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Abstract

This report introduces two high-quality datasets
Flickr360 and ODV360 for omnidirectional image and
video super-resolution, respectively, and reports the NTIRE
2023 challenge on 360° omnidirectional image and video
super-resolution. Unlike ordinary 2D images/videos with
a narrow field of view, omnidirectional images/videos
can represent the whole scene from all directions in one
shot. There exists a large gap between omnidirectional
image/video and ordinary 2D image/video in both the
degradation and restoration processes. The challenge
is held to facilitate the development of omnidirectional
image/video super-resolution by considering their special
characteristics. In this challenge, two tracks are provided:
one is the omnidirectional image super-resolution and
the other is the omnidirectional video super-resolution.
The task of the challenge is to super-resolve an input
omnidirectional image/video with a magnification factor
of ×4. Realistic omnidirectional downsampling is applied
to construct the datasets. Some general degradation(e.g.,
video compression) is also considered for the video track.
The challenge has 100 and 56 registered participants
for those two tracks. In the final testing stage, 7 and 3
participating teams submitted their results, source codes,
and fact sheets. Almost all teams achieved better perfor-
mance than baseline models by integrating omnidirectional

Ntire 2023 webpage: https://cvlai.net/ntire/2023/
360SR challenge homepage: https://github.com/360SR/360SR-Challenge

characteristics, reaching compelling performance on our
newly collected Flickr360 and ODV360 datasets.

1. Introduction
The 360° or omnidirectional images/videos can provide

users with an immersive and interactive experience, and
have received much research attention with the popularity
of AR/VR applications. Unlike planar 2D images/videos
with a narrow field of view (FoV), 360° images/videos
can represent the whole scene in all directions. However,
360° images/videos suffer from the lower angular resolu-
tion problem since they are captured by the fisheye lens with
the same sensor size for capturing planar images. Although
the 360° images/videos are high-resolution, their details are
usually missing. In many application scenarios, increasing
the resolution of 360° images/videos is highly demanded
to achieve higher perceptual quality and boost the perfor-
mance of downstream tasks.

Recently, considerable success has been achieved in im-
age and video super-resolution (SR) tasks with the devel-
opment of deep learning-based methods [19, 36, 38, 68].
Although 360° images/videos are often transformed into
2D planar representations by preserving omnidirectional
information in practice, like equirectangular projection
(ERP) and cube map projection (CMP), existing super-
resolution methods still cannot be directly applied to 360°
images/videos due to the distortions introduced by the pro-
jections. Thus some methods [18, 61, 62] specified for 360°
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image super-resolution are developed by considering the
omnidirectional characteristics. As for videos, the tempo-
ral relationships in a 360° video should be further consid-
ered since they differ from those in a planar perspective
2D video. Therefore, effectively super-resolving 360° im-
age/video by considering these characteristics remains chal-
lenging.

The NTIRE 2023 challenge on 360° omnidirectional
super-resolution steps forward in establishing high-quality
benchmarks for 360° image and video SR, further high-
lighting the challenges and research problems. The chal-
lenge can also provide an opportunity for corresponding
researchers to work together to show their insights and
novel algorithms, significantly promoting the development
of 360° image and video SR tasks. Two datasets termed
Flickr360 and ODV360 are proposed for omnidirectional
image and video super-resolution tasks, respectively. Real-
istic omnidirectional image downsampling methods are ap-
plied to generate LR image/video pairs to increase the gen-
eralization ability to the real world.

The challenge has 100 and 56 registered participants for
the image and video tracks. In the final testing stage, 7
and 3 participating teams submitted their results, source
codes, and fact sheets. They develop new methods to in-
tegrate omnidirectional characteristics, and introduce new
technologies in network architecture design, data augmen-
tation methods, and etc. We present detailed challenge re-
sults in Sec. 5.

Our challenge is one of the NTIRE 2023 Workshop 1

series of challenges on: night photography rendering [47],
HR depth from images of specular and transparent sur-
faces [63], image denoising [34], video colorization [27],
shadow removal [53], quality assessment of video enhance-
ment [41], stereo super-resolution [54], light field image
super-resolution [58], image super-resolution (×4) [71],
360° omnidirectional image and video super-resolution [5],
lens-to-lens bokeh effect transformation [13], real-time 4K
super-resolution [14], HR nonhomogenous dehazing [1], ef-
ficient super-resolution [33].

2. Related Work
2.1. Omnidirectional Image Super-Resolution

Deep learning for single image SR (SISR) is first in-
troduced in [20]. Further works boost SR performance
by CNNs [16, 21, 35, 39, 42, 45, 69], Vision Transformers
(ViTs) [9, 11, 32, 37] and generative adversarial networks
(GANs) [30, 56, 57, 66]. To improve perceptual quality, ad-
versarial training is performed as a tuning process to gener-
ate more realistic results [56,57]. Moreover, various flexible
degradation models are proposed in [56, 65] to synthesize
more practical degradations.

1https://cvlai.net/ntire/2023/

Initially, ODISR models focus on the spherical assem-
bling of LR ODIs under various projection types [2–4, 28,
43]. Recent ODISR models are performed on plane im-
ages and are fine-tuned from existing SISR models with L1
loss [22] or GAN loss [46, 70]. Since LAU-Net [18] found
pixel density in ERP ODIs is non-uniform, many studies
attempt to design specific backbone networks to overcome
this issue. Nishiyama et al. [44] treats area stretching ra-
tio as additional input. SphereSR [61] learns upsampling
processes on various projection types to mitigate the influ-
ence of non-uniformity in specific projection types. More-
over, OSRT [62] modulates ERP distortions continuously
and self-adaptively by learning deformable offsets from the
ERP distortion maps.

