Video Quality Assessment Based on Swin Transformer with Spatio-Temporal Feature Fusion and Data Augmentation

Wei Wu¹, Shuming Hu¹, Pengxiang Xiao¹, Sibin Deng¹, Yilin Li¹, Ying Chen¹, Kai Li¹
¹Department of Tao Technology, Alibaba Group
{guokui.ww, hushuming.hsm, xiaopengxiang.xpx, sibin.dsb}@alibaba-inc.com
{gustav.lyl, yingchen, kaishi.ik}@alibaba-inc.com

Abstract

While video enhancement has drawn significant interest and has been extensively studied by academia and industry, the corresponding research on video quality assessment (VQA) for enhanced video has not been widely addressed. Video enhancement methods normally change the relevant metrics like brightness, contrast, color, etc., leading to the fluctuation of perceptual quality and challenging the related VQA task. In this paper, we propose a novel approach for VQA task based on Swin Transformer with improved spatio-temporal feature fusion, which precisely mines the stage-wise feature concatenation and provides competitive assessment performance. In addition, we propose an efficient data augmentation strategy to improve data diversity and further enhance assessment accuracy. Experimental results demonstrate that the proposed approach achieves state-of-the-art performance on two benchmark VQA datasets, and ranks first in CVPR NTIRE 2023 Quality Assessment for Video Enhancement Challenge, which proves that the proposed approach is not only promising in VQA for enhanced video but also ubiquitous in general VQA tasks.

1. Introduction

The explosive growth of user-generated content (UGC), including live streaming and vlogs, has been witnessed by the world over the last decade. Unlike the pristine original version of the content provided by professional service providers, which rely on full-reference video quality assessment (FR-VQA) to achieve quality/bitrate tradeoff, UGC suffers from pre-existing distortions or compression artifacts [32], facing the assessment demands that FR-VQA are not coming close to meet.

Given this prevalence, understanding the perceptual subjective video quality of UGC is an imperative task for service providers. However, the biggest challenge in the quantitative assessment of UGC is its diversity including source video quality, ranging from 4K HDR to low-end shaky capturing, and processing, including crop, rescale, compression, etc. The combinations of these factors may significantly influence a viewer’s expectation of video quality and their watching experience, which triggers the evolution in VQA for UGC — no-reference video quality assessment (NR-VQA) [4].

Classical NR-VQA methods employ handcrafted features to evaluate video quality. The underlying assumption of related studies is the observation that the variation of video quality can be comprehended with statistical characteristics, including pixel values of images/video [5, 30], optical flow [25], discrete cosine transformation coefficients [21], etc. However, these features are biased on content-related metrics and thus are less sensitive to subtle quality changes, while shallow feature aggregation does not help improve assessment accuracy but leads to extravagant computational complexity.

With these limitations, more attention is paid to learning-based features for NR-VQA. Driven by the remarkable performance delivered by convolutional neural networks (CNN) on a wide range of computer vision tasks, including image classification [12], detection [27], segmentation [11], etc., features extracted from pre-trained CNN networks for image quality assessment (IQA) tasks are exploited for NR-VQA in the context of insufficient labeled data. Representative works include V-CORNAIA [43], DeepBVQA [1], VSFA [20], and RIRNet [3]. The feature extractors behind, however, are not trained for NR-VQA and struggle to preserve spatio-temporal features that are crucial to videos [39]. To tackle with this issue, SimpleVQA [35] employs an image recognition based network to extract spatial features, which are further fused with the temporal features extracted by an action recognition-based network.

Recently, the success of the attention mechanism in natural language processing (NLP) tasks inspires researchers to integrate Transformers in vision tasks or employ it as a competitive alternative to CNN. Vision Transformer (ViT),

*Corresponding Author.
as a pure Transformer-based architecture, has outperformed its convolutional counterparts in many vision tasks [2, 8, 47]. Naturally, preliminary interest and discussions about employing ViT in NR-VQA have evolved into a full-fledged implementation, as addressed in some pioneering work like TRIQ [46], MUSIQ [16], where spatial and scale embedding mechanisms are utilized to help the Transformer capture features across spaces and scales.

