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Figure 1. NTIRE 2023 Real-Time 4K SR. We introduce a new benchmark and a diverse test set for 4K Super-Resolution.

Abstract

This paper introduces a novel benchmark for efficient up-
scaling as part of the NTIRE 2023 Real-Time Image Super-
Resolution (RTSR) Challenge, which aimed to upscale im-
ages from 720p and 1080p resolution to native 4K (×2 and
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×3 factors) in real-time on commercial GPUs. For this, we
use a new test set containing diverse 4K images ranging
from digital art to gaming and photography. We assessed
the methods devised for 4K SR by measuring their runtime,
parameters, and FLOPs, while ensuring a minimum PSNR
fidelity over Bicubic interpolation. Out of the 170 partic-
ipants, 25 teams contributed to this report, making it the
most comprehensive benchmark to date and showcasing the
latest advancements in real-time SR.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Single image super-resolution (SR) refers to the process
of generating a high-resolution (HR) image from a single
degraded low-resolution (LR) image. This ill-posed prob-
lem was initially solved using interpolation methods [28,
77–79]. However, with the emergence of deep learning, SR
is now commonly approached through the use of deep neu-
ral networks [17,24,49,56,57,84,88,99]. Image SR assumes
that the LR image is obtained through two major degrada-
tion processes: blurring and down-sampling. This can be
expressed as:

y = (x ∗ k) ↓s, (1)

where ∗ represents the convolution operation between the
LR image and the blur kernel, and ↓s is the down-sampling
operation with respective down-sampling factor ×s. Most
SR methods are built around the Bicubic model [77,78] with
various down-scaling factors (e.g. ×2, ×3, ×4, ×8).

The advancements in hardware technologies have led to
the training of larger and deeper neural networks for image
super-resolution, resulting in significant performance im-
provements. However, these breakthroughs often come at
the cost of introducing more complex approaches [3,20,56,
84,99]. Since the seminal work by Shi et al. [70], the design
of efficient deep neural networks for single image super-
resolution [40, 47, 72, 81, 101] has become pivotal. Vari-
ous workshops and challenges, such as [42, 53, 94], have
emerged as popular forums for sharing ideas and advanc-
ing the state-of-the-art in efficient and real-time SR. Pub-
licly available large-scale datasets have been instrumental in
driving recent advances in image and video SR [1,32,52,66,
76]. However, with the exception of DIV8K [32] and [95],
most existing datasets have images of limited resolution e.g.
2K. In addition, the practical challenge of performing real-
time SR of images and videos to 4K resolution has received
relatively little attention so far.

As the amount of digital content continues to surge, there
is a mounting demand for effective SR techniques for ren-
dered content [86, 90]. However, rendering presents unique
challenges as it often exhibits significant aliasing, resulting
in jagged lines and other sampling artifacts. Consequently,
up-scaling rendered content requires a novel approach that
involves both anti-aliasing and interpolation, which is dis-
tinct from the well-established research on denoising and
deblurring in existing SR research [86].

In conjunction with the 2023 New Trends in Image
Restoration and Enhancement (NTIRE) workshop, we in-
troduce the real-time 4K super-resolution challenge. The
challenge entails super-resolving a LR image from either
720p or 1080p to 4K resolution using a network that reduces
one or several aspects, such as runtime, parameters, FLOPs,
and memory consumption. The goal is to at least outper-
form bicubic interpolation on a new and diverse benchmark,

while maintaining efficiency. The challenge seeks to iden-
tify innovative and advanced solutions for real-time super-
resolution, benchmark their efficiency, and identify general
trends for designing efficient SR networks.

2. NTIRE 2023 Real-Time Super-Resolution
Challenge

The aim of this challenge is to create real-time super-
resolution (SR) methods, with a specific focus on up-scaling
to 4K resolution. We believe that this area remains largely
unexplored within the computer vision community. The
challenge has three main objectives: Firstly, to advance re-
search on real-time SR methods. Secondly, to introduce a
novel and competitive benchmark for 4K SR, utilizing var-
ious image types such as digital art and natural imagery.
Thirdly, to facilitate interactions between academic and in-
dustry participants and encourage potential collaborations.

2.1. 4K SR Benchmark Dataset

The 4K RTSR benchmark provides a unique test set com-
prising ultra-high resolution images from various sources,
setting it apart from traditional super-resolution bench-
marks. Specifically, the benchmark addresses the increas-
ing demand for upscaling computer-generated content e.g.
gaming and rendered content, in addition to photorealistic
imagery, thereby posing a different challenge for existing
SR approaches. The test set includes diverse content such
as rendered gaming images, digital art, as well as high-
resolution photorealistic images of animals, city scenes,
and landscapes, totaling 110 test samples. We created this
benchmark with the intention of advancing the development
of SR methods, as well as replacing outdated test sets such
as Set5 [7], Set14 [93], and Urban100 [39].

All the images in the benchmark testset are at least 4K
resolution i.e. 3840×2160 (some are bigger, even 8K). The
images were filtered manually to ensure there are not un-
pleasant effects such as noise or strong defocus.

The distribution of the 4K RTSR benchmark testset is:
14 real-world captures using a 60MP DSLR camera, 21 ren-
dered images using Unreal Engine [38], 75 diverse images
e.g. animals, paintings, digital art, nature, buildings, etc.

2.2. Baseline Model

Previous lightweight SR methods [51] such as
IMDN [40] or RFDN [60] are not fast enough for this task.
For this reason, we use RT4KSR [92] as the baseline model
for this challenge. The primary objective is to enhance
its efficiency in terms of runtime, parameter count and
FLOPs. Drawing inspiration from the research presented in
[42,53], the baseline design utilizes a shallow convolutional
architecture to achieve rapid and precise reconstruction
performance. The proposed baseline stacks five simple
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3 × 3 convolutions with a GeLU activation layer and adds
a global residual connection with LayerNorm [6] before
the standard depth2scale up-sampling operation. Besides,
the authors in [92] develop a sophisticated approach that
improves model efficiency by downscaling feature maps.
To avoid losing important high frequency details that are
already scarce, the authors propose extracting HF details
from the LR input prior to its downscaling. Additionally,
the authors provide a detailed roadmap of their method’s
development, resulting in a competitive shallow CNN
design that can be scaled up and achieves performance
comparable to previous state-of-the-art efficient SR models.

2.3. Tracks and Competition

The objective of this challenge is to develop a high-
performance SR technique that can upscale a broad range
of images to 4K resolution in real-time, while ensuring a
PSNR above a traditional Bicubic interpolation.

Track 1: 1080p to 4K. The first challenge track addresses
X2 up-scaling from 1080p to 4K resolution.

Track 2: 720p to 4K. The second leg of this NTIRE chal-
lenge addresses X3 up-scaling from 720p to 4K resolution.

Challenge Phases. Development and Validation Phase.
The participants were provided with access to a validation
set comprising of 100 images from the DIV2K validation
split, along with an additional collection of 50 images that
included a variety of content, from videogames to realistic
high-resolution photography. The baseline model, scoring
function, and evaluation scripts were made available to the
participants through GitHub (https://github.com/
eduardzamfir/NTIRE23-RTSR). This allowed the
participants to benchmark the performance of their models
on their systems. During the development phase, the objec-
tive was aimed at up-scaling 2K imagery since DIV2K did
not include any 4K imagery. Testing Phase. During the final
test phase, the participating teams received a 4K benchmark
comprising 110 diverse images. However, they did not have
access to the HR ground-truth. Once the participants gener-
ated their super-resolved results, they submitted their code,
factsheets and resulting images to the organizers via email.
The organizers then validated and executed the submitted
code to obtain the final results, which were later conveyed
to the participants upon completion of the challenge.

Evaluation Protocol. The quantitative evaluation metrics
for this challenge comprise of testing PSNR, runtime, num-
ber of parameters, number of FLOPs and maximum GPU
memory consumed during inference. The PSNR is calcu-
lated on 110 RGB images sourced from our 4K benchmark

test set. The corresponding degraded images are obtained
through bicubic down-scaling to their respective resolutions
(1080p for X2 and 720p for X3 up-scaling). The average
runtime is determined by using mixed-precision and repeat-
edly evaluating randomly initialized tensors of correspond-
ing sizes to overcome any bottlenecks that may arise due to
data loading. The FLOPs are evaluated on an input image
of size 1920× 1080 and 1280× 720, respectively.

S =
22×(PSNRM−PSNRB)

C × T 0.5
M

(2)

Similar to [42], we determine the final score S of each
participant in the challenge by utilizing Eq. (2), in which
PSNRM and TM represent the PSNR result and runtime of
the individual submission. Additionally, the scoring func-
tion is designed to prioritize faster runtime over restoration
accuracy. However, in cases where two methods have simi-
lar runtimes, the PSNR value will be the deciding factor.