2.2. Omnidirectional Video Super-Resolution

Video super-resolution (VSR) is a challenging task,
which aims to gather complementary information across
misaligned video frames for restoration. One prevalent ap-
proach is the sliding-window framework [24, 51, 55, 60],
where each frame in the video is restored using the frames
within a short temporal window. In contrast to the sliding-
window framework, the recurrent framework [6, 8, 23, 26]
attempts to exploit the long-term dependencies by propagat-
ing the latent features, which allows a more compact model
compared to those in the sliding-window framework.

Unlike ordinary 2D videos, omnidirectional videos can
provide users with a whole scene in all directions. There-
fore, there is a large gap between omnidirectional video and
ordinary 2D video in the degradation and restoration pro-
cesses. Some prior works [17, 40] are proposed to solve
this challenging task. However, how to make full use of
the features of the omnidirectional format is still an open
challenge.

3. Dataset Construction
3.1. Flickr360 Dataset for Omnidirectional Image

Super-Resolution

To promote the development of this field, we construct
a new 360° image dataset, which contains about 3150 ERP
images with an original resolution larger than 5k. Specifi-
cally, 3100 images are collected from Flickr 2, and the other
50 images are captured by Insta 360° cameras. The im-
ages from Flickr are under either Creative Commons BY
2.0, Creative Commons BY-NC 2.0, Public Domain Mark
1.0, Public Domain CC0 1.0, or U.S. Government Works
license. These licenses allow free use, redistribution, and
adaptation for non-commercial purposes. The image con-
tents vary both indoors and outdoors, containing a lot of
natural scenery, human architecture, and street scenes. We
first resize the original images into 2k resolution (2048 x

2https://www.flickr.com/
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1024), serving as HR images. These HR images are further
downsampled into LR images. These images are randomly
partitioned into Training, Validation, and Testing sets, as
shown in Tab. 1. The dataset is publicly available on the
360SR challenge homepage.

Table 1. The detailed data partition of the Flickr360 dataset.

Training Validation Testing
Source Flickr 360 Flickr 360 Flickr 360+capturing
Number 3000 50 50+50

Storage
8.1G (HR)
553M (LR)

137M (HR)
9.3M (LR)

271M (HR)
20M (LR)

3.2. ODV360 Dataset for Omnidirectional Video
Super-Resolution

To rectify the lack of high-quality video datasets in the
community of omnidirectional video super-resolution, we
create a new high-resolution (4K-8K) 360° video dataset,
including two parts:

• 90 videos collected from YouTube and public 360°
video dataset. These videos are carefully selected and
have high quality to be used for restoration. All videos
have the license of Creative Commons Attribution li-
cense (reuse allowed), and our dataset is used only for
academic and research proposes.

• 160 videos collected by ourselves with Insta360 cam-
eras. The cameras we use include Insta 360 X2 and
Insta 360 ONE RS. They can capture high-resolution
(5.7K) omnidirectional videos.

These collected omnidirectional videos cover a large
range of diversity, and the video contents vary indoors
and outdoors. To facilitate the use of these videos for re-
search, we downsample the original videos into 2K resolu-
tion (2160x1080) by OpenCV. The number of frames per
video is fixed at about 100. We randomly divide these
videos into training, validation, and testing sets, as shown
in Tab. 2. The dataset is publicly available on the 360SR
challenge homepage.

Table 2. The detailed data partition of ODV360 dataset.

Training Validation Testing All
Numbers 210 20 20 250

Storage
59G (GT)
4.9G (LR)

5.3G (GT)
446M (LR)

5.7G (GT)
485M (LR)

75.8G

3.3. Realistic Omnidirectional DownSampling

In practice, ODIs are acquired by the fisheye lens and
stored in ERP. Given that the low-resolution issue in real-
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Figure 1. Downsampling process of ODIs (left) and imaging pro-
cess in real-world (right). ‘*’ denotes that LR images synthesized
from different downsampling processes are inconsistent. This fig-
ure comes from [62].

world scenarios is caused by insufficient sensor precision
and density, the downsampling process should be applied to
original-formatted images before converting them into other
storage types. Thus, to be conformed with real-world imag-
ing processes, we propose to apply uniform bicubic down-
sampling on Fisheye images, which are the original format
of ODIs. As shown in Fig. 1, the new downsampling pro-
cess (called Fisheye downsampling [62]) applies uniform
bicubic downsampling on Fisheye images before convert-
ing them to ERP images. This downsampling kernel is more
conducive to exploring the geometric property of ODIs.

Process of Fisheye downsampling. To generate more
realistic LR ODIs, we mimic the real-world imaging pro-
cess and apply bicubic downsampling on Fisheye images.
One single Fisheye image can only store information about
a hemisphere. Hence, ERP images are converted to dual
Fisheye images. To keep the mean pixel density compa-
rable, the resolutions of Fisheye images are slightly larger
than that of ERP images. Before downsampling, Fisheye
images are padded by a FOV larger than 180◦ to avoid edge
disconnections. This padding operation will not influence
the geometric transforming relation between ERP and Fish-
eye. As Fisheye data is unstructured and Fisheye distortion
is more complicated than ERP distortion, we reconvert LR
images to the ERP format for learning. All details of Fish-
eye downsampling can be found on GitHub 3.

We apply the realistic degradation in both the image and
video tracks. For video, we further consider quality com-
pression. More details can be found in the following sec-
tion.

4. The NTIRE Challenge

This challenge has two tracks: omnidirectional image
super-resolution (Track 1) and omnidirectional video super-
resolution (Track 2).

3https://github.com/Fanghua-Yu/OSRT
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4.1. Track 1: Omnidirectional Image Super-
Resolution

Track 1 aims to super-resolve the LR omnidirectional
images with a magnification factor of ×4.

Settings. Unlike previous settings that directly apply bicu-
bic downsampling to generate low-resolution (LR) ERP im-
ages, we adopt a more realistic way to generate LR ERP
images by considering the real acquisition process of 360°
images. Since raw 360° images are captured by the fisheye
lens and are then saved as fisheye formats, thus performing
degradations on fisheye images is more realistic and reason-
able.

