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Abstract

Single-image shadow removal aims to remove undesired
shadow information from captured images. With the de-
velopment of deep convolutional neural networks, several
methods have been proposed to achieve promising perfor-
mance in shadow removal. However, they still struggle with
limited performance due to the non-homogeneous intensity
distribution of the shadow. To address this issue, we pro-
pose a two-stage shadow removal architecture based on the
transformer called TSRFormer. The proposed architecture
is divided into shadow removal and content refinement net-
works. These two stages adopt different transformer archi-
tectures and remove the shadow based on different informa-
tion to achieve effective shadow removal. Experiments per-
formed on challenging benchmark show that the proposed
model achieves the 2nd highest SSIM in the NTIRE 2023
Image Shadow Removal Challenge. The source code will
be public after the acceptance of this paper.

1. Introduction

When capturing natural images, a shadow is an in-
evitable phenomenon generated under the condition of the
light being partially or completely blocked. Though shad-
ows can provide fruitful information about the captured
scenes, they may significantly degrade the image quality of
human perception [2] [3] and then further deteriorate the
performance of subsequent vision applications such as se-
mantic segmentation, object tracking, and detection [2] [4]
[3] [5] [6].

Several shadow removal algorithms have been proposed
in past decades and achieved decent performance. These
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Figure 1. Shadow removal results by the state-of-the-art and
the proposed methods. The proposed method TSRFormer can
remove more undesired shadows and reconstruct more pixel infor-
mation.

methods can be categorized to prior-based methods [7] [8]
[9] and deep learning-based methods [10] [11] [12] [13]
[14]. The prior-based strategy focuses on adopting an im-
age formation model and exploiting the prior information of
the shadow image to formulate the shadow removal prob-
lem. However, designing a comprehensive image formation
model is challenging, which is usually restrictive to specific
scenes and not general to real-world scenarios. Thus, the
performance of this strategy is usually limited.

On the other hand, similar to other low-level vision tasks
like single image dehazing and image enhancement [15,16],
deep learning-based methods adopt the convolutional neu-
ral network and large-scale datasets [17] [18] [19] to learn
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Figure 2. Overview of the proposed TSRFormer. The proposed TSRFormer adopts a two-stage recovery pipeline. The first stage is to
remove the shadow globally, while the second stage is to recover the residual shadow and refine the content locally.

the mapping function from shadow images to shadow-free
images. Though these methods have achieved promising
performance in shadow removal, they still suffer from un-
desired results. Specifically, existing shadow removal meth-
ods do not address the non-homogeneous distribution of in-
tensity of shadow well. The regions with strong intensity
of shadow cannot be removed clearly, which limits the per-
formance of shadow removal. As shown in Figure 1 the
reconstructed results of existing methods are not pleasant
due to the non-homogeneous distribution of intensity of
the shadow. To this end, we proposed a novel two-stage
refinement single image shadow removal method which
consists of shadow removal and content refinement stages.
The first stage aims to remove most shadow regions glob-
ally and the second stage focuses on removing the residual
shadow based on the results of the first stage and compen-
sating for the missing information locally. In each stage, we
adopt a vision transformer architecture with different infor-
mation as inputs to conduct shadow removal sequentially.
As shown in Figure 1, the network can learn more robust
shadow removal with this two-stage training paradigm. Ex-
tensive experimental results show that the proposed TSR-
Former performs robustly and favorably against the state-
of-the-art schemes for single-image shadow removal. We
make the following contributions to this work:

• We present the TSRFormer for single-image shadow
removal. Our method uses a two-stage reconstruc-
tion pipeline and two transformer architectures that can
learn robust shadow removal.

• We test our proposed method on the dataset pro-
vided by NTIRE 2023 shadow removal challenge and
achieve the 2nd highest SSIM in this challenge. More-
over, several experiments demonstrate the effective-
ness of the proposed TSRFormer.

