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Figure 1. Samples from our Bokeh Effect Transformation Dataset (BETD). (Top) Synthetic samples. (Bot.) Real captures. The synthetic
images are generated by applying estimated space-varying PSFs. We use a Sony Alpha 7R II and IV cameras with different Sony and Canon
50mm lenses set to f/1.4, f/1.8 and f/16 apertures, to give a range of different bokeh effect conditions to map between.

Abstract

We present the new Bokeh Effect Transformation Dataset
(BETD), and review the proposed solutions for this novel
task at the NTIRE 2023 Bokeh Effect Transformation Chal-
lenge. Recent advancements of mobile photography aim to
reach the visual quality of full-frame cameras. Now, a goal
in computational photography is to optimize the Bokeh ef-
fect itself, which is the aesthetic quality of the blur in out-
of-focus areas of an image. Photographers create this aes-
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thetic effect by benefiting from the lens optical properties.

The aim of this work is to design a neural network ca-
pable of converting the the Bokeh effect of one lens to the
effect of another lens without harming the sharp foreground
regions in the image. For a given input image, knowing the
target lens type, we render or transform the Bokeh effect ac-
cordingly to the lens properties. We build the BETD using
two full-frame Sony cameras, and diverse lens setups.

To the best of our knowledge, we are the first attempt to
solve this novel task, and we provide the first BETD dataset
and benchmark for it. The challenge had 99 registered par-
ticipants. The submitted methods gauge the state-of-the-art
in Bokeh effect rendering and transformation.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Computational photography research and recent ad-

vancements of mobile cameras aim to reach the visual qual-
ity of professional full-frame DSLR cameras [14, 23]. One
of the most popular effects in photography is Bokeh, which
is the aesthetic quality of the blur in out-of-focus areas of an
image. This is shown in Fig. 1. In professional full-frame
photography, this effect is controlled by the optical design
of a lens, its aperture setting, the distance to the subject, and
the focal length of the lens.

Therefore different Bokeh styles – for the same input im-
age or scene – can be created using different lens designs
and aperture settings. Some more detail comparing the sub-
tle differences that appear in out-of-focus highlights of an
image are shown in the zoom-in captured by two different
lenses of the same scene in Fig. 2. Note the bokeh shapes
differ in complex ways across the image.

However, due to the physical limitations of mobile cam-
eras e.g. limited sensor size, these cannot produce a pleas-
ant Bokeh effect naturally. In this case, the effect has to
be created in post-processing, which is the main focus and
application of most algorithms for Bokeh rendering.

Classical approaches [4, 39, 58, 64, 72] render Bokeh
styles by controlling the shape and size of the blur ker-
nel, which is usually an estimated point spread function
(PSF). However, these methods might produce unpleasant
artifacts such as chromatic aberration and depth discontinu-
ities. Moreover they typically do not model the full natural
space-varying and non-uniform nature of Bokeh from real
lenses such as those effects shown in Fig. 2.

Deep learning-based methods [22, 43, 46, 60, 63] rep-
resent the state-of-the-art for this problem, but they have
difficulty simulating different real Bokeh styles, and only
produce the style present in the training data. Moreover,
these methods lack a mechanism to produce large blur size
on high-resolution images, as they are limited by the fixed
receptive field of the neural network, and the blur size
present in the training data. A common approach to ren-
der Bokeh consists in segmenting out the foreground (e.g.
face, person, or main object of interest) in the photo, and
then blurring the background [25, 52, 53, 74]. A similar ap-
proach is to blur the image based on a (estimated) depth
map [21, 43]. We can also find end-to-end deep learning-
based solutions [22,25,51] capable of transforming wide to
shallow depth-of-field images automatically.

Despite the active research in this topic, rendering pho-
torealistic Bokeh is still a challenging task. Moreover, we
still find unexplored the Bokeh Transformation task.

We define this task as follows: for a given input (all-
in-focus, out-of-focus or in-between) image A with known
lens-type and aperture setting, knowing the target lens type
and setting, we aim to produce or transform the correspond-
ing effect B while preserving the foreground intact.

In this work, we aim to study different deep learning
solutions capable of rendering or converting the Bokeh ef-
fect of one lens to the effect of another lens without harm-
ing the sharp foreground regions in the image. To the best
of our knowledge, we present the first dataset and bench-
mark for this task, the Bokeh Effect Transformation Dataset
(BETD) [12, 51].