Metrics. We evaluate the super-resolved 360° images by
comparing them to the ground truth HR ERP images. To
measure the fidelity, we adopt the widely used Weighted-
to-Spherically-uniform Peak Signal to Noise Ratio (WS-
PSNR) as the quantitative evaluation metric. We report the
performance of these two baseline models on the valida-
tion/testing server.

Baseline Model. For the image track, we utilize the image
super-resolution methods EDSR [38] and SwinIR [36] as
the baseline. Meanwhile, we report the results of directly
applying bicubic upsampling to super-resolve omnidirec-
tional images.

4.2. Track 2: Omnidirectional Video Super-
Resolution

Track 2 aims to super-resolve LR omnidirectional videos
with a magnification factor of ×4.

Settings. In the process of generating low-resolution
videos, we consider two main factors, i.e., downsampling
and video compression. For downsampling, we apply the
same pipeline as track 1. For video compression, we use the
H.264 codec rules in FFMPEG to generate the compressed
video frames.

Metrics. We evaluate the super-resolved 360° video frames
by comparing them to the ground truth HR ERP frames. To
measure the fidelity, we adopt the widely used Weighted-
to-Spherically-uniform Peak Signal to Noise Ratio (WS-
PSNR) as the quantitative evaluation metric. The perfor-
mances of the methods on the validation/testing server are
reported.

Baseline Model. We utilize BasicVSR [6] as the baseline
model for the video track.

4.3. Challenge phases

(1) Development and validation phase: The participants
had access to all the training and validation pairs (LR/HR)
of the Flickr360 dataset and ODV360 dataset. The details

and guidelines are given on GitHub, allowing the partici-
pants to benchmark the performance of their models on their
system. The participants could upload the HR validation re-
sults on the evaluation server to calculate the WSPSNR of
the super-resolved image/video produced by their models to
get immediate feedback.
(2) Testing phase: In the final test phase, the participants
were granted access to the LR test set of Flickr360 and
ODV360. The HR ground-truth images/videos are unre-
leased to participants. The participants then submitted their
super-resolved results to the Codalab testing server and e-
mailed the code and factsheet to the organizers. The orga-
nizers verified and ran the provided code to obtain the final
results. Finally, the participants received the final results at
the end of the challenge.

5. Challenge Results
There are 100 and 56 participants registered for the two

challenge tracks, and 7 and 3 teams entered in the final test-
ing phase and submitted their results, source codes, and fact
sheets in the image track (track 1) and video track (track 2),
respectively. Tab. 3 shows the main results on the validation
and testing sets of these teams. The methods adopted by dif-
ferent teams are described in the following section, and the
detailed information of these teams is listed in Appendix.

Track 1: Omnidirectional Image Super-Resolution From
the upper part of Tab. 3, we see that most valid teams sur-
pass the baseline models (i.e., EDSR-M [38], SwinIR [36])
with a large margin. Most teams (except NTU607-360)
adopt HAT [11] as the baseline model, and improve the per-
formance by considering the characteristics of omnidirec-
tional images and more efficient training strategies. Mean-
while, we observe that all teams’ results are consistent in the
validation and testing sets in terms of WS-PSNR metrics.

Track 2: Omnidirectional Video Super-Resolution
The results in Tab. 3 present that all valid teams outper-

form the baseline model, i.e., BasicVSR [6]. At the same
time, we obverse that all these methods are built based on
BasicVSR++ [8]. The first team (MVideo) demonstrates the
positive effect of the multi-stage training strategy. The sec-
ond team (HIT-HL) presents a novel perspective by utiliz-
ing an adapter model to introduce the omnidirectional char-
acteristics in the super-Resolution process. The third team
(PKU VILLA) proposes a multi-stage model to improve the
model performance.

5.1. Conclusion

Omnidirectional Characteristics. The results show that
all the teams in the image and video tracks considered the
omnidirectional characteristics show performance improve-
ment, which demonstrates the effectiveness of integrating
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Table 3. Quantitative results of the NTIRE 2023 Challenge on 360° Omnidirectional Image and Video Super-Resolution.

Rank Team Name Author/Method Flickr360/ODV360
WS-PSNR (Val) WS-PSNR (Test)

Track 1: 360° Omnidirectional Image Super-Resolution (X4)

1 BSR Accusefive 30.43 28.64
2 Graphene Bob072 30.20 28.49
3 HIT-IIL Spider-Man 30.04 28.28
4 NTU607-360 HaoqiangYang 30.03 28.13
5 bee992 bee992 29.87 28.11
6 flowers flowers 30.00 28.10
7 HIT-CVLab luobingchun 29.60 27.65

Baselines
Bicubic 27.45 25.74
EDSR-M 29.18 27.30
SwinIR 29.75 27.86

Track 2: 360° Omnidirectional Video Super-Resolution (X4)

1 MVideo cui666 25.89 26.35
2 HIT-IIL Spider-Man 25.41 25.82
3 PKU VILLA eStarPro 25.04 25.47

Baseline BasicVSR 24.57 24.72

this information. Meanwhile, this also illustrates the dif-
ferences between omnidirectional images/videos and ordi-
nary images/videos, and considering the omnidirectional
features is highly recommended for omnidirectional image
processing.

Similarity to Plain Image/Video SR. From the results of
the baseline models (e.g., EDSR, SwinIR, BasicVSR++)
and the methods improved by the participants, we see that
the high-performance models for plain images also achieve
high performance on omnidirectional images. Specifically,
the HAT [12] achieves state-of-the-art performance in im-
age super-resolution, and it also achieves highly competi-
tive results on the Flickr360 dataset. Some teams further
improve the performance by further considering the omni-
directional features.

