perceptual evaluation.
In this table, higher classification accuracy on real images
shows the participants were more successful on classifying
real images and lower classification accuracy on fake im-
ages shows the method successfully fooled the participants.

5.5. Reference-guided Image Synthesis

We can also use SCONE-GAN for synthesising images
in a new domain conditioned on a style image. We first
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Yosemite dataset [49] Cityscape dataset [9] Monet2photo dataset [49]
Method FID LPIPS NDB JSD FID LPIPS NDB JSD FID LPIPS NDB JSD

λ2 = 0, λ3,5 = 2 63.96 0.25 39.74 0.049 68.46 0.21 24.13 0.038 69.17 0.39 25.14 0.084

λ2 = 1, λ3,5 = 0 68.54 0.22 42.79 0.051 70.12 0.23 27.92 0.052 71.43 0.36 27.44 0.087

λ2,3,5 = 0 70.81 0.14 44.69 0.055 77.46 0.23 28.45 0.061 75.24 0.34 28.16 0.089

Table 3. Ablation experiments on components of the SCONE-GAN. λ2,3,5 refers to λspatio,info,style. By setting λ2 = 0 we are cancelling
the GCN method and by putting λ3 = 0 and λ5 = 0 we are removing mutual information maximization block from SCONE-GAN.

Input

Reference

Input

S
C
O
N
E
-G
A
N

FU
N
IT

Figure 5. Reference-guided image synthesis. Given the input im-
age and a reference style image, SCONE-GAN and FUNIT [26]
synthesize summer2winter images in the target domain.

encode style image, S, to a reference style-vector and then
feed the features into the generator for producing images in
the new domain. By enforcing the generator to maximize
the mutual information between the generated and refer-
ence images, our generator learns to produce more realistic
and diverse images based on the information given in the
reference image. Figure 5 shows examples from Yosemite
dataset [49]. We also compare our results with FUNIT [26]
method, as they have obtained state-of-the-art results on im-
age translation using style image. As are shown in Figure 5,
SCONE-GAN produces higher quality images with less ar-
tifacts. Also, trees, mountain and ground are better covered
by snow and are higher correlated with the reference image.

5.6. Ablation study

We conduct abundant ablation experiments to analyze
the components of SCONE-GAN. We follow the same pro-
cess for training as we explain in Section 4 and Section 5.2.
We first explore the effect of GCN 3.2.2 on SCONE-GAN
by putting λspatio = 0 in Eq. 9. As can be seen from
Table 3, the performance of SCONE-GAN drops signifi-
cantly. Removing GCN block causes the model not to cap-

ture the precise dependency among the objects. In addi-
tion, we examine the effect of mutual information maxi-
mization block by setting λinfo = 0, λstyle = 0. In this
experiment although the objects are preserved during the
translation, however the generator doesn’t learn to accu-
rately synthesise images in the output space. Finally, we
set λspatio = 0, λinfo = 0, λstyle = 0. In this experiment,
we only use Adversarial loss, Eq. 6 and Cycle consistency
loss, Eq. 7. Results from Table 3 for this experiment con-
firm that using Lspatio,Lstyle and Linfo can enormously
improve the results across different metrics.

5.7. Limitations

SCONE-GAN relies on the contrastive learning and a
segmentation frameworks. Therefore, the output quality
may be deteriorated as these models failed on the input im-
ages. For example as is shown and discussed in Table 1, for
Cityscape [9] and Monet2photo [49] experiments, segmen-
tation [23] and simCLR [7] models failed on some classes.
The reason stems from the fact that these models were not
initially trained on these tasks (streets or painting photos).

6. Conclusion

We introduced SCONE-GAN for generating realistic and
diverse scenery images. Our approach enforces the gener-
ator to learn the dependency between objects using graph
convolutional network to maintain the structure of the im-
ages during translation. In order to extend the diversity of
generated images we maximize the mutual information be-
tween the style image and the output. During training, the
generator learns to utilize the necessary information for en-
hancing the image diversity. Moreover, this presentation
enables users to manipulate scenery in different style condi-
tions. Our qualitative and quantitative experiments on four
datasets show that the generated images outperforms qual-
ity and diversity of the current state-of-the-art.
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