In this work, we propose an improved NR-VQA model on top of SimpleVQA [35], which is composed of two key components: the spatial feature extraction module and the spatio-temporal feature fusion module. In the spatial feature extraction module, we employ Swin Transformer V2 [23] as the backbone of the spatial feature extraction network, as Swin Transformer V2 inherits the advantages of both CNN and ViT, which is an upgraded version as classical Swin Transformer [24]. In the spatio-temporal feature fusion module, we introduce a 1 × 1 convolutional layer, which deepens the spatial features extracted from the intermediate stages of the spatial feature extraction module to mitigate the gap between shallow and deep features. The spatial features from different stages are flattened and fused with the temporal features (originally from the motion feature extraction module in [35]) as the final features for video quality prediction. In addition, data augmentation strategies are performed in both spatial and temporal domains. Specifically, the input frames are resized and randomly cropped with a fixed resolution, and then randomly extracted from each video segment with a fixed sampling frequency to maintain temporal correlation.

The contributions of this paper are summarized as follows:

• We employ Swin Transformer V2 [23] as the backbone network to extract spatial features because due to its strong modeling capabilities and representative performance inherited from both CNN and ViT.

• We propose an efficient spatio-temporal feature fusion module that exploits features from different stages for better concatenation.

• We introduce data augmentation strategies in both spatial and temporal domains to improve the diversity of training samples.

The rest of this paper is organized as follows. In Section 2, we briefly review the existing NR-VQA metrics. The proposed method is detailed in Section 3, and experiments are presented in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

2.1. Handcrafted Feature Based NR-VQA Metrics

Classical NR-VQA metrics exploit handcrafted features to evaluate video quality [37] [29] [36] [17]. Among these works, TLVQM [17] combines the spatial high-complexity and temporal low-complexity handcrafted features such as motion, jerkiness, blurriness, noise, etc. VIDEVAL [36] models diverse authentic distortions using different handcrafted features. However, video content also affects its quality, which cannot be well captured with these handcrafted features. Hence, some studies try to combine semantic features extracted by CNN with handcrafted features for NR-VQA task [37] [18]. CNN-TLVQM [18] combines the handcrafted features from TLVQM with spatial features extracted by a pre-trained CNN model. RAPIQUE [37] designs a model that can perceive video quality by statistical features and deep convolutional features.

2.2. Deep Learning Based NR-VQA Metrics

Deep learning based methods have recently drawn much attention for their superior performance. [22] proposes a video-based multi-task end-to-end optimized neural network (V-MEON) that can estimate video quality and classify the compression distortion. VSFA [20] first utilizes the semantic features extracted from a pre-trained CNN model and then uses a Gated Recurrent Unit (GRU) network to model the temporal memory effects. Further, the authors of VSFA propose MDVSFA, which is trained on multiple VQA datasets improving its performance. RIRNet [3] is proposed to fuse motion information extracted from different temporal frequencies. SIONR [41] is proposed to perceive video quality by considering the variations of semantic information, and the low-level features are combined to retain more detailed information about videos. Ying et al. [44] propose a local-to-global region-based method that combines the spatial and temporal features extracted by a 2D-CNN model and a 3D-CNN model, respectively. Wang et al. [38] propose a feature-rich VQA model for User Generated Content (UGC) videos. To achieve an accurate and reliable assessment of perceptual quality, it uses rich features that capture the quality information such as compression-based features, distortion-based features, and content-based features. Xu et al. [42] utilize the spatial features generated from a pre-trained IQA model and use the graph convolution to extract and enhance the features. After that, the motion features are extracted from the optical flow domain, and they finally used a bidirectional long short-term memory network to fuse the spatial and motion features.