5.2. Future Work

Omnidirectional image super-resolution aims to provide
ordinary users with high-quality and immersive experiences
in AR/VR applications. This challenge tries to promote the
development of the field of omnidirectional image/video
super-resolution, and the results show some promising re-
sults. However, some opening problems still required to be
tackled and some promising directions can be considered to
further improve the user experience.

Omnidirectional characteristics. Most existing meth-
ods still simply utilize the distortion map of ERP to im-
prove the performance, while other characters like omni-

directional are still not considered for super-resolution, re-
sulting the discontinuity between the left side and right side.
Meanwhile, how to fuse the distortions to improve the per-
formance effectively and efficiently still requires additional
explorations.

High-resolution image processing. We have not re-
stricted the runtime of the methods in this challenge, how-
ever, the high-quality VR/AR applications usually require
much higher omnidirectional images (i.e., larger than 8K),
yet existing models still cannot super-resolve these images
with such a high resolution. Meanwhile, processing these
high-resolution images in head-mounted devices (HMD)
is much more challenging with limited computational re-
sources. Therefore, real-time omnidirectional processing is
a promising direction for both the research community and
industry.

Realistic degradation. In this challenge, we adopt a more
realistic omnidirectional image downsampling method pro-
posed in [62] to obtain better results in terms of real-
captured images. However, this kind of simple degrada-
tion is far from the requirements, since there are many other
degradations (e.g., blur, noise) during capturing omnidirec-
tional images. We should further consider the blind setting
in plain image SR to obtain better performance in process-
ing real-captured omnidirectional images. Meanwhile, the
generative priors (e.g., GAN, Diffusion models) can be fur-
ther integrated into models to achieve better visual quality
from the method perspective.

1735



Stage 1-a

Stage 2

Low
Resolution

High
ResolutionStage 1-b

ensemble x8

ensemble x8

ensemble x8

Figure 2. Overall pipeline of the method proposed by BSR team.

Omnidirectional image quality assessment. The WS-
PSNR [50] is adopted to evaluate the performance of the
super-resolved results. However, in real applications, the
ERP images are usually projected into other types, like the
perspective image for application, thus we may evaluate the
quality under multiple projection types to better assess the
quality of super-resolved omnidirectional images.
Future work on omnidirectional video super-resolution.
In addition to the future work considered in the image do-
main, there are more factors that need to be considered
in future work. First, there is a large gap in the temporal
correlation between omnidirectional video and ordinary 2D
video. How to take full advantage of the omnidirectional
temporal correlation is still an open challenge. Second,
compression coding is involved in omnidirectional video
transmission, which is also different from the ordinary 2D
video.

6. Challenge Methods
6.1. Track 1: Omnidirectional Image Super-

Resolution

6.1.1 BSR Team

The BSR team [48] improved the results of the data pro-
cessing and the SR model. The participants collected 360
image data from YouTube 360 videos and designed a degra-
dation learning network inspired by AnimeSR [59]. For the
degradation learning, a network was trained that downsam-
ples by a factor of 4 using the given HR and LR samples to
degrade the 360-degree data collected from YouTube.

Regarding the SR model, the authors adopted a two-
stage model shown in Fig. 2, where the first stage is a
super-resolution network, and the second stage is an equal-
resolution enhancement network.

The SR First Stage Network (Fig.3) was designed based
on HAT-L [12]. Specifically, inspired by DACB in [62] and
BUSIFusion [31], a novel Omnidirectional Position-aware
Deformable Block (OPDB) was proposed, which combines
dimensional information and absolute position encoding in-
formation for 360-degree images. Additionally, a frequency
fusion module was integrated at the end of the HAT blocks,
and ultimately incorporated Fourier upsampling [31] to as-
sist pixel shuffle. The SR Second Stage network shares

the same structure as the first stage, with a pixel unshuf-
fle downsampling operation, and is fine-tuned based on the
first-stage weights.

6.1.2 Graphene Team

An Image Super-Resolution Transformer with Cross-Scale
Attention (CSA) and Wavelet Hallucination (WT) was de-
signed to solve the image super-resolution task. The frame-
work is shown in Fig. 5.

In cross-scale attention, a 3 × 3 depth-wise convolu-
tion was added in the query transformation, and multi-scale
depth-wise convolutions were added in the key and value
transformation. Such a depth-wise convolution can extract
local features and incorporate positional information into
the visual tokens.

For the wavelet hallucination, input features were di-
vided into different groups, each group was viewed as a fre-
quency sub-band, feature enhancement was performed sep-
arately and then the feature was hallucinated with a wavelet
reconstruction. After the wavelet hallucination, a down-
sampled convolution with stride 2 was applied to reduce the
feature map size. By hallucinating features in different fre-
quency sub-bands, a higher-resolution hidden feature was
predicted. Such a hidden high-resolution feature helps to
extract finer details.

Besides, the participants also presented horizontal atten-
tion. Considering the characteristic of the 360SR task, self-
attention was introduced to perform in a horizontal way. Vi-
sual tokens in each X-axis were aggregated with the self-
attention mechanism.

As for the training, a two-stage training strategy was
used for efficiency. In the first stage, training images were
cropped into patches with 64 × 64 randomly. The cropped
image patch was used to train the network. In the second
stage, the network was finetuned by changing the image
patch size from 64 × 64 to 512 × 2048. The models were
trained with L1 loss.

6.1.3 HIT-IIL Team

For the super-resolution (SR) of equirectangular projection
(ERP) images, it is not satisfactory when directly apply-
ing convolutional neural networks (CNN) with translational
equivariance requirements. Instead, ERP-Adapter was pro-
posed that injects a distortion-aware adapter into existing
SR networks designed for perspective images, transferring
the pre-trained perspective image SR network to fit ERP im-
ages with minimal additional effort.