2. Related Work
Classical Bokeh rendering methods require a single im-

age and its corresponding depth map [3,19,39,64,66]. More
advanced classical rendering also require the complete 3D
scene information [43], however, these are not practical for
the use-case studied in this work.

Multiple rendering approaches split the task into: depth
estimation [21], semantic segmentation [9], and classical
rendering [39, 44, 52, 53, 58, 72]. This task decomposition
also implies decoupling the image into at least background
and foreground, and execute rendering from back to front.

These modular or model-based approaches are flexible,
and potentially adaptable for modern ISPs [13], however,
they might struggle at depth discontinuities due to: oc-
clusions modifying the blur effect (part of the lens aper-
ture sees behind the foreground and part does not); semi-
transparency of hair; and incorrect segmentations. Further-
more their performance depends highly on the marginal per-
formance from each of the modules e.g. the quality of the
estimated depth maps, or the quality of the background-
foreground segmentation.

During the recent years we can observe a trend towards
using deep learning to simulate the rendering process as an
end-to-end operation. We find early works such as Nal-
bach et al. [42] and Xiao et al. [65] where the authors train
neural networks to produce a bokeh effect from an all-in-
focus image and its corresponding perfect depth map. Wang
et al. [60] proposes an automatic rendering system com-
prised of depth estimation, lens blur, and guided upsam-
pling to generate high-resolution depth-of-field (DoF) im-
ages from a single all-in-focus image. Peng et al. proposes
BokehMe [43], a framework that combines neural and clas-
sical rendering achieving state-of-the-art results.

Other deep learning-based methods [22, 25, 32, 35, 46,
51, 63] do not require any prior information such as depth
maps, which are not easy to capture in real-world scenes.
These methods usually follow a encoder-decoder architec-
ture [49], and map the all-in-focus input images into shal-
low DoF images in an end-to-end manner.

Despite the promising results, these neural rendering
methods lack controllability, as the trained neural network
can produce only the style of effect present in the training
data, and the blur range is limited by their receptive field. In
addition, we must note that all the referred methods are still
far from simulating the look of a real Bokeh effect gener-
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Figure 2. Zoom in on Real captures of the same scene with different lens/aperture parameters. Unlike many existing bokeh rendering
methods, natural DSLR lenses exhibit various characteristices that are aesthetically desirable to model, such as space-varying, non-circular
blur (”cat-eye” Bokeh effect towards corners), aperture blade shapes and clipping, aberrations or bokeh fringing, non-uniform bokeh
intensity at large aperture settings, as well as diffraction which is also present at smaller aperture settings.

ated with professional full-frame cameras for several of the
reasons already described that have not been well modeled.

Since the ultimate goal is improving mobile photogra-
phy, it is also important to address the method complex-
ity considering the computational limitations of mobile de-
vices. Ignatov et al. proposed several challenges and stud-
ies [22, 24, 25] on efficient Bokeh rendering on mobile de-
vices, being able to deploy the models on different target
platforms [25]. These challenges use the popular large-scale
Everything is Better with Bokeh! (EBB!) dataset [22] con-
taining more than 10 thousand images collected in the wild.
By controlling the aperture size of the lens, pairs of im-
ages with wide (aperture f/16) and shallow (aperture f/1.8 )
depth-of-field were taken, resulting in a normal sharp photo
and one exhibiting a strong Bokeh effect.

In this report we describe our new BEDT dataset which
goes a step further by considering different aperture settings
across different lenses; we then present the new benchmark
task which involves mapping from one lens/aperture-setting
to another. We cover participants’ solutions to the challenge
which cover a wide variety of neural rendering approaches,
from end-to-end networks to multi-stage processing and dif-
fusion models.

Related NTIRE 2023 Challenges. The NTIRE 2023
Lens-to-Lens Bokeh Effect Transformation Challenge is
part of the NTIRE 2023 Workshop series of challenges on:
night photography rendering [54], HR depth from images
of specular and transparent surfaces [68], image denois-
ing [34], video colorization [27], shadow removal [56, 57],
quality assessment of video enhancement [37], stereo super-
resolution [59], light field image super-resolution [62], im-
age super-resolution (×4) [73], 360° omnidirectional im-
age and video super-resolution [7], lens-to-lens bokeh effect

transformation [12, 51], real-time 4K super-resolution [15,
69], HR nonhomogenous dehazing [1], efficient super-
resolution [33].