Related NTIRE 2023 Challenges. The NTIRE 2023
Real-Time Image Super-Resolution (RTSR) Challenge is
part of the NTIRE 2023 Workshop series of challenges
on: night photography rendering [71], HR depth from
images of specular and transparent surfaces [91], im-
age denoising [55], video colorization [44], shadow re-
moval [80], quality assessment of video enhancement [62],
stereo super-resolution [82], light field image super-
resolution [85], image super-resolution (×4) [100], 360°
omnidirectional image and video super-resolution [9], lens-
to-lens bokeh effect transformation [18], real-time 4K
super-resolution [19], HR nonhomogenous dehazing [4], ef-
ficient super-resolution [54].

2.4. Architectures and Main Ideas

Here we summarize the core ideas behind the most com-
petitive solutions. Each proposed solution will be covered
in the following Sec. 3 and Tab. 2.

1. Re-parameterization allows to train the network us-
ing complex blocks [22], while during inference the
so-called RepBlocks can be reduced to a simple 3× 3
convolution.

2. Pixel shuffle and unshuffle (also known as depth-to-
space and space-to-depth respectively) [70] to effi-
ciently transform the features maps and perform both
spatial upsampling and downsampling.

3. Multi-stage Training. Since the neural networks are
extremely constrained and shallow, this technique al-
lows to maximize learning by alternating different
learning rates and loss functions.

https://cvlai.net/ntire/2023/
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Table 1. Results of the NTIRE23 Real-Time SR challenge. The runtimes are computed using a Nvidia RTX3090 GPU. The teams are
ordered by their ranking according to their score. For better comparison we color-code the runtime using < 24 FPS , 30 > x > 24 FPS ,

60 > x > 30 FPS , 120 > x > 60 FPS and > 120 FPS , respectively.

Team Score # Params (M) FLOPs (G) PSNR (dB, ↑) SSIM (↑) Runtime (ms, ↓)
RGB Y RGB

Track 1: Upscaling from 1080p to 4K resolution.

Bicubic - - - 33.92 36.66 0.8829 0.46
Noah TerminalVision 24.13 2.3523 9.062 35.02 37.74 0.8957 3.190
ALONG 23.81 0.0668 15.3281 34.63 37.38 0.8906 1.910
RTVSR 23.13 0.0266 13.7687 34.71 37.50 0.8910 2.240
Team OV 19.06 0.0042 8.734 34.62 37.45 0.8899 2.910
DFCDN Team 15.17 0.0064 6.0881 34.63 37.46 0.8916 4.670
DoYouChargeQQCoin 15.07 0.0008 1.6921 34.14 36.97 0.8855 2.380
NJUST-RTSR 14.96 0.0114 23.5893 34.74 37.64 0.8901 5.560
Multimedia 14.09 0.0100 20.4125 34.85 37.61 0.8926 7.300
PixelBE 13.12 0.0137 14.7226 34.70 37.52 0.8908 6.840
z6 12.87 0.0414 85.7309 35.02 37.76 0.8948 11.19
AGSR 12.77 0.0068 14.0673 34.31 37.00 0.8888 4.220
Antins cv 11.25 0.0111 22.9174 34.71 37.56 0.8921 9.470
ECNU SR 10.37 0.1623 83.2094 35.30 37.95 0.8971 25.23
R.I.P. ShopeeVideo 9.68 0.3987 272.7942 35.32 38.01 0.8971 29.73
dh isp 7.63 0.0113 23.4234 33.99 36.89 0.8809 7.600
P.AI.R 6.27 0.0212 38.486 34.65 37.47 0.8905 28.31
NTU BL6 6.07 0.2223 409.8416 35.26 38.04 0.8977 69.37
diSRupt 5.54 0.0500 207.0 34.07 36.86 0.8830 16.00
Touch Fish 5.03 0.0641 132.5777 34.28 37.14 0.8862 26.31
SEU CNII 4.84 0.0299 58.5454 34.24 37.10 0.8858 26.89
KCML2 3.99 0.0392 57.2567 34.24 37.09 0.8851 39.17
NPU SR 3.45 0.2001 0.165 (*) 34.49 37.42 0.8895 74.00
YNOT 2.25 0.4734 422.6991 34.03 36.99 0.8844 92.79
Our Baseline [92] 9.27 0.0445 171.99 34.22 37.01 0.8854 7.090

Track 2: Upscaling from 720p to 4K resolution.

Bicubic - - - 31.30 33.82 0.8245 0.46
Aselsan Research 31.26 0.0504 11.6343 32.06 34.56 0.8344 1.170
Team OV 29.63 0.0058 5.3748 32.17 34.72 0.8376 1.510
ALONG 28.57 0.2404 13.8019 32.18 34.66 0.8367 1.660
RTVSR 26.89 0.0532 12.2315 32.22 34.77 0.8372 1.960
Noah TerminalVision 26.68 17.797 16.1252 32.65 35.10 0.8455 3.640
NJUST-RTSR 23.51 0.0135 12.4748 32.25 34.90 0.8384 2.680
Antins cv 23.44 0.0127 11.6785 32.63 35.21 0.8457 4.600
DFCDN Team 22.64 0.0075 3.7011 32.07 34.63 0.8371 2.250
Multimedia 21.55 0.0125 11.4361 32.33 34.83 0.8398 3.560
z6 20.90 0.0457 41.9365 32.59 35.05 0.8446 5.470
R.I.P. ShopeeVideo 15.67 0.4073 129.2038 32.84 35.30 0.8469 13.79
ECNU SR 15.39 0.1662 37.8667 32.64 35.17 0.8458 10.75
Touch Fish 11.55 0.1465 134.7748 32.67 35.31 0.8468 19.86
P.AI.R 8.66 0.1280 104.362 32.55 35.04 0.8441 30.03
SEU CNII 6.68 0.0629 55.0807 31.85 34.52 0.8326 19.05
diSRupt 6.34 0.0649 120.0 31.64 34.25 0.8292 16.00
Our Baseline [92] 14.01 0.0575 219.77 31.74 34.37 0.8299 3.740
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3. Methods and Teams
3.1. AsConvSR

The winning team in Track 1, Noah TerminalVision,
proposes a fast and lightweight super-resolution network
(AsConvSR) with assembled convolutions [34]. The
key points and contributions of the proposed network
(see Fig. 2a) are as follows: (i) Pixel unshuffled [41] is used
to reduce the resolution of the image and increase the chan-
nel dimension. Such design can reduce the computational
cost of the network while keep the information volume un-
changed. (ii) They remove all residual connections and keep
a global skip connection, which repeats each pixel value 4×
(or 9× for ×3 SR) [26]. (iii) The authors propose an as-
sembled convolution structure Fig. 2b. Different from the
dynamic convolution [14] which generates the whole con-
volution kernel in a linear combination of the basis, assem-
bled convolution generate the optimal kernel coefficient for
each output channel, which is more flexible and outperform
the dynamic convolution in this task.

Network architecture. Given an input LR image, the res-
olution would be converted to channel dimension by pixel
unshuffle layer. By using a 3x3 convolution, the channel of
feature map would be converted to the target size (32 for
×2, 64 for ×3) and then feed into the assembled block. The
assembled block contains a control module and three as-
sembled convolutions. As shown in the Fig. 2b, the control
module is mainly responsible for generating coefficients for
the assembled convolutions. Base on these coefficients, a
3x3 convolution is generated to perform a classical convo-
lution on the feature maps. Therefore, the major computa-
tional cost of the assembled convolution is still the 3x3 con-
volution itself, and runtime of a assembled convolution is
only a little higher than the classical convolution. After the
assembled block, a 3x3 convolution layer is used to convert
the channels size to 48 (108 for ×3 SR) so that the feature
map can be restored to target resolution after the pixel shuf-
fle layer. It should be noted that a low resolution images
repeated in the channel dimension can also be restored in
to the high resolution with a pixel shuffle layer, we divide
the final pixel shuffle into two steps in order to import the
global skip connection to the network.

Assembled block. As shown in the Fig. 2b, given the in-
put features F ∈ RB,C,H,W , the control module converts
the features F into coefficients coeff ∈ RB,Co,E , B is the
batchsize, Co is the number of output channels, and E is the
number of candidate convolution basis. Matrix multiplica-
tion is performed on the coefficient coeff and all candi-
date convolution kernels kbasis ∈ RE,Ci,ks,ks — where Ci

is the number of input channels, and ks is the kernel size —
to generate a final convolution kernel K ∈ RB,Co,Ci,ks,ks.
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Figure 2. Team Noah TerminalVision solution.