Pre-trained HAT [12] was adopted as the perspective im-
age SR network, which combines a self-attention and chan-
nel attention scheme for reconstruction. To transfer HAT
into ERP domain, ERP-Adapter utilizes deformable convo-
lution [15] for modulating ERP features. However, the di-
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Figure 4. Illustration of our frequency block proposed by BSR
team.

rect estimation of the offsets may bring instability to the net-
work training. Inspired by SelfDZSR [72], an adaptive spa-
tial transformer network (AdaSTN) was adopted to obtain
offsets indirectly by estimating the pixel-level affine trans-
formation matrix and translation vector. For every pixel, the
predicted offset can be written as,

P = AG+ b, (1)

where A ∈ R2×2 is the estimated affine transformation ma-
trix and b ∈ R2×1 is the translation vector. G is a positional
grid, which can be expressed as,[

−1 −1 −1 0 0 0 1 1 1
−1 0 1 −1 0 1 −1 0 1

]
. (2)

The sphere-to-plane projective distortion can be ex-
pressed as the distortion map [49] to some extent, which
stores the per-pixel scaling factor from the 2D plane to the
sphere and can be given by

Cu,v = cos((v − H

2
+

1

2
)
π

H
), (3)

where H is the height of the low-resolution ERP image. The
distortion map and the current features are fed into AdaSTN

for generating offsets of deformable convolution. Finally,
deformed features are added to the current features.

In the training stage, pre-trained HAT is fine-tuned on
the given training dataset. Next, the ERP-Adapter branch
is added to the HAT block (see Fig. 6), HAT is fixed and
only the adapter is trained for additional iterations. Finally,
a large patch size is found to be beneficial for performance
improvement. Considering GPU memory, previous layers
are fixed and tail layers are fine-tuned with the whole ERP
image as input. In the testing stage, a self-ensemble strategy
[52] is used for better performance.

6.1.4 NTU607-360 Team

The method is adapted from [67]. This model effectively
extracts local structural information by shift convolution
(shift-conv) while maintaining an identical level of com-
plexity as a 1x1 convolution. The model also contains
the group-wise multi-scale self-attention (GMSA) module,
which calculates self-attention on non-overlapped groups
of features by various window sizes to achieve long-range
image dependency. A highly efficient long-range attention
block (ELAB) is then built by simply cascading two shift-
conv with a GMSA module, which is further accelerated by
using a shared attention mechanism. Different from the im-
age super-resolution model, the distortion map is also added
as the input to capture the spatial information. The distor-
tion map is written as

Cd = cos(
m+ 0.5−M/2

M
π) (4)

where M and m are the height of the image and the current
height of the image. The LR image and distortion map are
concatenated as the input to train the overall network.

The proposed network contains a 3x3 convolution to ex-
tract features from the distortion map and the image. The
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into the basic block from HAT [12]. The adapter takes the distor-
tion map and current features as input, and adopts AdaSTN [72]
to estimate offsets of current features.

middle 36 ELAB [67] blocks refine features with efficient
complexity. The final blocks are a 3x3 convolution and the
pixel-shuffle operation to restore and magnify the image 4
times.

6.1.5 bee992 Team

The network used by the author is HAT (Hybrid Attention
Transformer) [11]. The HAT method combines channel at-
tention and self-attention together to show powerful perfor-
mance in real images super-resolution. In the task of omni-
directional image super-resolution, the author simply tried

Figure 7. Systematic of the proposed model by NTU607-360
team.

to use the HAT method to solve this problem.
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6.1.6 flowers Team

Figure 8. The method proposed by flowers team.

The authors’ network is based on NAFNet [10] and con-
sists of three modules: the shallow feature extraction mod-
ule, the deep feature extraction network, and the upsam-
pling module. To gather more detailed information, the
global residuals is directly incorporated into the feature ex-
traction process to avoid losing any valuable details. Addi-
tionally, To enhance the model’s generalization and prevent
overfitting, the droppath technique [25] has been used.

Weighted Spherical Crop Sampling (WS-Crop)
method is proposed to solve the inconsistencies in den-
sity within panoramic regions problem. This method en-
hances the sampling rate in high-density areas, allowing the
training process to emphasize challenging areas and extract
more relevant information. WS-Crop samples with an addi-
tional sample drop probability P

P(hc) = 1− α cos
(hc + 0.5−H/2)π

H
. (5)

In the above, hc is the height of the candidate sample’s
center point. α is set to 0.8 as a modulation coefficient,
which is used to prevent the central area from always be-
ing preserved, and also to adjust the degree of difference
in region drop probability. When sampling randomly, the
weighted spherical coefficient calculated from the height of
the sample center point determines the probability of retain-
ing a sample. The closer to the middle area, the higher its
probability of being retained.

Furthermore, their experimentation indicates a substan-
tial disparity in texture complexity among images in the
Flicker 360 dataset, with apparent distinctions between sim-
ple and challenging samples. The Focal PSNR Loss is pro-
posed to enrich the quality of intricate texture generation.
This function allocates higher weights to challenging sam-
ples with significant PSNR loss, and lower weights to sim-
pler samples with lower PSNR loss.

MSE =
1

HW

H−1∑
i=0

W−1∑
j=0

[pred(i, j)− gt(i, j)]2,

LPSNR = 10 · log10
(
MAX2

MSE

)
,

LFocalPSNR = σ(γLPSNR + β)LPSNR.

(6)

In the above H and W represent the height and width of
the high-resolution image, and MAX represents the maxi-
mum pixel value of the image, usually 255. σ is the sigmoid
function. Hyperparameters γ and β can either be manu-
ally adjusted to fit different tasks, or dynamically learned
by the networks themselves. By observing the distribution
of experimental data, hyperparameters are set as γ = 0.66,
β = 6.2.