3. BETD Dataset and Benchmark
To pose the novel challenge of Lens-to-Lens Bokeh Ef-

fect Transformation, we have gathered training and testing
datasets consisting of source-target image pairs.

Training set backgrounds are created by gathering nat-
ural images from the web [5] during which we prioritise
natural scenes and sharp images. Each of these images is
then artificially blurred with two different lens simulations
to create a source-target pair. Note that the Bokeh transfor-
mation is bidirectional: e.g. wide f/16 ←→ narrow f/1.8,
or in other words, sharper photo←→ strong Bokeh effect.
This implies a new level of difficulty compared with previ-
ous work. Moreover, we use different two lenses, each with
two different sets of apertures as we will explain next.

To create realistic artificial background blur, we capture
the space-varying point spread functions (PSFs) of multi-
ple commercial lenses attached to DSLR cameras, and then
locally convolve them with our gathered images. This pro-
cess models the nature of real aberrations, field variation,
changing aperture shapes etc, as shown in Fig. 2.

To further increase the realism of the training set, we also
add segmented portraits into the foreground that are spared
from the artificial blur, resulting in images of sharp people
in front of blurred backgrounds as shown in Fig. 1 (Up).
The foregrounds were obtained by using the foregrounds
and human segmentation masks from the iHarmony dataset
[5, 16]. To obtain sharper edges, we dilated the segmen-
tation masks and then ran an Alpha Matting model to op-
timize the segmentation. This also results in some semi-
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transparent areas e.g. around hair, that can add to the com-
plexity and realism of the challenge.

In total, our artificial data contains 20000 and 500 im-
ages for the training and validation sets, respectively.

Camera setup. Both the simulated and real images are
based on Sony Alpha 7R II and Sony Alpha 7R IV pro-
fessional cameras with a Sony 50mm lens set to f/1.8 and
f/16 apertures and a Canon EF 50mm lens set to f/1.8 and
f/1.4 apertures. For each real or synthetic pair, we pro-
vide the corresponding metadata for the source and target
images e.g. Sony50mmf1.8BS→ Canon50mmf1.4BS.
We also provide a nominal disparity value that indicates the
relative distance of the foreground to the background, such
that the amount of blur can vary for each image pair, which
adds additional variety to the dataset.

Evaluation. For our final testing set, we use another 100
artificially blurred images pairs, as well as 100 real image
pairs that were captured with the same lenses in the real
world, Fig. 1, Fig. 2, Fig. 3 and Fig. 5 show samples. The
resolution of the RGB images is 1584×1056. We keep pri-
vate the test ground-truth and the alpha masks (see Fig. 4).
For the real captures, which are captured simultaneously
with two cameras via a beamsplitter setup, we perform ad-
ditional post-processing alignment and color normallization
across the lenses which can vary in their spectral responses.
This is desired to focus evaluation on the aesthetic char-
acter of the blur shape changes, and the behavior around
foreground/background transitions.

To evaluate the performance of the proposed models, we
use the established Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM) metrics to measure the close-
ness between model predictions and targets. We also con-
sider perceptual metrics [11,18,71], especially for the com-
parison of real captures since these are not perfectly aligned.
We use standard LPIPS [71] in this analysis.

Additionally, we measure the fidelity and appearance
of the foreground and background on the images w.r.t the
ground-truth. These metrics account for possible perturba-
tions of the foreground (e.g. face, person, object of interest).
The complete benchmark can be consulted in Tab. 1.

4. Methods and Resuls
4.1. Overview

Here we summarize the core ideas behind the most com-
petitive solutions. Each proposed solution will be covered
in the following sections.

1. Decoder-Encoder architectures following U-Net [49].
These sorts of networks are standard in image restora-
tion [8, 14, 70]. The number of encoder and decoder

Figure 3. Real captures from BETD [12]. The first row of crops
corresponds to the setting Sony50mmf1.4. The second row cor-
responds to the setting Canon50mmf1.4.

blocks, as the structure of the blocks e.g. residual
blocks, NAFBlocks [8] varies in each solution.