2. Related Works
2.1. Image Shadow Removal

Existing image shadow removal can be mainly divided
into two classes:

Prior-based Methods [20] [21] [22] [23] [9] [7] [24] make
assumptions based on statistical analysis and human ob-
servation such as region information [22, 25], illumina-
tion [8, 9, 26, 27], and image gradients [7, 20] to design
shadow removal formulation. For example, Guo et al. [22]
find the variation between shadow and shadow-free regions,
and they adopt this property to distinguish and reconstruct
shadow-free results. Finlayson et al. [20] proposed to lever-
age illuminant invariance and gradient information to re-
move shadow edge and then adopt image inpainting tech-
nique to recover results. To further improve this work, they
proposed introducing the entropy for pixel values to sup-
press the shadow in captured images. Gryka et al. [7] adopt
a mapping function for image patches to perform shadow
removal. However, this kind of strategy may suffer from
limited performance when the assumptions of the scenes are
failed, which causes poor generalization ability in compre-
hensive scenarios.

Deep Learning-based Methods [19] [18] [13] [28] [29]
[30] [10] [30] leverage the large-scale datasets to train the
conventional neural networks, and it can be split to super-
vised and unsupervised strategies.

For the supervised strategy, Le et al. [29] proposed a
physical illumination model and an image decomposition
formulation to remove the shadow. Zhu et al. [31] proves
the shadow removal and generation process can benefit the
whole training procedure. They proposed a unified network
to train these two processes simultaneously. Chen et al. [12]
developed a context-aware network to integrate the infor-
mation of shadow-free regions and shadow regions in the
latent feature spaces. Wan et al. [32] found the style incon-
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Figure 3. Architecture of the shadow removal network.

sistency problem between shadow and shadow-free regions
after the shadow removal. To solve this problem, they pro-
posed a style-guided shadow removal network to exploit the
shadow-free regions to adjust the recovered shadow regions
for consistent style. Fu et al. [33] solved the shadow re-
moval problem by reformulating it to an exposure fusion
problem. By generating the weight maps for images with
different exposures, shadow-free results can be obtained by
the fusion technique. Moreover, some methods [1] [34]
adopted the transformer [35] [36] as the backbone to cap-
ture global information for shadow removal.

For unsupervised strategy, several shadow removal
methods [37] [10] [38] [39] have emerged. They are gen-
erally based on a generative adversarial network (GAN) to
train the network with unpaired shadow and clean images.
Jin et al. [37] exploited an unsupervised domain classifier to
guide the shadow removal network and proposed physics-
based shadow-free chromaticity to constrain the network.

Although these methods achieve remarkable perfor-
mance for shadow removal in most scenes, they still suffer
from limited performance since they neglect to consider the
non-homogeneous intensity distribution of shadow. Thus,
developing a solution to cope with this problem is of great

importance.

2.2. Transformer-Based Image Restoration

Initially, the transformer [40] containing the self-
attention module has shown impressive performance in nat-
ural language processing (NLP) tasks. Besides NLP tasks,
self-attention modules containing spatial and channel at-
tention are leveraged in many computer vision applications
[16, 41–43]. Recently, the vision transformer has achieved
significant success in the computer vision community. This
architecture decomposes an image into a series of patches
with sequences and learns mutual relationships. Based
on this technique, several vision tasks such as object de-
tection [44] [45] [46], segmentation [47, 48], and image
recognition [35,36,49]. Recently, several image restoration
techniques have adopted this architecture as the backbone
and achieve state-of-the-art performance, including super-
resolution [50, 51], denoising [52, 53], deraining [53], de-
hazing [54, 55], and desnowing [56, 57].
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Figure 4. Architecture of the content refinement stage.

3. Proposed Methods

3.1. Two-stage Shadow Removal Pipeline

Existing shadow removal cannot generate a shadow-free
image with decent quality due to the non-homogeneous in-
tensity of the shadow. To address this issue, inspired by
other image restoration tasks [15, 58], we proposed a novel
two-stage shadow removal pipeline. As shown in Figure 2,
our shadow removal can be divided into two parts: (i) the
shadow removal network (SRN) and (ii) the content refine-
ment network (CRN).

• Shadow Removal Network aims to remove the
shadow from the input shadow image globally. This
network removes most parts of the shadow and gener-
ates a rough shadow removal result at this stage.