Due to the extensive training time required for the super-
resolution network, a three-stage fine-tuning technique has
been implemented, which gradually increases the image
sizes, fine-tunes the learning rates, and utilizes WS-Crop
sampling and Focal PSNR Loss at different stages. This
approach enables the network to integrate complex image
details effectively.

To ensure the effective performance of the models across
a range of low-resolution image scenarios, an ensemble
learning approach was employed. Several versions of each
model with diverse initialization, hyperparameters, training
data augmentation techniques, and sizes were combined to
produce the final result.

6.1.7 HIT-CVLab Team

The adopted method is based on HAT [12]. The fea-
ture dimension was set to 192, the block numbers were
set to [6,6,6,6,6,6], the number of multi-heads was set to
[8,8,8,8,8,8], and the window size was set to 16. The
method combines channel attention and shifted window at-
tention schemes to exploit their complementary advantages.
In addition, overlapping cross-attention modules were intro-
duced to better modulate cross-window information adap-
tively and enhance the interaction between features.

6.2. Track 2: Omnidirectional Video Super-
Resolution

6.2.1 MVideo Team

Similar to other common Video Super-Resolution (VSR)
pipelines such as BasicVSR [7], the authors’ models
E2VSR also contain four basic functionalities: propagation,
alignment, aggregation, and upsampling. The overall archi-
tecture is shown in Fig. 9.

Following BasicVSR++ [8], the authors utilized second-
order grid propagation and flow-guided deformable align-
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Figure 9. Architecture of E2VSR for 360 VSR Challenge

ment that allows information to be propagated and aggre-
gated more effectively. The second-order grid propagation
ameliorates information flow in the network and improves
the robustness of the network against occluded and fine re-
gions. The flow-guided deformable alignment reduces the
burden of offset learning by using the optical flow field as
base offsets refined by flow field residue.

The models adopt a multi-stage training strategy, and the
training process includes four stages:

(1) Train the first stage model using 10 LR frames as in-
puts with batch size 8 and patch size 256 for 60k itera-
tions. The model is optimized using Charbonnier loss
with Adam optimizer and Cosine Annealing scheme,
with an initial learning rate of 1e-4.

(2) Finetuning the model using the pre-trained weights
from the stage (1) model. The batch size is 8 and the
patch size is 256(HR), 10 LR frames are used as inputs,
total iteration number is 60k. The model is optimized
using MSE loss with Adam optimizer and Cosine An-
nealing scheme. And the initial learning rate is 1e-5.

(3) Continue to finetune the model from Stage (2) using
MSE loss using 10 LR frames as inputs, batch size 8
and patch size 512(HR), and optimizer type stay the
same. The initial learning rate of 1e-6.

(4) Finally, finetuning the model from Stage (3) using 30
LR frames as inputs to contain more information, with
patch size 256 and batch size 8. This stage takes 60k
iterations with a learning rate is 1e-6.

The training configurations, testing strategies, and hard-
ware and software settings of E2VSR are described as fol-
lows. The Adam optimizer and Cosine Annealing scheme
are adopted for training. The initial learning rate of the main
network and the flow network are set to 1e-4 and 2.5e-5, re-
spectively. The total number of iterations of each stage is
60K, and the weights of the flow network are fixed during
the first 5,000 iterations. The batch size is 8 and the patch

size is 256×256(HR) or 512×512(HR) randomly cropped
from input frames. The network is trained on train datasets
of ODV360, and has no additional data. In order to further
improve the performance of the model, the number of resid-
ual blocks for each branch and feature channel is set to 15
and 256, respectively.

In the training process, Exponential Moving Average
(EMA) is used to improve the robustness of the model in
test datasets. In the testing process, Test-Time Augmen-
tation(TTA) is used to improve the correction of predicted
results and reduce the generalization error. Training is all
done on the Nvidia A100 GPU server, with GPU memory
of 40GB each.
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Figure 10. The architecture of ERP-Adapter. The authors inject an
adapter into the basic block from BasicVSR++ [8]. The adapter
takes the distortion map and current features as input, and adopts
AdaSTN [72] to estimate offsets of current features.

6.2.2 HIT-IIL Team

Compared to perspective videos, Equirectangular projec-
tion (ERP) videos stretch the areas near the poles horizon-
tally. Thus, for ERP video super-resolution (VSR), it is
not satisfactory when directly applying convolutional neu-
ral networks (CNN) with translational equivariance require-
ments. Instead, we propose ERP-Adapter that injects a
distortion-aware adapter into existing VSR networks de-
signed for perspective videos, transferring the pre-trained
perspective VSR network to fit ERP videos with minimal
additional effort.

Detailly, BasicVSR++ [8] is adopted as the perspective
VSR network, which adopts second-order grid propagation
for better temporal modeling and flow-guided deformable
alignment for stable offsets estimation. For performance
improvement, the authors replace the reconstruction resid-
ual blocks with transformer blocks [64].

To transfer BasicVSR++ into the ERP domain, ERP-
Adapter utilizes deformable convolution [15] for modulat-
ing ERP features. However, the direct estimation of the off-
sets may bring instability to the network training. Inspired
by SelfDZSR [72], an adaptive spatial transformer network
(AdaSTN) is designed to obtain offset indirectly by estimat-
ing the pixel-level affine transformation matrix and transla-
tion vector, as shown in Fig10. For every pixel, the pre-
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Figure 11. Pipeline of the PKU VILLA Team.

dicted offset can be written as,

P = AG+ b (7)

where A ∈ R2×2 is the estimated affine transformation ma-
trix and b ∈ R2×1 is the translation vector. G is a positional
grid, which can be expressed as,[

−1 −1 −1 0 0 0 1 1 1
−1 0 1 −1 0 1 −1 0 1

]
(8)

The sphere-to-plane projective distortion can be expressed
as distortion map [49] to, which stores the per-pixel scaling
factor from the 2-D plane to the sphere and can be given by

Cu,v = cos((v − H

2
+

1

2
)
π

H
) (9)

where H is the height of the low-resolution ERP frame. The
distortion map and the current features are fed into AdaSTN
for generating offsets of deformable convolution. Finally,
deformed features are added to the current features.