2. The baseline of most the promising methods is
NAFNet [8], an efficient and state-of-the-art approach
for image restoration. Some of the characteristics of
this method are: simplied channel attention and the
combination of LayerNorm [2] and GeLU [20].

3. Multi-stage Training. Since there are many different
combinations of transformations and lens types, train-
ing becomes more complex. This technique allows
to maximize learning by alternating different learning
rates, augmentations and loss functions.

4. Metadata. The most powerful and flexible ap-
proaches encode the lens type and aperture e.g.
Sony50mmf16BS as an additional feature in the net-
work. By doing this, the methods can be conditioned
towards different lens types and transformations. We
consider this a powerful feature as controllable multi-
lens Bokeh was unexplored.
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Method
Synthetic + Real Synthetic Real Foreground/Background

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ SSIM ↑ LPIPS ↓ PSNRF ↑ SSIMB ↑

NAFBET [30] 35.264 0.9362 0.0985 45.861 0.9960 0.8416 0.2186 47.512 0.9553
SBTNet [45] 34.572 0.9361 0.0966 44.714 0.9945 0.8435 0.2224 47.889 0.9559
CBTNet 32.326 0.9333 0.1076 41.060 0.9910 0.8420 0.2230 46.875 0.9500
BokehOrNot [67] 32.288 0.9327 0.1130 41.003 0.9899 0.8423 0.2199 48.280 0.9488
SGLMS 32.076 0.9324 0.1076 40.651 0.9896 0.8419 0.2161 47.024 0.9484
IR-SDE 30.866 0.9297 0.1301 38.681 0.9847 0.8427 0.2387 44.905 0.9418
BGNet 30.327 0.9281 0.1249 37.804 0.9827 0.8415 0.2178 46.589 0.9410
DoubleGAN [21] 27.970 0.9213 0.1542 33.908 0.9691 0.8455 0.2175 41.522 0.9312
Synthetic 28.599 0.9128 0.2181 34.990 0.9580 - - 48.163 0.9132

EBokehNet-s [51] 34.543 0.9350 0.1039 44.687 0.9942 0.8414 0.2206 47.220 0.9530
EBokehNet [51] 35.521 0.9362 0.0993 46.285 0.9962 0.8412 0.2208 47.577 0.9557

Table 1. NTIRE 2023 Lens-to-Lens Bokeh Effect Transformation Challenge Results. The methods are ranked by PSNR/SSIM. The
metrics PSNRF and SSIMB refer to the foreground and background reconstruction respectively. The models were tested on unseen real
captures and synthetic rendered content. The official challenge baseline method is EBokehNet [51]. We provide as reference “Synthetic”
which indicates the metrics for the unprocessed source images. We can observe a performance gap between synthetic and real images, we
will discuss the possible reasons in our conclusions.

Method Input Training Time (Hrs.) Ensemble Metadata # Params. (M) GPU

NAFBET 512x512 144 No Yes 115 A100
SBTNet 288x288 120 No Yes 265 GTX1080
CBTNet 1920x1440 120 Yes Yes 182.24 TitanX
BokehOrNot 384x384 70 No Yes 21.4 A100
SGLMS 512x512 36 No Yes 7 TitanXP
IR-SDE 1920x1440 72 No Yes 78 A100
BGNet 1152x1152 20 No No 12.77 RTX3090
DoubleGAN 1024x1408 48 No No 5 RTX3090
EBokehNet-s [51] 1024x1024 44 No Yes 1.1 RTX3090
EBokehNet [51] 512x512 48 No Yes 20.3 RTX3090

Table 2. For reproducibility purposes, we include a summary of implementation details for each method. We show the dimension of the
input RGB image used for training the models, the approximated training time in hours, model complexity and platform.