• Content Refinement Network focuses on removing
the residual shadow and compensating for the missing
pixel information locally at this stage. We compute
the shadow region based on the difference between the
input shadow image and the recovered result obtained
by the shadow removal network. Based on the shadow
region, we can conduct content refinement and residual
shadow removal locally.

3.2. Shadow Removal Network

The structure of the shadow removal network is shown in
Figure 3. We adopt the architecture of SpA-Former [1] as
the backbone of our shadow removal network. It contains a
deep Transformer and CNN network.

First, the input image is passed to the Transformer block
to capture local and global information. Then, a 3×3 con-

volution block is adopted to extract the feature maps. These
feature maps are passed to two wheel RNN joint spatial at-
tention network (TWRNN) and the bottleneck network. The
TWRNN aims to help the network focus on specific ele-
ments by generating attention maps from the inputs.
Transformer block enables the network to capture global
and local information. This module complements the
TWRNN network since the result of the transformer does
not depend on the previous step, which enables the network
can process in a parallel fashion. By this design, more ac-
curate feature learning can be achieved. The encoder of the
transformer reduces the dimension and increases the num-
ber of channels. The low-level features of the encoder and
high-level features of the decoder can be aggregated in this
block. This operation can benefit the network to keep both
structural and textural details in the results.
Two-Wheel RNN joint spatial Attention is a two-round
four-way RNN architecture that can project the features in
four directions, which can extract spatial context informa-
tion to focus on desired shadow features. First, three vanilla
residual blocks are adopted to extract features for the atten-
tion residual block to remove the shadow. Then, the feature
map without shadow is fed into two residual blocks to gen-
erate the shadow-free image.
Joint Fourier Transform Residuals Module [59] is an im-
proved module by the ResBlock, and it can compute the
difference between shadow and clear images. The vanilla
Resblock tends to have limited performance in extracting
low-frequency information. It is not beneficial to recon-
struct the shadow-free image since the reconstruction pro-
cess includes low and high-frequency information recovery.
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As shown in Figure 2, high-frequency and low-frequency
information can be captured in the reconstruction process
using the Fourier transform residual modules. Also, to im-
prove the ability of the network to capture long-range in-
formation, the residual information is integrated with the
attention map to improve the residual learning. Then, the
result of the shadow removal network is generated.

3.3. Content Refinement Network

In this stage, the content refinement network aims to
remove residual shadow and recover the missing pixel in-
formation locally. To this end, we adopt the Shadow-
former [34] as the backbone at this stage. We adopt the
image generated by the shadow removal network and the
mask of shadow as inputs in this stage. The mask of shadow
can be computed by:

M(x, y) = θ(|IInput(x, y)− IShadow(x, y)|) (1)

where M , IInput, and IShadow denote the shadow mask,
the input shadow image, and the result generated by the
shadow removal network. θ(·) denotes the threshold op-
eration. Then, based on these inputs, the content refinement
network generates the final result of the shadow removal.

Architecture. As shown in Figure 4, first, a linear projec-
tion block is adopted to extract the low-level feature from
the input. These features are fed into the transformer with
several channel attention modules to obtain the multi-scale
global features. The encoder consists of several down-
sampling blocks and channel attention blocks, while the de-
coder contains several up-sampling blocks and channel at-
tention blocks. The channel attention block integrates the
spatial information and long-range correlation by a multi-
layer perceptron [60]. The channel attention modules re-
peat L times to obtain the hierarchical features. Then, we
adopt Shadow-Interaction Module [34] to capture the global
contextual correlation using previous features. The gener-
ated features are fed into the decoder and passed several
channel attention modules with the features skip-connected
from the encoder. Last, the final result of the shadow re-
moval is obtained by a linear projection operation.