Because different batches of data require different convo-
lution kernels, the batch dimension of the feature map is
reshaped to the channel dimension and the group convolu-
tion is used to calculate the output feature maps. As shown
in Fig. 2b, dynamic convolution generates the whole con-
volution kernel (all channels) in a linear combination of the
basis. Assembled convolution generate an optimal convolu-
tion kernel coefficient for each channel, which is more flex-
ible and outperform the dynamic convolution in this task.
Implementation Details. In the training phase, the training
sets include DF2k [2, 75], DIV8K [33], GTAV‘ [68], and
LIU4K-V2 [59]. The network is trained by minimizing the
charbonnier loss with Adam optimizer. The initial learning
rate is 5e-4 and halved at every 2e5 iteration. The total num-
ber of training iteration is 3e6 on a Tesla V100 platform.

3.2. Bicubic++

The winning team in Track 2, Aselsan Research, pro-
poses a lightweight, single image super-resolution method,
named Bicubic++ [8]. Unlike many others lightweight
methods where the input image dimensions are fixed
throughout the network, Bicubic++ downscales the image
first (by half with strided convolutions) to reduce the num-
ber of operations greatly on the following network convo-
lutional layers to meet the real-time requirements. Finally
they apply ×6 upscaling. The overall structure is given
in Fig. 3.

In addition, they follow a three stage training approach,
where they train a slightly larger model first, and per-
form global structured convolutional layers and bias prun-
ing without using heuristic metrics like weight norms on
the following two stages. This approach ultimately yields
a much faster, real-time model with none to marginal de-
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crease in the visual quality. They have not employed quanti-
zation or the reparametrization of the convolutional kernels.

chD
S

3x
3

3 3x
3

ch ch+ch 1083x
3

3D
2S

s=1
p=1

x6

s=1
p=1

s=1
p=1

x0.5

Figure 3. Bicubic++ structure proposed by Aselsan Research. The
s and p denote stride and padding, respectively. In the final pro-
posed model, ch is 32, all bias terms are removed, and a strided
convolution with s=2, p=1 for the downscaling (DS) layer is uti-
lized. Red blocks after 3x3 convolutions are leaky ReLU activa-
tions. D2S denotes depth-to-space layer [70].

Implementation Details. The models are trained in Py-
Torch Lightning. The training is done with mixed precision
(FP16) by setting a precision flag in the Trainer, and Adam
optimizer with β1,2 parameters 0.99 and 0.999, respectively.

For the first two stages of the training, they start with
the learning rate of 5e-4. For the last stage, they start with
1e-4. They utilize a decaying learning rate scheduler for
all stages, where after 500 epochs the learning rate decays
linarly until we reach to 1e-8.

For all three stages of the training, they train for
1000 epochs using batch size 8. Each epoch consumes
800 randomly cropped and rotated patches of dimension
(108,108,3) -for LR- from Q=90 degraded DIV2K [1]
dataset. For the validation, they use 48 images with
same dimensions (680,452,3) -for LR- from Q=90 degraded
DIV2K validation dataset.

3.3. RUNet

Team ALONG proposes RUNet: Re-parameterization
and Unshuffle Network for Real-time Super- Resolution.

The team mainly considers designing the network fol-
lowing two aspects: (i) Receptive field: the model’s ability
may be limited if its receptive field is too small. (ii) Com-
putational efficiency: The relationship between runtime and
computation is not necessarily positive. A higher level of
computational efficiency can result in a shorter runtime.

As shown in 4a, inspiring by [83], initially, they apply
the pixel-unshuffle technique, which serves as the inverse
process of pixelshuffle [70], to reduce the spatial dimen-
sions and amplify the channel dimensions of the data be-
fore feeding them into the main model architecture. Thus,
the majority of calculations are performed within a smaller
resolution space, leading to a reduction in computational
resource consumption and an effective enhancement of the
inference speed. Furthermore, this approach can improve
the receptive field. Next, a convolutional layer followed by
an activation function is applied. This process effectively
extracts low-level features from the input image. The body

module is composed of a sequence of Re-Parameter blocks
(RepBlock) that serves to extract and refine features in a
progressive manner. Following the new suggestions in low-
level vision task introduced by [53, 58], the Gaussian Er-
ror Linear Unit (GeLU) activation function is utilized in the
×2 model, while the Sigmoid Linear Unit (SiLU) activa-
tion function is used in the ×3 model, respectively. Finally,
the upsampling layer and a skip connection are utilized to
increase the image resolution to the desired level. This is
achieved by applying a convolutional layer, followed by a
pixel-shuffle layer.

Besides re-parameterization [22], they also use Knowl-
edge Distillation [36] in training. During the training stage,
teacher output images and ground-truth images are used
to guide the student network via teacher surpervision (TS)
and data surpervision (DS), respectively. They use HAT-L
model [13] as the teacher model, which is currently consid-
ered the SOTA model in the field of super-resolution.

Implementation Details. The method is implemented us-
ing Pytorch 1.13. The loss function is L1 for reconstruction
and L2 is employed during the fine-tuning and knowledge
distillation phases. For the X2 model, the channel employed
in the CNN model (student) is 32, and the number of Rep
Blocks is 3. Additionally, the scale of pixel unshuffle and
pixel shuffle layers is 3. For the X3 model, the channel em-
ployed in the CNN model (student) is 64, and the number of
Rep Blocks is 5. Additionally, the scale of pixel unshuffle
and pixel shuffle layers is 4.

3.4. Team OV

Team OV presents a simple and efficient Convolutional
Neural Network architecture that incorporates 3×3 con-
volutions, GELU activation function, and depth-to-space
operations. The network utilizes 12 (for ×2) and 16
(for ×3) channels and produces the final image output
through the depth-to-space operation. These architectural
elements are depicted in Figure 5. The team also uses re-
parameterization as shown in Fig. 5 (b).

Implementation Details. The network was trained us-
ing DF2K (DIV2K+Flickr2K) dataset [2, 75], divided into
three stages. Initially, low-resolution (LR) patches having
a dimension of 128×128 are randomly cropped from high-
resolution (HR) images with a mini-batch size of 64. L1
and FFT losses are used as target loss functions. Following
this, network parameters were optimized for 300K itera-
tions employing the Adam algorithm, with a learning rate of
1× 10−3 decreasing to 1× 10−7 through the cosine sched-
uler. In the second stage, the model obtained from the first
stage was trained similarly for another 300K iterations. In
the final stage, the model was fine-tuned using L2 loss and
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(a) RUNet Architecture. (b) Reparameter Block.

Figure 4. Team ALONG. Overview of the proposed RUNet.NTIRE 2023 Real-Time Super-Resolution 
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Figure 5. Team OV. Overview of the proposed solution.

FFT loss. Network parameters are optimized for 300k iter-
ations through the Adam algorithm, with a learning rate of
5e–4 reduced to 1e–7 using the cosine scheduler.

3.5. Repnet

The team RTVSR proposes Repnet for Real-Time
Super-Resolution. To reduce spatial dimension of the CNN,
they first use paired space2depth and depth2space for sin-
gle image super resolution. Furthermore, they also re-
parameterize (conv3-bn-conv1) into a normal 3x3 convo-
lution during inference, effectively improving the perfor-
mance of the model without increasing the computational

complexity of the model. For the ×2 and ×3 tracks, based
on time consuming considerations, the model body uses
three repconvs and four repconvs, respectively. The net-
work is illustrated in Fig. 6a.

Implementation Details. Their training framework uses
Pytorch for training on the A100 GPU. DIV2K, Flicker2K,
DIV8K, GTAV datasets are used for training. The model
training can be divided into two stages. In the first stage,
the reconfigurable parameterized network structure shown
in Fig. 6b is used for training. It is trained for 150 epoch us-
ing batchsize 32, the patch size is 256x256, and the learning
rate is 2e-4. Adam optimizer is used. In the second stage,
they use L2 loss to finetune the model obtained in the previ-
ous stage. The batchsize is 16, the patch size is 256x256, he
learning rate is 1e-5, and the training time is 50 epochs. Af-
ter the training (and during inference) they re parameterize
the model into a network structure with conventional 3x3
convolution, as shown in Fig. 6b.

3.6. DFCDN

Team DFCDN proposes a novel network for efficient
image super-resolution with deep feature complement and
distillation network (DFCDN). They use online convolu-
tional re-parameterization to reduce the large extra training
cost introduced by re-parameterization.

Network Architecture. The overall architecture of Team
DFCDN is shown in Fig. 7. The proposed network consists
only one deep feature complement and distillation block
(DFCDB). Inspired by [35, 67], the input feature map is
split equally along the channel dimension in the block.
Then several convolutional layers process one of the split
feature maps to generate complement features. The input
features and complementary features are concatenated to
avoid loss of input information and distilled by a conv-1
layer. Besides, the output feature map of DFCDB is further
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(a) The architecture of Repconv-based Plain Net for RTSR. (b) The architecture of reparameterized convolution module.