Later, Transformer-based VQA methods have drawn more attention. LSCT [45] extracts features by a perceptual hierarchical network and then feeds the features into a long short-term convolutional Transformer to predict the
video quality.

3. Proposed Method

The framework of the proposed model is depicted in Fig. 1, comprising the modules for spatial feature extraction, temporal feature extraction, and spatio-temporal feature fusion and regression. Specifically, quality-aware features are extracted from two aspects including the spatial and temporal aspects. Then the obtained multi-dimensional features are fused in spatio-temporal manners and mapped to quality scores via the quality regression module.

3.1. Feature Extraction

Given a video whose number of frames and frame rate is N and r, we split the video into $M = \frac{N}{r}$ video segments for feature extraction, and each segment lasts for 1 second. For each segment S_i (i represents the index of the segment), one frame is randomly sampled from each segment for spatial feature extraction while the whole segment is employed for temporal feature extraction.

3.1.1 Spatial Feature Extraction

According to Li et al. [20], the impact of distortions on human tolerance can vary based on the semantic content involved. For instance, humans are more likely to tolerate blur distortions on objects that lack texture or depth, such as clear skies and smooth walls. Conversely, objects with intricate textures, such as rough rocks and complex plants, may be considered unacceptable with similar distortions. Furthermore, researchers suggest that semantic information can play a vital role in identifying the extent and presence of perceived distortions [7].

Visual perception is a hierarchical process, in which input visual information is processed from low-level features to high-level features [40]. We use deep semantic information as a video quality representation by utilizing the features extracted from the last two Transformer blocks of Swin Transformer V2 [23]. Instead of using the pretrained model to extract the spatial features, we train an end-to-end spatial feature extraction network to learn quality-aware feature representation in the spatial domain, which allows us to fully utilize the various types of video content and distortion present in current VQA databases. Frame-level spatial feature is expressed as

$$SF^i_k = \text{GAP}\left(L_1 \left(F^i_k \right) \right) \oplus \text{GAP}\left(\text{Conv1} \left(L_2 \left(F^i_k \right) \right) \right)$$

(1)

where SF^i_k indicates the extracted spatial features from the k-th sampled frame F^i_k of segment S_i, \oplus stands for the concatenation operation, GAP (·) represents the global average pooling operation, $L_j \left(F^i_k \right)$ stands for the feature maps obtained from j-th last transformer block of Swin Transformer V2, and Conv1 denotes 1×1 convolution operation.

3.1.2 Temporal Feature Extraction

Motion distortions caused by an unstable shooting environment often affect the quality of UGC videos. However, these distortions, including video shaking and motion blur, are not easily detected based solely on spatial features. To address this issue and improve the model’s comprehension of temporal information, we utilize a pretrained 3D-CNN backbone called SlowFast [9] to capture segment-level temporal distortions:

$$TF^i = \Phi \left(S_i \right)$$

(2)

where TF^i indicates the extracted temporal features from the segment S_i, and $\Phi (\cdot)$ denotes the temporal feature extraction operation.

In summary, for the i-th segment S_i of the video, we can extract spatial features $SF^i \in \mathbb{R}^{M \times N_s}$ and temporal features $TF^i \in \mathbb{R}^{M \times N_t}$ at the segment-level. The number of channels for the spatial and temporal features are represented by N_s and N_t respectively.

3.2. Spatio-temporal Feature Fusion for Quality Prediction

Studies in neuroscience have revealed the presence of a hierarchical mechanism in visual perception [13, 28]. Based on this characteristic, we propose to integrate features from different levels. Rather than simply merging features from different layers, we introduce a 1×1 convolutional layer as shown in Fig. 2 to deepen the spatial features extracted from the intermediate stages of the pretrained network. This mitigates the gap between shallow and deep features. Depending only on spatial quality may not be enough as it overlooks the important temporal factors that play a crucial role in VQA. Several researchers have emphasized the importance of considering quality across the temporal axis [15, 31]. Therefore, it is logical for us to consider the contribution of both spatial and temporal factors in determining VQA.