3.4. Loss Functions

To train the proposed TSRFormer, we apply different
loss functions in different stages. For the shadow removal
network, we adopt L1 loss to calculate the difference be-
tween the recovered image and the shadow-free image. In
addition, we adopt the L2 loss function for mask and atten-
tion, and the softplus function for GAN loss and discrimina-
tor. We adopt the Charbonnier loss [61] that can be regarded
as the robust L1 loss function for the content refinement

stage. The Charbonnier loss is expressed as

LCha(I, IContent) =
1

T

T∑
i

√
(Ii − IContent)2 + ϵ2 (2)

where I and IContent represent the ground truth and de-
shadowed images generated from the content refinement
network, respectively, and e is seen as a tiny constant (e.g.,
10−6) for stable and robust convergence. LCha can restore
global structure [61] and can be more robust to handle out-
liers.

4. Experiments
4.1. Dataset

The 2023 NTIRE image shadow removal dataset is a
novel dataset called WSRD [62] with a large diversity of
contents. This dataset consists of shadow-affected images
and shadow-free images. There are 1000 images for train-
ing, 100 for validation, and 100 for testing. Additionally,
shadow-free images are only provided in the training set.
The size of all images is 1440 × 1920 × 3. Furthermore,
we also adopt the extra ITDS [18] dataset. ITDS contains
1330 training and 540 testing triplets (e.g., shadow images,
masks, and shadow-free images). We initially used ITDS to
train our model before we adopted the 2023 NTIRE image
shadow removal dataset to implement two-stage training.

4.2. Experimental Setting

There are two stage training phases. First, for SpA-
Former, the image is randomly cropped as 360 × 480, and
we do not use other data augmentation tricks. The Adam
optimizer [63] is adopted and the batch size is set to 3 per
card. We train the network for 200 epochs with the mo-
mentum β1 = 0.5, β2 = 0.999. The learning rates of the
generator and the discriminator are initialed as 4 × 10−4

and 3.2 × 10−3. Second, for ShadowFormer, the image is
randomly cropped as 320 × 320, and we do not use other
data augmentation tricks. The AdamW optimizer [64] is
utilized with a batch size of 8 to train the network. We train
the network for 500 epochs with the momentum β1 = 0.5,
β2 = 0.999 and the weight delay = 0.02. The learning rate is
initialed as 2× 10−4. We use the Charboinner loss function
to optimize the network. We perform our experiments on
four Nvidia RTX 3090 graphic cards based on the PyTorch
platform. The model takes two days to train.

4.3. Ablation Study

To prove the effectiveness of the proposed TSRFormer,
we conduct ablation studies. We adopt the training and test-
ing set of NTIRE 2023 shadow removal dataset for train-
ing and evaluation. We use the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) as metrics for
quantitative evaluation.
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Figure 5. The visual comparison of the proposed method and other existing methods in shadow removal on the WSRD dataset.

The ablation experiments consist of three experimental
settings:

• The TSRFormer is only with shadow removal network.
• The TSRFormer is only with content refinement net-

work.
• The TSRFormer with the proposed two-stage recovery

pipeline.

The quantitative and qualitative results are reported in
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Input SG-ShadowNet BMNet SpAFormer ShadowFormer Ground TruthTRSFormer

PSNR/SSIM 31.95/0.957

PSNR/SSIM

31.41/0.953 28.64/0.925 32.24/0.962 29.61/0.947

22.27/0.935 26.96/0.955 26.22/0.831 28.32/0.966 28.82/0.941

Figure 6. The visual comparison of the proposed method and other existing methods in shadow removal in ITDS [18] dataset.

(a) Input (b) Ground Truth

(c) w/o content refinement stage (d) w/o shadow removal stage

(e) TSRFormer

Figure 7. Ablation study of two-stage shadow removal strategy.
We compare the result of each proposed stage qualitatively.

Table 1 and Figure 7. The PSNR and SSIM scores of the
model without using shadow removal have limited perfor-
mance in both PSNR and SSIM since the content refine-
ment network cannot effectively generate correct shadow
removal results without appropriate shadow removal re-
sults. Also, the model’s performance without content re-
finement is worse than the proposed two-stage pipeline
since the residual shadow and the missing information are
not recovered by this local reconstruction stage.