Figure 6. Team RTVSR. Overview of the proposed Repnet.

(a) DFCDN (b) DFCDB (c) RepConv

Figure 7. Team DFCDN: The overall architecture of the proposed DFCDN network.

enhanced by efficient spatial attention layer [63].

Online Convolutional Re-parameterization Re-
parameterization [96] has improved the performance of
image restoration models without introducing any inference
cost. However, the training cost is large because of compli-
cated training-time blocks. To reduce the extra training cost,
they apply online convolutional re-parameterization [37]
by converting the complex convblocks into one single
convolutional layer. The architecture of RepConv is shown
in Fig. 7 (c). It can be converted to a 3 × 3 convolution
during training, which saves great training cost.

Implementation Details. The number of features is set
to 8 and the number of attention channels is set to 16. The
DIV2K [1] dataset is used for training and the inputs are
in the range of 0-255. First, for training the ×2 (Track 1)
models, the setup is as follows: The model is first trained
from scratch with 256×256 patches randomly cropped from

HR images from DIV2K. The mini-batch size is set to 64.
The L1 loss is minimized with Adam optimizer. The initial
learning rate is set to 5e-4 with a cosine annealing schedule.
The total number of epochs is 1000. At the second stage, the
model is initialized with the pre-trained weights of Stage 1.
The HR patch size is set to 640. The model is trained with
the same settings as in the previous step. At the third stage,
the model is initialized with the pre-trained weights of Stage
2. The MSE loss is used for fine-tuning with 640× 640 HR
patches and a learning rate of 1e-5 for 100 epochs.

The training details of ×3 (Track 2) are as follows: At
the first stage, the model is initialized with the pre-trained
weights of the model with scale 2. The HR patch size is
set to 660. The model is trained with the same settings as
X2. At the second stage, the model is initialized with the
pre-trained weights of Stage 1. The MSE loss is used for
fine-tuning with 660 × 660 HR patches and a learning rate
of 1e-5 for 100 epochs.
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Figure 8. Team NJUST-RTSR: The overall architecture of the pro-
posed network. (Bottom) Detail network of the proposed RepRB.

3.7. NJUST-RTSR

The team proposes a method that first transforms the in-
put LR image into the feature space using a convolutional
layer, then performs feature extraction using four reparame-
terizable residual blocks (RepRBs), and finally reconstructs
the final output by a sub-pixel [70] convolution. The pro-
posed architecture is illustrated in Fig. 8.

To enhance the capability of the model, they use the re-
parametrization technique [23]. Fig. 8 (Bottom) shows the
detail description of the used RepRB module. It contains
three branches in the training phase to learn features from
different receptive fields, while in the inference phase it can
be merged into a 3× 3 convolution.

Implementation Details. The team uses DIV2K [2] and
Flickr2K [75] as the training data. In order to accelerate
the IO speed during training, they crop the 2K resolution
images to sub-images — the HR image is cropped into
640 × 640 and 960 × 960 sub-images for ×2 and ×3 SR,
respectively.

During the training, the data argumentation is performed
on the input patches with random horizontal flips and rota-
tions. The HR image patch size is initialized as 128 × 128
and increases to 256×256, and batch size is set as 64. They
use the Adam [46] optimizer with the Cosine Annealing
scheme [64]. The initial learning rate to 1 × 10−3 and the
minimum one to 1 × 10−6. The number of total iterations
is set to 300k. They use a combination of mean absolute
error (MAE) loss and an FFT-based frequency loss function
to constrain the model training, which is the same as [73].
All experiments are conducted with the PyTorch framework
on an NVIDIA GeForce RTX 3090 GPU.

(a) Training mode of the proposed network.

(b) Inference mode of the proposed network.

Figure 9. Team z6 proposed LRSRN network structure.

3.8. LRSRN

Team z6 proposes a Lightweight Real-Time Image
Super-Resolution Network (LRSRN) [30] that can deliver
higher accuracy at a faster speed compared to previous real-
time SR models for 4K images. They apply a reparame-
terized convolution (RepConv) for all convolution layers to
improve the image quality while maintaining the model size
and inference speed. The proposed network is an extended
version of [29] (previous work of the team), which was de-
signed for Mobile devices. The proposed network is illus-
trated in Fig. 9.

Implementation Details. The team used Pytorch 1.13.
The models were trained in two steps: (i) First, models
were trained from scratch. The LR patches were cropped
from HR images with mini-batch size 8, and resolution 192
x 192 (Track 1) and 128

×

128 (Track 2). The Adam optimizer was used with a 0.0005
learning rate, and cosine warm-up scheduler. The total
number of epochs was set to 800. They use L1 loss. (ii)
In the second step, the model was initialized from previ-
ous step. Fine-tuning with L2 loss improves the PSNR
value by 0.01 ∼ 0.02 dB. In this step, the initial learning
rate was set as 0.0001. The total epoch was set to 200.
In particular, the DIV2K [1] was used for scratch train-
ing. The combined dataset, which includes DIV2K train set
(800 images), Flickr2K (2650 images), GTA (train seq 00
∼ 19), LSDIR [52] (first 1000 images) used for the fine-
tuning stage. The training data is preprocessed by cen-
ter cropping it to a resolution of 2040 x 1080. To gener-
ate low-resolution, they degrade the center cropped images
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with bicubic downsampling and JPEG compression. Dur-
ing training, they used random cropping, rotations, and flips
augmentations.

3.9. SCSYENet

Team Multimedia proposes SCSYENet: A Compact
Skip-Concatenated Simple Yet Effective Real-Time Image
Super-Resolution based on element-wise multiplication fu-
sion operation and Re-parameter convolution.

They built an end-to-end RTSR network based on
element-wise multiplication fusion operation and re-
parameter convolution, following previous work [5, 43, 97].
SCSYENet, has only 10/12.5K parameters (in Track 1 (X2)
and Track 2 repectively). The network consists of two
asymmetrical branches with simple building blocks. To ef-
fectively connect the results by asymmetrical branches, a
element-wise multiplication fusion operation is proposed.
The architecture of SCSYENet is illustrated in Fig. 10a.

Network Structure Inspired by ECBSR [97], SCSYENet
employs the re-parameterization technique to boost the SR
performance while maintaining high efficiency. The model
consists of six ECBs (see Fig. 10b), one PReLu, two fusion
blocks and one skip connection (concatenation of input im-
age after preprocessing and intermediate feature map). The
number of channels in the network is set to 16. The pix-
elshuffle is used to produce the final image output. Typi-
cally, in the previous multi-branch networks, the fusion of
outputs by different branches could be done by concatena-
tion [5, 74] or element-wise addition followed by activation
function [21, 31]. In this study, in order to effectively im-
prove the representational power, a element-wise multipli-
cation fusion operation [43], as in Fig. 10a, is employed
for the fusion of the results by two branches, where ⊗ is
the element-wise multiplication, and ⊕ is the element-wise
addition. During inference, the ECB block can be reparam-
eterized into one single 3×3 convolution.

Implementation Details. The team uses Pytorch 1.21.1,
and the training device is the A100 GPU. During train-
ing, DIV2K [1] and Flickr2K [75] datasets are used for the
whole process. The team follows a 3-stage training: First,
the model is trained from scratch. HR patches of size 128 ×
128 are randomly cropped from HR images, and the mini-
batch size is set to 32. The SCSYENet model is trained by
minimizing L1 loss function with Adam optimizer. The ini-
tial learning rate is set to 1× 10−4 and decayed with cosine
annealing scheduler at every 200 epochs. The total number
of epochs is 1000. Second, the model is initialized with the
pretrained weights, and trained with the same settings as in
the previous step. This process repeats once. Third, training
settings are the same as Stage 1, except that L2 loss is used

for fine-tuning with 2040 × 1080 HR patches and an initial
learning rate is 1× 10−5, the mini-batch size is set to 4.

3.10. ERLFN

Team Team Antins CV proposes a method built on
Residual Local Feature Network (RLFN) [48]. Based on
this network, we prune the architecture and introduce the
Enhanced Residual Block (ERB) RepBlock proposed by
[51] the runner up solution, and we propose our Enhanced
Residual Local Feature Network (ERLFN).

Network Structure. The RLFN proposed by [48] is an
efficient network for lightweight super resolution task.
While for this real-time super-resolution task, they further
prune the network for an ideal speed.

For Track 1 (upscaling from FHD 1080p to 4K) the net-
work requires heavy computation. To balance for speed,
we cut the four RLFB blocks in RLFN to two blocks, and
shrink the feature channels to 12. The ESA blocks nested
in RLFB are removed to reduce computation cost and save
time. For Track 2, to upscale from HD 720p to 4K resolu-
tion, we cut the four RLFB blocks in RLFN to two blocks,
and shrink the feature channels to 27. The ESA blocks are
kept and channels are remained as 16.