In the training stage, BasicVSR++ is first trained with
Charbonnier loss [29]. Next, the BasicVSR++ is fixed
and only the adapter is trained for additional iterations. In
the testing stage, a self-ensemble strategy [52] is further
adopted for better performance.

6.2.3 PKU VILLA Team

A spatial-temporal two-stage model is developed, wherein
the first stage is a 4x image super-resolution network, and
the second stage is a 4x video super-resolution network.
The overall pipeline has been shown in Fig.11.

In the first stage, the HAT-L [11] model architecture and
its pre-trained weights are utilized for fine-tuning. Sequen-
tially, video frames were input into the network for com-
pressed image restoration and 4x image super-resolution
tasks. The output images from the first stage underwent
a PixelUnShuffle operation to ensure resolution consistency
with the input.

During the second stage, BasicVSR++ [8] model ar-
chitecture and pre-trained weights are employed for fine-
tuning. Before feeding into the second-stage network, a
1x1 convolution is used to compress the channel number.
To fully exploit the temporal information in the video, the
authors input the first stage’s output into the second stage
video super-resolution network to obtain the predicted high-
resolution video frames.
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Kämäräinen. 360 panorama super-resolution using deep con-
volutional networks. In Int. Conf. on Computer Vision The-
ory and Applications (VISAPP), volume 1, 2018. 2

[23] Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video
super-resolution through recurrent latent space propagation.
In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3476–3485. IEEE, 2019.
2

[24] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita. Recurrent back-projection network for video super-
resolution. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3897–3906,
2019. 2

[25] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Pro-

1743



ceedings of the European Conference on Computer Vision,
pages 646–661. Springer, 2016. 9

[26] Yan Huang, Wei Wang, and Liang Wang. Bidirectional
recurrent convolutional networks for multi-frame super-
resolution. Advances in neural information processing sys-
tems, 28, 2015. 2

[27] Xiaoyang Kang, Xianhui Lin, Kai Zhang, Zheng Hui, Wang-
meng Xiang, Jun-Yan He, Xiaoming Li, Peiran Ren, Xu-
ansong Xie, Radu Timofte, et al. NTIRE 2023 video col-
orization challenge. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2023. 2

[28] Hiroshi Kawasaki, Katsushi Ikeuchi, and Masao Sakauchi.
Super-resolution omnidirectional camera images using
spatio-temporal analysis. Electronics and Communica-
tions in Japan (Part III: Fundamental Electronic Science),
89(6):47–59, 2006. 2

[29] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Fast and accurate image super-resolution with
deep laplacian pyramid networks. IEEE transactions on pat-
tern analysis and machine intelligence, 41(11):2599–2613,
2018. 11

[30] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 2

[31] Jiabao Li, Yuqi Li, Chong Wang, Xulun Ye, and Wolfgang
Heidrich. Busifusion: Blind unsupervised single image fu-
sion of hyperspectral and rgb images. IEEE Transactions on
Computational Imaging, 9:94–105, 2023. 6

[32] Wenbo Li, Xin Lu, Jiangbo Lu, Xiangyu Zhang, and Jiaya
Jia. On efficient transformer and image pre-training for low-
level vision. arXiv preprint arXiv:2112.10175, 2021. 2

[33] Yawei Li, Yulun Zhang, Luc Van Gool, Radu Timofte, et al.
NTIRE 2023 challenge on efficient super-resolution: Meth-
ods and results. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, 2023. 2

[34] Yawei Li, Yulun Zhang, Luc Van Gool, Radu Timofte, et al.
NTIRE 2023 challenge on image denoising: Methods and
results. In CVPRW, 2023. 2

[35] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin
Gu, Yu Qiao, and Chao Dong. Blueprint separable residual
network for efficient image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 833–843, 2022. 2

[36] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021. 1, 4

[37] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. arXiv preprint arXiv:2108.10257,
2021. 2

[38] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1, 4

[39] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 2

[40] Hongying Liu, Zhubo Ruan, Chaowei Fang, Peng Zhao, Fan-
hua Shang, Yuanyuan Liu, and Lijun Wang. A single frame
and multi-frame joint network for 360-degree panorama
video super-resolution. arXiv preprint arXiv:2008.10320,
2020. 2

[41] Xiaohong Liu, Xiongkuo Min, Wei Sun, Yulun Zhang, Kai
Zhang, Radu Timofte, Guangtao Zhai, Yixuan Gao, Yuqin
Cao, Tengchuan Kou, Yunlong Dong, Ziheng Jia, et al.
NTIRE 2023 quality assessment of video enhancement chal-
lenge. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, 2023. 2

[42] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-
resolution with non-local sparse attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3517–3526, 2021. 2

[43] Hajime Nagahara, Yasushi Yagi, and Masahiko Yachida.
Super-resolution from an omnidirectional image sequence.
In 2000 26th Annual Conference of the IEEE Industrial Elec-
tronics Society. IECON 2000. 2000 IEEE International Con-
ference on Industrial Electronics, Control and Instrumen-
tation. 21st Century Technologies, volume 4, pages 2559–
2564. IEEE, 2000. 2

[44] Akito Nishiyama, Satoshi Ikehata, and Kiyoharu Aizawa.
360 single image super resolution via distortion-aware net-
work and distorted perspective images. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP), pages
1829–1833. IEEE, 2021. 2

[45] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping
Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and
Haifeng Shen. Single image super-resolution via a holistic
attention network. In European conference on computer vi-
sion, pages 191–207. Springer, 2020. 2