4.2. Efficient Bokeh Rendering

We use as baseline EBokehNet [51], an efficient state-of-
the-art solution for Bokeh Effect Rendering and Transfor-
mation. Our method can render (assuming an all-in-focus
input) or transform the Bokeh effect of one lens to the ef-
fect of another lens while respecting the foreground regions
in the image. Moreover we can control the effect by feeding
the lens properties i.e. type (Sony or Canon) and aperture,
into the neural network as an additional input. Therefore
we can control how strong is the Bokeh effect, and simulate
different lenses. The key features are:

1. Efficient encoder-decoder architecture based on
NAFNet [8] with a modified baseline block.

2. Positional encoding (PE). Since Bokeh varies depend-
ing on the spatial location, we add to the decoder
blocks explicitly the xy coordinates similar to Coord-
Conv [36]. We do this by concatenating the 2-channel
positional encoding with the corresponding input fea-
tures for each decoder block.

3. We control the Bokeh effect by injecting the encoded
lens properties into the deep features similar to [26].

This method also archives state-of-the-art results on the
popular EBB! benchmark [22] for simple Bokeh Rendering.
The small version EBokehNet-s, with only 1M parameters,
represents the most efficient solution proposed in this chal-
lenge, while being ranked 2nd in terms of performance.
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Figure 4. Synthetic samples from our BETD dataset. From left to right: source image, target image, alpha mask.
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Input image Target image

Figure 5. Real captures from our BETD. These images were captured using the setups Sony50mmf1.8BS and Canon50mmf1.4BS.
The proposed models are able to do a bidirectional conversion between both setups Sony↔Canon. Since the images are not perfectly
aligned, we use perceptual metrics such as SSIM and LPIPS [71] to evaluate the results. Images courtesy of Glass Imaging, Inc.
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4.3. NAFBET

Team SRC-B proposes NAFBET [30]. Based on the im-
age restoration model NAFNet [8], they add encoding and
decoding parameters blocks to adapt the transition between
different lens bokeh effects.

As shown in Figure 6, the authors design the model
based on NAFNet [8], and add the lens parameters of the
input (source) image and the lens parameters of the output
(target) image at the front end of the encoder and decoder.
The insertion method works as follows:

θsrc = β(α lensrc + disparity) (1)

θtgt = β(α lentgt + disparity) (2)

F2 = F1 + θsrcF1 (3)

where F1 and F2 are deep extracted features.

Figure 6. Team SRC-B proposed NAFBET [30] architecture.

Implementation Details The model was trained using
only the new BETD [12, 51] dataset. In each training
batch, each paired images (source and target) are cropped
to 512 × 512 and augmented by random flipping and rota-
tion. The learning rate is initialized as 2× 10−5 and weight
decay is 1 × 10−4. The network is trained for 106 itera-
tions in total by minimizing L1 loss function with AdamW
optimizer. The team uses Pytorch and one A100 GPU.

4.4. SBTNet: Selective Bokeh Transformation

Team AIA-Smart proposes SBTNet [45] to tackle the
task of bokeh transformation. As shown in Fig. 7, SBTNet
contains several steps. First, they design AlphaNet to pre-
dict the alpha map of the object in focus, which facilitates
preserving the sharp boundaries of focused objects in trans-
formed results. To extract more global information, they
implement AlphaNet with a U-Net [49] architecture where
the bottom layers are replaced with short distance attention
(SDA) and long distance attention (LDA) [61].

Since bokeh transformation includes the transformation
of lens type and blur amount, the authors made the fol-
lowing designs for these two points. (i) they encode the
lens type of the source image and the target image into a
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Figure 7. Team AIA-Smart proposed SBTNet framework.

2-channel one-hot map. Considering the cat-eye effect of
camera lens (the bokeh balls are not circular at the corners
of images), they additionally add a 2-channel coordinate
map as input to reflect the degree of the cat-eye effect in dif-
ferent positions. (ii) for the blur amount transformation, we
can argue that the ratio of blur amounts between source im-
ages and target images is most important other than the spe-
cific blur amount of images. Therefore, the team proposes
several FeaNets -with the same architecture- to extract the
multi-scale features with different blur amount transforma-
tion. Each FeaNet corresponds to a f-number pair. For ex-
ample, FeaNet-1.4/16 means that the f-number of the source
image is 1.4, while the f-number of the target image is 16.0.
Thus, the blur ratio between the source image and the target
image can be calculated by 1.4/16.