The team also uses the ERB RepBlock in the Enhanced
Residual Block (ERB) first proposed by [51] the runner up
solution. They replace the 3×3 convolutions in RLFB with
the ERB RepBlock. The network and ERB block are shown
in Fig. 11. For inference, the ERB RepBlock is reparame-
terized to a 3×3 convolution. THe team does not experience
any performance drop after reparameterization.

Implementation Details. The ERLFN model is trained
for two stages both for Track 1 and Track 2. In the first
stage, they train the model from scratch on DIV2K [1],
cropped DIV8K, Flickr2K, OST, WED, first 2000 images of
FFHQ, and first 1000 images of SCUT-CTW1500 datasets
— following [56]. The HR images are randomly cropped
to patches of size 256 × 256 for Track 1, and 192 × 192
for Track 2. They use Adam optimizer with L1 loss for
this stage. We set the initial learning rate to 5e − 4, with a
mini batch size of 64, and train the model for 1000 epochs,
and decay the learning rate by 0.5 every 200 epochs. In the
second stage, the model is initialized with the pretrained
weights from the first stage on the same training data as
stage 1. Then the model is finetuned using a cosine learning
rate schedule with an initial learning rate of 1e − 4 for 500
epochs, using L2 loss is applied.

3.11. PCRTSR

Team ECNUSR proposes PCRTSR: Partial convolution
based Network for Real-Time Super Resolution. The over-
all architecture is shown in Fig. 12. The network first
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Figure 10. Team Multimedia. Overview of the proposed SCSYENet.

Figure 11. Team Antins CV proposed ERLFN network.

involves the pixel unshuffle for faster speed and a larger
reception field. Then, the several stacked PCBS Block
(Fig. 12 (a)) build up for feature extraction where each
PCBS block is composed of several PCB blocks (Fig. 12
(b)) and a residual connection. Finally, the reconstruction
module consisting of a 3×3 vanilla convolution and a pixel
shuffle operation produces the SR image.

Network Structure. The team designs the models using
partial convolution for accelerating the running speed, they
do not use pruning or re-parameterization.

PCB Block The high latency of most efficient networks
is due to the frequent memory access of the operators, to ad-
dress this, a PCB block is proposed which consists of partial
convolution. Our partial Convolution applies filters on 1/4
of the channels, resulting in lower FLOPs than the vanilla
convolution and higher FLOPS than the group convolution.
Each PCB block comprises a partial convolution followed
by two pointwise convolution layers, with a PReLU activa-
tion layer after the middle layer. During feature extraction,
there are 3 PCBS blocks which consist of 2, 4 and 2 PCB
blocks respectively. The kernel size of the partial convolu-
tion and vanilla convolution is 3 × 3. The architecture is
symmetrically designed and highly optimized, resulting in
lower inference latency.

Implementation Details. The team first trained the
models on the DF2K (combined DIV2K and Flickr2K)
dataset [75], and then finetuned on the combined datasets
consisting of DIV8K, FFHQ, LSDIR [52], and GTA V for
the variety of the data. The patches are cropped with the
size 256 × 256 and augmented by random flipping and ro-
tation. The model is trained by Adam [46] optimizer with

LR C
on

v

PC
BS

PC
BS

PC
BS

SRC
on

v

Pi
xe

l
U

ns
hu

ffl
e

Pi
xe

l
Sh

uf
fle

PCB

PCB

num
_block

PCBS

PConv
3*3

Conv 1*1

PCB

Conv1*1

PReLU

LR C
on

v

PC
BS

PC
BS

PC
BS

SRC
on

v

Pi
xe

l
U

ns
hu

ffl
e

Pi
xe

l
Sh

uf
fle

PCB

PCB

num
_block

PCBS

PConv
3*3

Conv 1*1

PCB

Conv1*1

PReLU

(a) PCBS block (b) PCB block

Figure 12. Team ECNUSR architecture for Partial Convolution
based Network for Real-Time Super Resolution (PCRTSR). (a)
PCBS block and (b) PCB block.

β1 = 0.9, β2 = 0.999. The initial learning rate is set to
5 ×10−4 and decreases by half at 8 ×106 and 1.4 ×107

iterations. L1 loss is used for training. The model is imple-
mented by PyTorch 1.12 using one 2080Ti GPU.

3.12. R2CNet

Team R.I.P. ShopeeVideo proposes R2CNet using effi-
cient Bottle-in-Bottle blocks for RTSR. As shown in c13,
they propose a hardware-efficient R2C block with well-
designed channel numbers. In the R2C block, they stack
efficient 3×3 convolutions [22] inside with small channel
numbers, while keeping the channel numbers large outside
to improve performance. In R2CNet, a novel downsample-
upsample mechanism is also utilized to process images of
large size (4K). Neither pruning nor re-parametrization is
not used in R2CNet.

Network Structure. The proposed R2C block is illus-
trated in Fig. 13 (a); an input 1×1 convolution reduces the
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Figure 13. Team R.I.P. ShopeeVideo proposed R2C block and
R2CNet. (a) R2C block uses L-ESA:, an improved ESA [60], also
Batch Normalization (BN) is applied for each convolution layer to
accelerate convergence. (b) R2CNet: the macro structure is based
on RLFN [47] and M R2C blocks are used.

channel numbers, and the output one to increase. Thus, the
channel numbers inside the block is small, making it ef-
ficient to stack efficient 3×3 convolutions inside [10, 22],
i.e., N basic blocks, and a skip-path 3×3 convolution. The
team also proposes L-ESA for efficient and effective spa-
tial attention, in which they simply reset the kernel size and
stride of the pooling layer in ESA [60] from 7 and 3 to 11
and 7. Large kernel captures more spatial information and
large stride reduces computation and runtime [16]. With
R2C block, we build our R2CNet following the macro struc-
ture of RLFN [47], as shown in Fig. 13 (b).

To process images of large size (4K) efficiently, they also
introduce a new downsample-upsample mechanism into the
R2CNet: simply set the stride of the first R2C block as 2
for downsampling and utilize a pixel shuffle layer with fac-
tor 2 for upsampling. Specially, in both R2CNet×2 and
R2CNet×3, we set N = 4, M = 2, the channel number of the
main body as 64 and that inside R2C block is 32.

Implementation Details. The team uses PyTorch for
training and inference. They train the models for there
stages. Each stage has 100k iterations. The learning rate
is set as 5e-4 for the first two stages with first 5k iterations
as warm-up, while 2e-4 for the last one without warm-up,
and we uses cosine annealing. PSNR loss [12] is utilized.
Adam is the optimizer and weight decay is not applied. The
global batch size is set to 96 on 3 GPUs. The sizes of HR

Figure 14. Team P.AI.R proposed FADN. Comparison of (a) resid-
ual feature distillation block and (b) no attention distillation block.

images during training for R2CNet×3 and R2CNet×2 are
576 and 512, respectively. Before inference, the BN layers
in R2C blocks are fused into their corresponding convolu-
tion layers for fast inference. The team uses DIV2K [2],
Flickr2K, and half LSDIR [52] datasets for training.

3.13. FADN

Team P.AI.R proposes FADN: Few Activation Distilla-
tion Networks for Real-time Super-resolution. The solu-
tion is mainly based on RFDN [60]. The architecture of the
proposed method differs from the RFDN in two ways: 1)
the simple gate (SG) introduced in NAFNet [11], which is
an element-wise product of feature maps divided into two
parts in the channel dimension, was used instead of ReLU
in a shallow residual block (SWB). 2) Simplified channel at-
tention (SCA), also introduced in [11], was used instead of
contrast-aware channel attention (CCA). The team adopted
the SG and SCA to simplify the network, as the SG halves
the number of channels, and the SCA is the simplified ver-
sion of channel attention. In addition, layer normalization
was also adopted in the network to ensure a more stable
training process. The FADN (see Fig. 14) consists of four
no-activation distillation blocks (NADB).

Technical details. The team train the models with ADAM
optimizer by setting beta1=0.9, beta2=0.999, and eta=10−8.
The learning rate is initialized as 2e-4 and halved at every
100 epochs. The team used LSDIR [52] datasets to train
the models, and generated the training LR images by down-
sampling HR images with bicubic interpolation and JPEG
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compression. The model is implemented using the PyTorch
framework with an RTX3090 GPU. The number of feature
channels was 16 for ×2 SR and 40 for ×3 SR. So then, the
number of parameters is 0.0121 M and 0.1280 M respec-
tively.