[46] Cagri Ozcinar, Aakanksha Rana, and Aljosa Smolic. Super-
resolution of omnidirectional images using adversarial learn-
ing. In 2019 IEEE 21st International Workshop on Multime-
dia Signal Processing (MMSP), pages 1–6. IEEE, 2019. 2

[47] Alina Shutova, Egor Ershov, Georgy Perevozchikov, Ivan A
Ermakov, Nikola Banic, Radu Timofte, Richard Collins,
Maria Efimova, Arseniy Terekhin, et al. NTIRE 2023 chal-
lenge on night photography rendering. In CVPRW, 2023. 2

[48] Xiaopeng Sun, Weiqi Li, Zhenyu Zhang, Qiufang Ma, Xuhan
Sheng, Ming Cheng, Haoyu Ma, Shijie Zhao, Jian Zhang,
Junlin Li, and Li Zhang. OPDN: Omnidirectional position-
aware deformable network for omnidirectional image super-
resolution. In CVPRW, 2023. 6

[49] Y Sun, A Lu, and L Yu. Ahg8: Ws-psnr for 360 video ob-
jective quality evaluation. In Joint Video Exploration Team

1744



of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-
D0040, 4th Meeting, 2016. 7, 11

[50] Yule Sun, Ang Lu, and Lu Yu. Weighted-to-spherically-
uniform quality evaluation for omnidirectional video. IEEE
signal processing letters, 24(9):1408–1412, 2017. 6

[51] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu.
Tdan: Temporally-deformable alignment network for video
super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
3360–3369, 2020. 2

[52] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven
ways to improve example-based single image super resolu-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1865–1873, 2016. 7,
11

[53] Florin-Alexandru Vasluianu, Tim Seizinger, Radu Timofte,
et al. NTIRE 2023 image shadow removal challenge report.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2023. 2

[54] Longguang Wang, Yulan Guo, Yingqian Wang, Juncheng Li,
Shuhang Gu, Radu Timofte, et al. NTIRE 2023 challenge on
stereo image super-resolution: Methods and results. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2023. 2

[55] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 2

[56] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1905–1914,
2021. 2

[57] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion workshops, pages 0–0, 2018. 2

[58] Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang
Yang, Radu Timofte, Yulan Guo, et al. NTIRE 2023 chal-
lenge on light field image super-resolution: Dataset, methods
and results. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2023.
2

[59] Yanze Wu, Xintao Wang, Gen Li, and Ying Shan. Animesr:
Learning real-world super-resolution models for animation
videos. arXiv preprint arXiv:2206.07038, 2022. 6

[60] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision, 127:1106–
1125, 2019. 2

[61] Youngho Yoon, Inchul Chung, Lin Wang, and Kuk-Jin Yoon.
Spheresr: 360deg image super-resolution with arbitrary pro-
jection via continuous spherical image representation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5677–5686, 2022. 1,
2

[62] Fanghua Yu, Xintao Wang, Mingdeng Cao, Gen Li, Ying
Shan, and Chao Dong. Osrt: Omnidirectional image super-
resolution with distortion-aware transformer. arXiv preprint
arXiv:2302.03453, 2023. 1, 2, 3, 5, 6

[63] Pierluigi Zama Ramirez, Fabio Tosi, Luigi Di Stefano, Radu
Timofte, et al. NTIRE 2023 challenge on hr depth from im-
ages of specular and transparent surfaces. In CVPRW, 2023.
2

[64] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 10

[65] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-
fte. Designing a practical degradation model for deep blind
image super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4791–
4800, 2021. 2

[66] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.
Ranksrgan: Generative adversarial networks with ranker for
image super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3096–
3105, 2019. 2

[67] Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang.
Efficient long-range attention network for image super-
resolution. In Proceedings of the European Conference on
Computer Vision, pages 649–667. Springer, 2022. 7, 8

[68] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Proceedings of the
European Conference on Computer Vision, pages 286–301,
2018. 1

[69] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Proceedings of the
European Conference on Computer Vision, pages 286–301,
2018. 2

[70] Yupeng Zhang, Hengzhi Zhang, Daojing Li, Liyan Liu,
Hong Yi, Wei Wang, Hiroshi Suitoh, and Makoto Odamaki.
Toward real-world panoramic image enhancement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 628–629, 2020.
2

[71] Yulun Zhang, Kai Zhang, Zheng Chen, Yawei Li, Radu Tim-
ofte, et al. NTIRE 2023 challenge on image super-resolution
(x4): Methods and results. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, 2023. 2

[72] Zhilu Zhang, Ruohao Wang, Hongzhi Zhang, Yunjin Chen,
and Wangmeng Zuo. Self-supervised learning for real-world
super-resolution from dual zoomed observations. In Euro-
pean Conference Computer Vision, pages 610–627. Springer,
2022. 7, 8, 10

1745


	. Introduction
	. Related Work
	. Omnidirectional Image Super-Resolution
	. Omnidirectional Video Super-Resolution

	. Dataset Construction
	. Flickr360 Dataset for Omnidirectional Image Super-Resolution
	. ODV360 Dataset for Omnidirectional Video Super-Resolution
	. Realistic Omnidirectional DownSampling

	. The NTIRE Challenge
	. Track 1: Omnidirectional Image Super-Resolution
	. Track 2: Omnidirectional Video Super-Resolution
	. Challenge phases

	. Challenge Results
	. Conclusion
	. Future Work

	. Challenge Methods
	. Track 1: Omnidirectional Image Super-Resolution
	BSR Team
	Graphene Team
	HIT-IIL Team
	NTU607-360 Team
	bee992 Team
	flowers Team
	HIT-CVLab Team

	. Track 2: Omnidirectional Video Super-Resolution
	MVideo Team
	HIT-IIL Team
	PKU_VILLA Team


	. Organizers of NTIRE 2023 Challenge
	. Track 1: Teams and Affiliations
	. Track 2: Teams and Affiliations