After the concatenation of spatial and temporal features, the dimension of fused features is gradually reduced to 1 through FC1 and FC2, and the output dimension of FC1 is 64. After FC1, Rectified Linear Unit (ReLU) activation is employed, followed using the sigmoid function after FC2. For the segment S_i, we can obtain its segment-level quality score q_i via the quality regression module. Then, temporal average pooling is applied to obtain the video-level quality Q.

1848
Figure 1. The framework of the proposed method, where the spatial and temporal features are extracted by Swin Transformer V2 [23] and pretrained SlowFast [9] respectively. Finally, spatial and temporal features are spatio-temporally fused and regressed into quality values.

Figure 2. Spatio-temporal Feature Fusion and Regression Module. After a 1×1 convolution operation, the spatial features from the last two transformer blocks are combined. The resulting features are concatenated with temporal features and fed into fully connected layers to form a score.

3.3. Data Augmentation

We leverage various data augmentation techniques, both spatially and temporally, to expand the number of videos in the training dataset and enhance the robustness of our model.

3.3.1 Training Data Augmentation

Data augmentation techniques are used in the spatial feature extraction. In spatial domain, each input frame is resized to 320×320 and randomly cropped a patch with a resolution of 256×256. In the temporal domain, the input video is divided into M segments. Then we randomly sample frame F_i^k from segment S_i, and constrain the position of sampled frames to align across segments as shown in Fig. 3. These tricks bring significantly improvements to our model per-
3.3.2 Testing Data Augmentation

In the testing stage, the input frames are resized to 320 × 320, and the “torchvision.transforms.TenCrop” function is used to crop 10 image patches with a resolution 256 × 256, which are located at the four corners and the center, respectively, as well as the horizontally flipped version of the previous crops. Moreover, we evenly sample 4 frames for each video segment in temporal domain.

4. Experiments

The comparison experiments are implemented to demonstrate the effectiveness of our VQA model. Two public datasets are used to train and test for evaluating the proposed model. Ablation studies are conducted to analyze the effectiveness of the proposed model. Through numerical and experimental verification, we demonstrate the effectiveness, performance, and advantages of our proposed method in this section.

4.1. Datasets and Evaluation Metrics

To evaluate the proposed method, we utilize two relevant NR-VQA databases: KoNViD-1k [14] and LIVE-VQC [34]. KoNViD-1k consists of 1200 public-domain video sequences while LIVE-VQC includes 585 videos.

Another video dataset is VDPVE [10], which is released by NTIRE 2023 Quality Assessment of Video Enhancement Challenge. Distortions of VDPVE videos are quite different from the aforementioned ones, which can be induced by various video enhancement algorithms.

Two commonly used evaluation metrics are used for performance comparison of different metrics: Spearman’s Rank-order Correlation Coefficient (SROCC) and Pearson’s Linear Correlation Coefficient (PLCC). SROCC represents the monotonic relationship between the predicted scores and the ground truths, which is computed as:

\[
SROCC = 1 - \frac{6 \sum_{i=1}^{N} d_i^2}{N(N^2 - 1)}
\]

where \(d_i\) is the distance between rank orders in predictions and the ground truths of the same video, \(N\) is number of videos. Slightly different from SROCC, PLCC measures prediction accuracy between predictions and ground truths.

Before calculating the PLCC value, a four-parameter logistic regression function [33] is utilized to map the predicted scores to the scale of MOSs. The value range for SROCC and PLCC is [0, 1] and better metrics should yield higher SROCC and PLCC values.

\[
PLCC = \frac{\sum_{i=1}^{N} (s_i - \bar{s})(p_i - \bar{p})}{\sqrt{\sum_{i=1}^{N} (s_i - \bar{s})^2} \sqrt{\sum_{i=1}^{N} (p_i - \bar{p})^2}}
\]

where \(s_i\) and \(p_i\) are the subjective MOS and predictive score of each video respectively.