3.14. Team PixelBE

The team proposes: Two-Stage Super-resolution Algo-
rithm Based on Re-Parameterization. They use as ref-
erence [98], a re-parameterizable building block, namely
Edge-oriented Convolution Block (ECB), for an efficient
convolutional module design. This module uses multiple
parallel convolution operators in the training phase to im-
prove the SR capability of the model, and fuses the paral-
lel operators into a convolution module in the testing phase
to improve inference efficiency. Based on this ECB mod-
ule [98], they designed a two-stage SR algorithm as follows:
(i) First, they downsample by a factor of 2 using a convo-
lution with a stride of 2. Downsampling breaks down jpeg
compression and also improves network inference speed.
(ii) Then stack two ECB modules and a ×2 upsampling
pixel shuffle module to return a three-channel image. (iii)
Finally, two ECB modules and a ×2 upsampling pixel shuf-
fle module are used to return a HR image.

Implementation details. The team uses the LSDIR
Dataset [52] for training, and the training data is degraded
online (i.e. downsampling, JPEG compression). The input
image size is 128x128x3, the optimizer is Adam. The train-
ing is divided into two stages: First, the learning rate is 1e-3
and the jpeg loss and super-resolution loss are calculated at
the same time. This stage is trained for 100k iterations. Sec-
ond, only the super resolution loss (L1) is calculated, and
the learning rate is halved — this is for 150k iterations.

3.15. OELSR

Team AGSR proposes an optimized extreme lightweight
super-resolution network (OELSR). The Extreme Low-
Power Super Resolution Network in [87] is their baseline.
The network (see Fig. 15a) stacks multiple highly optimized
convolution+activation layers to achieve a good trade-off
between the enhanced quality and model complexity. The
team uses the re-parameterizable blocks [25] and replace
them to a single convolution to reduce the inference time.
Besides, they use a multi-stage training where in each stage,
the weights from previous stages are utilized as warm-start
to improve the model performance progressively.

Finally, the team obtains a simple yet effective network
structure with single frame input (as shown in Fig. 15a)
which only have 6 layers, of which only 5 have learnable
parameters, including 4 Conv layers and a PReLU activa-
tion layer. Besides, they use re-parameterizable blocks to
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Figure 15. Team AGSR. Overview of the proposed OELSR.

improve the performance of the middle convolution. Pixel-
Shuffle operation is used at last to upscale the size of output
without introducing more calculation.

Technical details. The team uses DIV2K [1] and
Flickr2K as training dataset. In each training batch, 64
cropped LR RGB patches augmented by random flipping
and rotation are input to the network. The input data
range of the network is 0-255. The model is trained us-
ing PyTorch, Adam [46] optimizer with β1 = 0.9 and β2 =
0.999, and they utilize Charbonnier loss (first stage) and L2

loss (second stage) function separately since they employ a
multi-stage training approach.

3.16. Team DoYouChargeQQCoin

The team proposes a ultra fast network for image super-
resolution. The network is illustrated in Fig. 16, it consists
on 2-layer CNN with a ReLU activation for image SR. This
represents the most compact and simple solutions in this
challenge; it improves Bicubic upsampling by +0.2dB while
running at ≈ 2ms.

They implement the network with PyTorch. The opti-
mizer is Adam with learning rate as 10e-4, which is halved
for every 200 epochs. The training dataset is DIV2K, using
random flips and rotations. The input of the network is in
the range 0-255.

3.17. Team Touch Fish

The team proposes a new attention mechanism. The ra-
tionale behind utilizing an attention map with a consider-
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Figure 16. Team DoYouChargeQQCoin proposed network.
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Figure 17. Team Touch Fish solution: (a) Attli block, pink denotes
the generated attention map M. (b) Pipeline ×2 SR.

able perception field is that it can be advantageous for the
preceding layers to concentrate their attention on regions of
interest. They generate an attention map M(i, j) as:

M(i, j) = ϕ(Conv1×1(Fl(i, j))), (3)

where ϕ(·) denotes the sigmoid function. Fl(i, j) and
Ff (i, j) denote the value of the feature map in the position
(i, j) from the latter layer and former layers, respectively.
Then we use the generated attention map to reweight the
features in the former layers as M(i, j)

⊙
Ff (i, j), where⊙

denotes the Hadamard product.
As depicted in Fig. 17 (b), an attention map is generated

for each block, which is subsequently utilized to reweight
the feature maps originating from distinct levels.

They also use re-parameterization (rep) [22] to enhance
the efficiency of the inference phase. This technique has
been incorporated into each convolutional block depicted in
Fig. 17. In contrast to prior techniques that employ stride
convolutions, pooling, and upsampling, the team merely
uses the generated mask. This modification has resulted
in a significant acceleration of both inference and training
times, as well as a reduction in the memory footprint.

Technical details. The number of channels is set to 24
(x2) and 32 (x3). The learning rate is 5 × 10−4 and under-
goes a halving process every 2×105 iterations. The network
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Figure 18. Team DH ISP proposed solution.

is trained for a total of 106 iterations, with the L1 loss, batch
sizes of 64, and Adam optimizer [45]. Subsequently, fine-
tuning is executed using the L1 and L2 loss functions, with
an initial learning rate of 1 × 10−5 for 5 × 105 iterations,
and HR patch size of 512. The dataset utilized for training
comprises of DIV2K [1] and LSDIR [52].

3.18. Team DH ISP

The team designed a simple lightweight network for im-
age super resolution. The model consists of two 3x3 con-
volution layers, one 1x1 convolution layer and four Re-
Parameterizable blocks (RepBlock), the final output is ob-
tained using the pixel shuffle. Re-parameterizable blocks
can learn features at different scales during the training
phase, then, in during inference, they can be converted into
a 3x3 convolutions to accelerate the inference speed. The
network structure is shown in the Figure 18.

Two branches are used for feature extraction. (i) four
re-parameterizable blocks and a 3x3 convolution, which is
used to extract the deep features of the image. (ii) a 1x1 con-
volution is used to extract the shallow features of the input
image. Finally, the features extracted from the two branches
are added together for fusion, and the upsampled features
are obtained through the pixelshuffle layer and the final out-
put is obtained through the structure of self-attention.

Technical details. The training data set includes Flickr2K
and DIV2K [1]. The training of the model is divided into
two stages: (i) the network is trained from scratch. The
input image size is 256 × 256, the batch size is 16, the loss
function is L1, Adam optimizer with the initial learning rate
set to 0.001, the learning rate is halved every 200 epoch,
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and a total of 800 batches of training. (ii) on the basis of
the training in the first stage, the L2 loss was used to con-
tinue training for 200 epochs, with an initial learning rate of
0.0001, halved every 50 batches. Finally, the heavy param-
eter module in the network is re-parameterized by 3x3 con-
volution, and the trained model parameters are transformed
to achieve faster inference.

3.19. PRFDN

Team SEU CNII proposes PRFDN: High Parallelism
Distillation Network For Image Super-Resolution.

The proposed Parallel RFDN (PRFDN) is based on the
pre-trained RFDN [60] as shown in Fig. 19a. The method
disentangles the sequentially computed trunks in RFDN
into branches (Fig. 19b) and performs re-parametrization
to make these branches inference in parallel on single de-
vices. After that, they further perform pruning on the model
(Fig. 19d) and fine-tune it to achieve higher performance.

Network Structure. Branching. To accelerate the infer-
ence, authors first consider reducing the data dependency
in the model to achieve higher parallelism. Thus, the
method disentangles the sequentially computed trunks into
branches. As shown in Fig. 19b, after the branching, the
major part of the model will consist of four independent
branches that can calculate in parallel. To improve the per-
formance, authors also design small SR blocks (SRFDB)
based on [60], and add them before the input of each branch.

Re-parameterization. Without much data dependency,
branches in the model can be computed in parallel. As
shown in Fig. 19c, the major part of these four branches
(RFDBs and SRFDBs) have exactly the same structure but
different parameters, so we can merge and re-parameterized
the RFDBs and SRFDBs into a single branch.

Pruning. To further accelerate the inference, they apply
channel pruning on the re-parameterized model, as shown in
Fig. 19d, using Torch-Pruning [27], and fine-tune the model
between each pruning step.

Technical details. The authors use Pytorch and Torch-
Pruning [27]. The models are trained using Adam [46] with
learning rate 1e-5 before re-parameterization, 1e-6 after re-
parameterization. The training datasets are LSDIR [52] and
DIV2K [1]. Since they only change the data flow, but not
the structure of RFDB, the pre-trained RFDN parameters
can still be loaded into the major part of our branch model
(only except for those SRFDBs). To benefit from the pre-
training, they load the pre-trained RFDN parameters into
our branch model before training our branch model.

3.20. LFDN

Team NTU-BL6F adopts LFDN [47] model as the back-
bone. The authors reduce the number of channels and uti-
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Figure 19. Team SEU CNII proposed PRFDN including: branch-
ing, re-parameterization, and pruning.