4.4. Results of Challenge

We list the results of the proposed TSRFormer compared
with other competing entries in the image shadow removal
challenge of NTIRE 2023 workshop [65] in Table 2. The
PSNR and SSIM values are averaged across the entire test
set of each submission to evaluate the performance of all
submissions. As shown in Table 2, our results obtained
competitive performance in terms of PSNR and SSIM.

4.5. Comparison with Existing Methods

We adopt several existing shadow removal methods to
compare the performance of the proposed method, includ-
ing BMNet [31], SG-ShadowNet [32], SpAFormer [1]. For
fair evaluation, we retrain their models based on their offi-
cial implementation on the websites with the same training
dataset adopted in this work and evaluate the performance
on the same test dataset. The results are reported in Ta-
ble 3. The proposed TSRFormer achieves the best perfor-
mance compared to other baselines. Also, we show the vi-
sual comparison in Figure 5 and Figure 6.

4.6. Limitations and Discussion

The proposed method consists of two recovery stages.
Although this method achieves competitive performance in
this competition, it may fail under certain conditions. For
example, if the output of the shadow removal network is not
pleasant, the result of content refinement cannot generate a
decent result. We show an example in Figure 8. We think
this limitation can be addressed by improving the robustness
of the shadow removal to ensure the quality of the recovered
result in the first stage.

For future works, we think the shadow mask generation
of the content refinement can be improved since we com-
pute the shadow mask by using the difference between the
recovered result by the shadow removal network and the in-
put image directly. It is not robust since the quality of the
mask depends on the reconstructed image of the shadow
removal network. We think the shadow mask generation
can be replaced with an independent network and optimized
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Table 1. Ablations. The comparison of using different shadow removal stages in NTIRE 2023 shadow removal dataset.

Module Metrics Computational Complexity
PSNR SSIM FLOPs Parameters Inference Time

Only with Shadow Removal Stage (Stage 1) 23.116 0.779 88.044G 0.530M 0.252 sec/image
Only with Content Refinement Stage (Stage 2) 14.821 0.661 100.960 G 11.352M 1.810 sec/image

Two-stage Pipeline (Ours) 24.650 0.822 189.004 11.882M 2.062 sec/image

Table 2. The results of the challenge of four methods over NTIRE 2023 Image Shadow Removal validation and testing dataset. Our
proposed method can achieve the competitive result in terms of SSIM.

User Name Validation Testing
PSNR SSIM PSNR SSIM

HuanZheng 24.04 (1) 0.78 (1) 21.43 (7) 0.68 (7)
xyz123 23.94 (2) 0.76 (2) 22.20 (2) 0.69 (3)

cuishuhao 23.60 (3) 0.76 (4) 22.36 (1) 0.70 (1)
mrchang87 22.93 (6) 0.76 (3) 21.79 (3) 0.70 (2)

Table 3. Quantitative Evaluation with existing shadow removal
methods on NTIRE 2023 shadow removal dataset. The pro-
posed TSRFormer can achieve better performance compared to
other baselines.

Method Metrics
PSNR SSIM

BMNet [31] 20.362 0.713
SG-ShadowNet [32] 20.023 0.675

SpAFormer [1] 23.116 0.779
Ours 24.650 0.822

with the whole architecture to improve the effectiveness of
this method. Moreover, based on this improved model, we
will adopt more datasets to train and conduct more compre-
hensive evaluations on existing datasets such as ITDS [18].

5. Conclusion

In this paper, we propose an effective single-image
shadow removal solution called TSRFormer. This method
contains two stages, including the shadow removal net-
work and the content refinement network. The former
part aims to remove the shadow globally, and the latter
part focuses on suppressing the residual shadow and re-
fining the content information. These two networks are
both based on transformer architectures. Experimental re-
sults prove the effectiveness of the proposed method com-
pared to existing shadow removal approaches. Moreover,
in the NTIRE 2023 Image Shadow Removal Challenge, the
proposed TSRFormer achieves competitive performance in
terms of SSIM.

(a) Input (b) Ground Truth

(c) Result of SRN (d) Result of TSRFormer

Figure 8. The failure case of shadow removal for the proposed
TSRFormer. The unpleasant shadow removal result will be gen-
erated when the shadow removal stage fails.
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