4.2. Implementation details

In the training stage, we used a batch size of 16 and employed the MSE loss as loss function. We employed the Adam optimizer with \(\beta_1 = 0.9\) and \(\beta_2 = 0.999\), a weight decay of \(10^{-7}\). The learning rate is initialized as \(10^{-5}\) and decayed by \(\gamma = 0.95\) every 2 epochs. Language and other implementation details (including platform, memory, parallelization requirements) are shown as:

- Platform: PyTorch
- Language: Python 3.9
- Linux version 4.19.91-011.ali4000.alios7.x86_64
- CUDA Version 11.6
- Dependencies: PyTorch > = 1.13.1, NVIDIA GPU + CUDA
- GPU: 32G V100

4.3. Experimental Results

In order to conduct a comprehensive assessment of the proposed method’s performance, we compare it with several popularly quality assessment models, namely BRISQUE [26], TLVQM [17], VIDEVAL [36], RAPIQUE [37], VSFA [20], PVQ [44], BVQA [19], and SimpleVQA [35]. It should be noted that BRISQUE [26] is categorized as a NR-IQA method, and we obtain the video quality features by taking the average of the features extracted from each frame using BRISQUE [26].

The experimental performances on the two UGC VQA databases are shown in Table1, from which we can draw several conclusions. Firstly, our proposed method achieves first place and outperforms the second place (SimpleVQA [35]) by approximately 0.0361, 0.0267 in terms of SROCC values on the KoNViD-1k [14] and LIVE-VQC [34] databases, respectively, thus demonstrating its effectiveness in predicting the quality scores of UGC videos. Secondly, except for the method VSFA [20], most of the deep learning-based methods (RAPIQUE [37], PVQ [44], BVQA [19], SimpleVQA [35] and the proposed method) significantly outperform handcraft-based methods (BRISQUE [26], TLVQM [17], VIDEVAL [36]). This can be attributed to the fact that handcraft-based methods rely on prior experience of video distortions, which is based on
Table 1. Experimental performance comparison on KoNViD-1k [14] and LIVE-VQC [34]. ‘Hand’ denotes using handcrafted-based features while ‘Deep’ denotes using deep learning-based features.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hand</th>
<th>Deep</th>
<th>KoNViD-1k</th>
<th>LIVE-VQC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SROCC</td>
<td>PLCC</td>
</tr>
<tr>
<td>BRISQUE (TIP, 2012)</td>
<td>✓</td>
<td></td>
<td>0.6567</td>
<td>0.6576</td>
</tr>
<tr>
<td>TLVQM (TIP, 2019)</td>
<td>✓</td>
<td></td>
<td>0.7729</td>
<td>0.7688</td>
</tr>
<tr>
<td>VIDEVAL (TIP, 2021)</td>
<td>✓</td>
<td></td>
<td>0.7832</td>
<td>0.7803</td>
</tr>
<tr>
<td>RAPIQUE (OJSP, 2021)</td>
<td>✓</td>
<td>✓</td>
<td>0.8031</td>
<td>0.8175</td>
</tr>
<tr>
<td>VSFA (ACM MM, 2019)</td>
<td>✓</td>
<td></td>
<td>0.7728</td>
<td>0.7754</td>
</tr>
<tr>
<td>PVQ (CVPR, 2021)</td>
<td>✓</td>
<td></td>
<td>0.791</td>
<td>0.795</td>
</tr>
<tr>
<td>BVQA (TCSVT, 2022)</td>
<td>✓</td>
<td></td>
<td>0.8362</td>
<td>0.8335</td>
</tr>
<tr>
<td>SimpleVQA (ACM MM, 2022)</td>
<td>✓</td>
<td></td>
<td>0.850</td>
<td>0.860</td>
</tr>
<tr>
<td>Ours</td>
<td>✓</td>
<td></td>
<td>0.8861</td>
<td>0.8931</td>
</tr>
</tbody>
</table>

pristine videos, whereas the characteristics of UGC videos are far more complex and do not fit the regularities of artificial distortions.