Figure 20. Team NTU-BL6F solution based on LFDN [47]. They
adjust the channel number of RLFB and use mixed precision train-
ing to improve the model.

lize pre-trained weights by selecting the necessary channels
to match the compressed channel quantities. The authors
also find that using channel quantities whose power is 2 can
result in faster processing speed compared to other channel
quantities. The model is illustrated in Fig. 20.

Technical details. The team uses LFDN [47] model pre-
trained on the DIV2K dataset [1]. The network input range
is from 0 to 255, and mixed precision was used for fine-
tuning. The team uses the DIV2K [1], Flickr [76], OTS
[50] and GTA [69] datasets to train the model. The authors
adopt L1 loss to optimize the network. The optimizer is
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Adam [46] with learning rate 5e-4. In the test phase, they
feed the whole-size image to the model and the inference
speed is approximately 18ms per image.

3.21. DRCNN

Team diSRupt proposes Depthwise-Residual Convolu-
tional Neural Network (DRCNN).

DRCNN (see Fig. 21) extends the SCSRN architecture,
which was introduced in [43]. On top of the existing archi-
tecture, DRCNN performs nearest-neighbors upsampling to
provide the SCSRN stage with an upsampled baseline im-
age. In order to maintain efficiency through GPU paral-
lelism, a space-to-depth transformation is applied to the up-
scaled LR image, forcing the following convolutional layers
to operate on feature maps having the same dimensions as
the LR image. The same depthwise-upsampled LR image
is added to the feature map generated through the SCSRN,
forcing the network to learn the residual between the naive
interpolation and the HR image, thus enhancing the conver-
gence speed and the overall performance.

Implementation details. The authors use Tensorflow 2.
The network was trained for 70 epochs on the entire Div2K
training set [1], using the Adam [46] optimizer with a
3e-4 learning rate, a batch size of 16, a patch size of
128, classical augmentations, and optimizing for MSE. The
model accepts RGB images of any resolution. No re-
parameterization, pruning or quantization was applied.

3.22. ELIS

Team KCML2 proposes Enhanced Lightweight Image
Super-resolution (ELIS), which is inspired by XLSR [5]
with the addition of the advanced attention mechanism. The
main idea is to use channel splitting to separate the feature
maps and process them in parallel with attention. Besides
this, the authors use a multi-stage warm-start training strat-
egy. In each stage, the pre-trained weights from previous
stages are utilized to improve the model performance. The
network is illustrated in Fig. 22.

The authors add a spatial operation to the original block
from XLSR [5] to enhance the performance as each pixel is
considered differently at each pixel location. They design
the ECSB block, which contains a channel splitting mecha-
nism, convolution operation, and an enhanced spatial atten-
tion block (ESA) as shown on Fig. 22 (bottom).

Implementation details. The authors use DIV2K and
Flickr2K [1] for training set, and randomly crop the im-
ages to the size of 512×512. All images are normalized to
range 0−1. During training, they randomly crop LR patches
of size 256×256 and use horizontal flipping, vertical flip-
ping along with random intensity scaling for augmentation.
As the loss function, we employ the Charbornier loss with

η = 0.1. The number of ECSB is set to 5 and the num-
ber of channels inside ECSB to 32. The model is trained
using a multi-stages training strategy with cyclic learning
rate scheduler, Adam optimizer [46] and batch size of 64 .
The authors did not use any pruning or re-parameterization
technique, only using channel splitting and attention.

3.23. Team NPU SuperResolution

The team proposes a model based on ECBSR [96] with
some improvements. The authors found that the edge op-
erator can not make a relatively large contribution to the
performance improvement of the whole model, so they pro-
pose to replace the edge operator with wavelet transform.
The experiment proves that the wavelet transform has a cer-
tain effect on the improvement of the model.

The authors also use ideas from MWCNN [61] and
other models that use wavelet transform to achieve super-
resolution. In their model, LL, HL, LH, and HH after
wavelet transformation will be concatenated in the channel
dimension, which can ensure that messages will not be lost,
thereby further improving the performance of the model.
They chose a very simple model with only one branch, so
that the speed of the model can be guaranteed. In a block,
they remove the branches that do not significantly improve
the model effect, and only keep the branch that contributes
the most. In addition, they also use re-parameterization as
ECBSR [96], so that each block can be re-parameterized
into one or two 3x3 convolutions, so that during the infer-
ence process of the model, have faster speed.

Technical details. The team uses Pytorch to implement
the model. The optimizer used is Adam [46], the learn-
ing rate is 5e-4, and the GPU is A100. The training dataset
combines DIV2K [1], Flicker2k, manga [65], and some pic-
tures obtained on the internet – the authors find that the data
set can significantly improve the performance of the model.
The obtained model is re-parameterized.

3.24. Team YNOT

The team utilized an image processing method based
on Fast Fourier Convolution (FFC) [15], which has differ-
ent advantages from conventional convolution-based image
processing (i.e. it can utilize both global and local infor-
mation), and Wavelet Analysis [89] image processing tech-
niques. By utilizing information at the frequency level, they
aimed for better performance while lightening the baseline
architecture of IMDN [40].

The authors found that FFC [15] can be used to replace
traditional CNNs, but it may not be suitable for real-time
super-resolution. However, by utilizing the information
available in the spectral domain (e.g. Fourier Transform,
Wavelet Transform), they were able to lighten the architec-
ture of the IMDN [40] model used to satisfy some of the
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Figure 21. Team diSRupt proposed DRCNN.

Figure 22. Team KCML2 proposed enhanced lightweight image
super-resolution network. (Bottom) Architecture of ECSB with
ESA (Enhanced Spatial Attention) [51].

computational and performance tradeoffs.

Technical details. The authors use Pytorch 1.7.1 to de-
velop the models. The models are trained for 500 epochs
using L1 loss, Adam optimizer [46], a learning rate of 2e-4,
and MultiStepLR with a gamma of 0.5. The team only uses
DIV2K [1] for training the models.

4. Qualitative Results Comparison
We provide qualitative comparisons in Fig. 24, Fig. 25

and Fig. 26 between the top-3 proposed methods. All high-
resolution images and the results from each top team, are
available in our project website and github. All the top

Figure 23. Team YNOT proposed solution.

methods can recover details from the LR 1080p and 720p,
and produce high-quality 4K images.

5. Conclusion

This paper introduces a novel benchmark for efficient
upscaling as part of the NTIRE 2023 Real-Time Image
Super-Resolution (RTSR) Challenge, which aimed to up-
scale images from 720p and 1080p resolution to native 4K
(×2 and ×3 factors) in real-time on commercial GPUs.
For this, we use a new test set containing diverse 4K im-
ages ranging from digital art to gaming and photography.
We assessed the methods devised for 4K SR by measur-
ing their runtime, parameters, and FLOPs, while ensuring a
minimum PSNR fidelity over Bicubic interpolation. These
methods allow processing at 60 FPS and even beyond. Out
of the 170 participants, 25 teams contributed to this report,
making it the most comprehensive benchmark to date and
showcasing the latest advancements in real-time SR.
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LR Input AsConvSR [34] Bicubic++ [8]

HR Ground-truth RUNet RT4KSR [92]

Figure 24. Qualitative results. Comparison of the best methods using the test sample 11. The image corresponds to a real capture using a
60MP camera. Complete HQ uncompressed results -for the top teams- can be consulted in our project website.
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LR Input AsConvSR [34] Bicubic++ [8]

HR Ground-truth RUNet RT4KSR [92]

Figure 25. Qualitative results. Comparison of the best methods using the test sample 59, a real world capture using a SONY ILCE-7M3.
Image credit: “Asakusa” by @mosdesign.
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LR Input AsConvSR [34] Bicubic++ [8]

HR Ground-truth RUNet RT4KSR [92]

Figure 26. Qualitative results. Comparison of the best methods using the test sample 114, rendered content using Unreal Engine [38].
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Table 2. We provide Additional Training Details to facilitate reproducibility of the solutions. The teams indicate the resolution of the
input RGB image during training, the training time in hours, and the GPU device.