4.4. Ablation Studies

In this section, we analyze the effectiveness of the proposed network by conducting ablation studies on the KoNViD-1k [14] and LIVE-VQC [34]. With different configuration and implementation strategies, we evaluate four major components: spatial feature extraction module, spatio-temporal fusion module, data augmentation and pre-training strategy. Table 2 shows the results of ablation studies. Model 1 (M1) only uses temporal features extracted by the pretrained SlowFast [9] for quality score regression. Model 2 (M2) only uses spatial features extracted by the transformer-based backbone Swin Transformer V2 [23] for quality score regression. Model 3 (M3) uses a transformer-based backbone Swin Transformer V2 [23] to replace the CNN-based backbone ResNet50 [12] of the SimpleVQA [35] model, which is equivalent to using both spatial and temporal features. In contrast to M3, Model 4 (M4) uses a 1×1 convolutional layer, which deepens the spatial features extracted from the intermediate stages of the pre-trained network, to mitigate the gap between shallow and deep features. Not only spatial data augmentation, Model 5 (M5) also considers temporal data augmentation. Compared to M5, Model 6 (M6) use the model pre-trained on LSVQ [44].

Effectiveness of Spatial Features (SF). Spatial feature is directly conscious of quality from the video frames. A comparison between M1 and M2 clearly indicates the critical role played by spatial features in the process of perceiving video quality. When comparing M1 with M3, it can be observed that fusing spatial and temporal features enables the model to perceive video quality more effectively.

Effectiveness of Temporal Features (TF). Comparing M2 with M3, in terms of the values of SROCC, M3 has achieved higher results on both datasets. This demonstrates that temporal features are capable of quantifying temporal distortions that are manifested in the motion of video frames and are often consistent within local regions of the frames. These distortions cannot be modeled by spatial features [35], which demonstrates that the introduction of temporal features effectively enhances the performance of the model.

Effectiveness of Swin Transformer V2 (Swin). We use Swin Transformer V2 [23] with swinv2-tiny-patch4-window8-256 weights as the backbone of the spatial feature extraction module. The weights of Swin Transformer V2 are initialized by the ImageNet-1K dataset [6]. Comparing the performance of M3 in Table 2 and the performance of SimpleVQA in Table 1, the SROCC value increases by 0.0147 on the KoNViD-1k database, but decreases by 0.0525 on the LIVE-VQC database. These results show that the CNN-based backbone network is easier to train on the small dataset LIVE-VQC (585) than the transformer-based backbone network. But on the larger dataset KoNViD-1k (1200), the transformer-based backbone network has more advantages.

Effectiveness of Convolution (Conv). In the spatio-temporal feature fusion module, we use a 1×1 convolutional layer, which deepens the spatial features extracted from the intermediate stages of the pre-trained network, to mitigate the gap between shallow and deep features. Comparing M4 with M5, in terms of the values of SROCC, M4 has achieved higher results on both KoNViD-1k and LIVE-VQC databases. These results suggest that 1×1 convolution operation before feature concatenation is effective.

Effectiveness of Data Augmentation (DA). In addition to the commonly used randomly crop to augment video data, we propose a new data augmentation method in the temporal domain. Our experimental results demonstrate the effectiveness of this temporal data enhancement, particularly for the small-scale LIVE-VQC database, where the
Table 2. Ablation studies on KoNViD-1k [14] and LIVE-VQC [34]