Method Input Training Time (h) Attention Quantization # Params. (M) GPU

AsConvSR ×2 120× 120 30 No No 2.3 V100
AsConvSR ×3 80× 80 30 No No 17 V100

RUNet ×2 192× 192 24 No No 0.0668 RTX3090
RUNet ×3 192× 192 20 No No 0.24 RTX3090
Team OV 128× 128 21 No No 0.005 RTX3090

Repnet ×2 256× 256 8 No No 0.0266 A100
Repnet ×3 256× 256 12 No No 0.0532 A100

Bicubic++ ×3 108× 108 3 No No 0.0504 V100
DFCDN ×2 320× 320 44 Yes No 0.0064 RTX3090
DFCDN ×3 220× 220 44 Yes No 0.0075 RTX3090

NJUST-RTSR ×2 256× 256 16 No No 0.014 RTX3090
LRSRN ×2 192× 192 48 No No 0.0046 A6000
LRSRN ×3 128× 128 16 No No 0.0046 A6000

SCSYENet ×2 512× 512 27 No No 0.01 A100
SCSYENet ×3 540× 540 18 No No 0.0125 A100

ERLFN ×2 256× 256 71 ESA No 0.0111 V100x4
ERLFN ×3 192× 192 47 ESA No 0.0666 V100x4
PCRTSR ×2 256× 256 30 No No 0.162288 2080Ti
R2CNet ×2 512× 512 180 L-ESA No 0.3987 V100
R2CNet ×3 576× 576 180 L-ESA No 0.4073 V100
FADN ×2 256× 256 130 Yes No 0.0212 RTX3090

PixelBE ×2 128× 128 96 No No 0.137 V100
OELSR ×2 512× 512 8 No No 0.0068 2080Ti
QQCoin ×2 256× 256 48 No No 0.00082 RTX3090

Touch Fish ×2 256× 256 60 Yes No 0.064 A100x8
Touch Fish ×3 256× 256 60 Yes No 0.183 A100x8

dh ISP 256× 256 5 Yes No 0.01 2080Ti
PRFDN ×2 678× 1020 16 No No 0.0299 RTX3070
PRFDN ×3 512× 680 16 No No 0.0629 RTX3070

NTU-BL6F (LFDN) ×2 256× 256 12 Yes Yes 0.22 RTX3090
DRCNN ×2 128× 128 5 No No 0.0499 NVIDIA T4
DRCNN ×3 128× 128 3 No No 0.0649 NVIDIA T4

ELIS 256× 256 10 ESA No 0.039 TITAN RTX
NPU-SR (ECBSR) ×2 1080× 1920 10 No Yes 0.2 A100

YNOT ×2 256× 256 4 Yes No 0.4648 A100
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6. Appendix

6.1. NTIRE 2023 Team

Title: NTIRE 2023 Real-Time Super-Resolution Chal-
lenge Organization
Members: Marcos V. Conde 1, Eduard Zamfir 1, Radu
Timofte 1, Daniel Motilla 2

Affiliations: 1 Computer Vision Lab, CAIDAS, IFI, Uni-
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versity of Würzburg, Germany
2 Sony Interactive Entertainment, CA.

6.2. Noah TerminalVision

Title: AsConvSR: Fast and Lightweight Super-Resolution
Network with Assembled Convolutions
Members: Jiaming Guo, Xueyi Zou, Yuyi Chen, Yi Liu,
Jia Hao, Youliang Yan
Affiliations: Huawei Technologies Co., Ltd.

6.3. Aselsan Research

Title: Bicubic++: Slim, Slimmer, Slimmest - Designing
an Industry-Grade Super-Resolution Network
Members: Mustafa Ayazoglu, Bahri Batuhan Bilecen
Affiliations: Aselsan Research, Türkiye. https://
www.aselsan.com/tr

6.4. ALONG

Title: RUNet: Re-parameterization and Unshuffle Net-
work for Real-time Super-Resolution
Members: Cen Liu, Zexin Zhang, Yunbo Peng, Yue Lin
Affiliations: NetEase Games AI Lab

6.5. Team OV

Title: An Efficient ConvNet for Real-time Image Super-
resolution
Members: Lingshun Kong, Haoran Bai, Jinshan Pan,
Jiangxin Dong, Jinhui Tang
Affiliations: Nanjing University of Science and Technol-
ogy

6.6. RTVSR

Title: Repnet for Real-Time Super-Resolution
Members: Yuanfan Zhang, Gen Li, Lei Sun
Affiliations: Tencent

6.7. DFCDN Team

Title: DFCDN: Deep Feature Complement and Distilla-
tion Network
Members: Mingxi Li, Yuhang Zhang, Xianjun Fan,
Yankai Sheng
Affiliations Attrsense

6.8. z6

Title: Lightweight Efficient Real-Time Image Super-
Resolution Network (LER- SRN)
Members: Ganzorig Gankhuyag, Kihwan Yoon
Affiliations: Korea Electronics Technology Institute
(KETI)

6.9. NJUST-RTSR

Title: A Simple Residual ConvNet with Progressive
Learning for Real- Time Super-Resolution

Members: Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui
Tang
Affiliations: Nanjing University of Science and Technol-
ogy

6.10. Multimedia

Title: SCSYENet: A Compact Skip-Concatenated Sim-
ple Yet Effective Real- Time Image Super-Resolution based
on element-wise multiplication fusion operation and Re-
parameter convolution
Members: Zibin Liu, Weiran Gou, Shaoqing Li, Ziyao Yi,
Yan Xiang, Dehui Kong, Ke Xu
Affiliations: Sanechips Co Ltd

6.11. Antins CV

Title: Enhanced Residual Local Feature Network
(ERLFN)
Members: Jin Zhang, Gaocheng Yu, Feng Zhang, Hong-
bin Wang
Affiliations: Ant Group

6.12. ECNU SR

Title: Partial convolution based Network for Real-Time
Super Resolution (PCRTSR)
Members: Zhou Zhou, Jiahao Chao, Hongfan Gao, Jiali
Gong, Zhengfeng Yang, Zhenbing Zeng
Affiliations: East China Normal University

6.13. R.I.P ShopeeVideo

Title: Efficient Bottle-in-Bottle Block for Real-Time
Super-Resolution
Members: Chengpeng Chen, Zichao Guo
Affiliations: Shopee https://shopee.com/

6.14. DoYouChargeQQCoin

Title: Ultra fast network for image super-resolution.
Members: Yuqing Liu, Qi Jia, Hongyuan Yu, Xuanwu
Yin, Kunlong Zuo
Affiliations: Dalian University of Technology; Xiaomi
Inc.

6.15. PixelBE

Title: Two-Stage Super-resolution Algorithm Based on
Re-Parameterization
Members: Dongyang Zhang
Affiliations: Mango TV (MGTV)

6.16. AGSR

Title: Optimized Extreme Lightweight Super Resolution
Members: Ting Fu, Zhengxue Cheng, Shiai Zhu, Dajiang
Zhou
Affiliations: Ant Group antgroup.com
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6.17. dh isp

Title: Lightweight network for image super-resolution.
Members: Ben Shao, Shaolong Zheng
Affiliations: Zhejiang Dahua Technology Co., Ltd.

6.18. Touch Fish

Title: Attention Block for Real-time Super-Resolution
Members: Hongyuan Yu, Weichen Yu, Lin Ge, Jiahua
Dong, Yajun Zou, Zhuoyuan Wu, Binnan Han, Xiaolin
Zhang, Heng Zhang, Xuanwu Yin, Kunlong Zuo
Affiliations: Multimedia Department, Xiaomi Inc.

6.19. P.A.I.R

Title: Few Activation Distillation Networks for Real-time
Super-resolution
Members: Anjin Park
Affiliations: Korea Photonic Technology Institute

6.20. SEU CNII

Title: PRFDN: High Parallelism Distillation Network For
Image Super-resolution
Members: Daheng Yin, Baijun Chen, Mengyang Liu
Affiliations: School of Computer Science and Engineer-
ing, Southeast University

6.21. diSRupt

Title: Depthwise-Residual Convolutional Neural Net-
work (DRCNN)
Members: Marian-Sergiu Nistor
Affiliations: University “Al. I. Cuza” Iasi

6.22. NTU-BL6

Title: Finetuning and pruning for Real-Time Super-
Resolution
Members: Yi-Chung Chen3, Zhi-Kai Huang2, Yuan-Chun
Chiang2, Wei-Ting Chen1, Hao-Hsiang Yang2, Hua-En
Chang2, I-Hsiang Chen2, Chia-Hsuan Hsieh4, Sy-Yen Kuo2

Affiliations: 1Graduate Institute of Electronics Engineer-
ing, National Taiwan University, Taiwan
2Department of Electrical Engineering, National Taiwan
University, Taiwan
3Graduate Institute of Communication Engineering, Na-
tional Taiwan University, Taiwan
4 ServiceNow, USA

6.23. NPU Superresolution

Title: ECBSR,
Members: Qingsen Yan, Yun Zhu, Jinqiu Su, Yanning
Zhang, Cheng Zhang, Jiaying Luo
Affiliations: Northwestern Polytechnical University

6.24. KCML2

Title: Enhanced Lightweight Image Super-resolution
(ELIS)
Members: Tu Vo
Affiliations: KC Machine Learning Lab

6.25. YNOT

Title: Super Resolution with Spectral Transform and
Wavelet Transform
Members: Youngsun Cho, Nakyung Lee
Affiliations: CJ OliveNetworks AI Research
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