<table>
<thead>
<tr>
<th>Model</th>
<th>TF</th>
<th>SF(Swin)</th>
<th>Conv</th>
<th>DA</th>
<th>Pre</th>
<th>KoNViD-1k SROCC</th>
<th>KoNViD-1k PLCC</th>
<th>LIVE-VQC SROCC</th>
<th>LIVE-VQC PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6382</td>
<td>0.6752</td>
<td>0.6133</td>
<td>0.6473</td>
</tr>
<tr>
<td>M2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8365</td>
<td>0.8500</td>
<td>0.7859</td>
<td>0.8070</td>
</tr>
<tr>
<td>M3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>0.8647</td>
<td>0.8595</td>
<td>0.7925</td>
<td>0.8118</td>
</tr>
<tr>
<td>M4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>0.8679</td>
<td>0.8673</td>
<td>0.8025</td>
<td>0.8204</td>
</tr>
<tr>
<td>M5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.8733</td>
<td>0.8810</td>
<td>0.8259</td>
<td>0.8220</td>
</tr>
<tr>
<td>M6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.8861</td>
<td>0.8931</td>
<td>0.8717</td>
<td>0.8830</td>
</tr>
</tbody>
</table>

Table 3. Quantitative results for the NTIRE 2023 Quality Assessment of Video Enhancement Challenge. This table only shows part of the participants and the best scores are bolded.

<table>
<thead>
<tr>
<th>Team</th>
<th>Main Score</th>
<th>SROCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-VQA(ours)</td>
<td>0.8576</td>
<td>0.8493</td>
<td>0.8659</td>
</tr>
<tr>
<td>2nd</td>
<td>0.8396</td>
<td>0.8408</td>
<td>0.8383</td>
</tr>
<tr>
<td>3rd</td>
<td>0.8289</td>
<td>0.8261</td>
<td>0.8317</td>
</tr>
<tr>
<td>4th</td>
<td>0.8199</td>
<td>0.8163</td>
<td>0.8236</td>
</tr>
<tr>
<td>5th</td>
<td>0.7994</td>
<td>0.7962</td>
<td>0.8026</td>
</tr>
<tr>
<td>6th</td>
<td>0.7859</td>
<td>0.7896</td>
<td>0.7822</td>
</tr>
<tr>
<td>7th</td>
<td>0.7850</td>
<td>0.7879</td>
<td>0.7821</td>
</tr>
<tr>
<td>8th</td>
<td>0.7727</td>
<td>0.7756</td>
<td>0.7698</td>
</tr>
</tbody>
</table>

SROCC performance improvement reaches 0.024.

Effectiveness of Pre-training (Pre). By pretraining with large VQA dataset LSVQ [44], we can learn quality-related features in an end-to-end manner, transfer them to specific VQA scenarios with small datasets, and improve their performance. The proposed method (M6) achieves the best performance with these video-quality-related features, which steadily improves model performance. These results suggest that pretraining strategy can serve as a solid backbone to enhance downstream tasks related to video quality.

4.5. NTIRE 2023 Quality Assessment of Video Enhancement Challenge

This work is proposed to participate in the NTIRE 2023 Quality Assessment of Video Enhancement Challenge, the objective of which is to propose an algorithm to estimate the quality of enhanced videos consistent with human perception. The final results of the challenge in the testing phase are shown in Table 3, our team (TB-VQA) won the first place in terms of PLCC, SROCC and main score.

5. Conclusion

In this paper, we propose a novel network based on Swin Transformer V2 with spatio-temporal feature fusion and data augmentation, for the quality assessment of video enhancement task. Specifically, we replace the CNN based backbone ResNet50 with a transformer-based backbone Swin Transformer V2. In addition, we propose a spatio-temporal feature fusion network that deepens the spatial feature extracted by the intermediate layer of the backbone network for better feature concatenation. Furthermore, a data augmentation strategy is applied in both spatial and temporal domain to improve data diversity. Experiments show that the proposed method outperforms the state-of-the-art methods on two standard VQA datasets. Additionally, we ranked first place on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge.

References

[14] Vlad Hosu, Franz Hahn, Mohsen Jenadeleh, Hanhe Lin, Hui Men, Tamás Szirányi, Shujun Li, and Dietmar Saupe. The konstanz natural video database (KonViD-1k). In International Conference on Quality of Multimedia Experience, pages 1–6, 2017. 5, 6, 7