In practice, during training, they select a particular
FeaNet for each training sample, and during inference, they
can interpolate the features of two neighboring FeaNets to
obtain results with an intermediate blur ratio. This process
is termed as integration. Then, they use 4 dynamic residual
modules to obtain results progressively. Compared with in-
terpolation in image level, interpolation in feature level per-
forms better and has less parameters. The architecture here
is similar to DRBNet [50]. Finally, the above predicted al-
pha map and output image are both in 1/2 resolution, so the
team further designs RefineNet (as a simple U-Net [49]) to
obtain full-resolution results.

Implementation Details The implementation is based on
PyTorch. The training strategy contains 3 stages where
Adam [29] optimizer is used for optimization. RefineNet
is not used during the first 2 stages. At training stage 1,
the team only uses the data where the f-number of source
images is 1.8 and the f-number of target images is 16.0.
Additionally, only FeaNet-1.8/16 is available. The learning
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rate is set to 10−4. The model is trained for 300 epochs
with a batch size of 8. The training time is around 30h. At
training stage 2, all of the data are used, and with the input
of different f-number pairs, corresponding FeaNet is active.
They initialize the parameters of all FeaNets with the pa-
rameters of FeaNet-1.8/16. The learning rate is 10−4 for
FeaNet and 10−5 for other structures. The model is trained
for 100 epochs with a batch size of 32. The training time is
around 60h. At training stage 3, the parameters except for
RefineNet are fixed. The learning rate is set to 10−4. The
model is trained for 100 epochs with a batch size of 8. The
training time is around 30h.

During inference, SBTNet can perform any arbitrary
bokeh transformation by interpolating the features of
FeaNet with the neighboring blur ratio.

Dataset The model was trained using only the new
BETD [12, 51] dataset. At training stages 1 and 2, they
first resize images to half resolution, and the inputs are ran-
domly cropped into the size of 288 × 288. At training
stage 3, there is no image resizing, and the cropping size
is changed into 576× 576. The solution is open-sourced at
https://github.com/JuewenPeng/SBTNet.

4.5. CBTNet

Team NUS-LV Bokeh proposes CBTNet, a controllable
bokeh transformation model based on U-net [49] structure,
which consists of two components: foreground segmenta-
tion model and conditional background rendering model.

The overall architecture of the model is shown in Fig. 8.
The model consists of two main components: (i) a fore-
ground segmentation network based on U2NET [6]. (ii) is
a conditional background rendering model [47] containing
two branches, the debokeh branch and the bokeh branch.
Depending on the metadata, the input image will go through
the debokeh branch or the bokeh branch.

The overall model framework of the bokeh branch or
debokeh branch can be seen in Fig. 9, which consists of
two cascaded U-net and conditional MLP. The U-net [49] is
mainly composed of Modulated Residual Blocks (MRBs)
and Modulated ScaleFusion (MSF) — see Fig. 10 and 11.

The authors use the provided metadata e.g. type of lens,
as conditional vectors for conditional background rendering
model in both the training and inference stages.

The team uses mainly the new BETD dataset [12, 51],
and a external dataset for the training of foreground seg-
mentation model. During the training process, they first
trained the foreground segmentation model using the pro-
vided alpha mask as the ground-truth. Next, they trained
the first conditional U-net [49] network of the background
rendering model, then froze it, and trained the second cas-
caded conditional U-net. In order to achieve better perfor-
mance, they fine-tuned multiple models with different data
and ensemble them for inference.

Figure 8. Team NUS-LV Bokeh CBTNet architecture.

Figure 9. CBTNet Conditional Rendering Model.

Figure 10. CBTNet: Modulated Residual Blocks (MRBs).

Figure 11. CBTNet: Modulated ScaleFusion (MSF).

Implementation Details The team used Pytorch frame-
work and Adam [29] optimizer. For the foreground seg-
mentation model, they utilized the L1 loss with a learning
rate 1e-3. This model was trained for 24hrs using one TianX
GPU with a batch size of 6. For the conditional background
rendering model, they used a combination of L1, MSE and
SSIM losses. The learning rate is initialized to 1e-4.
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Figure 12. Team BokehOrNot architecture [67].

4.6. BokehOrNot

Team BokehOrNot proposes a method for Bokeh effect
transformation based on lens and aperture size [67].

The conventional approach to single-photo bokeh trans-
formation relies solely on the visual features of the image.
In contrast, the new BETD dataset [12,51] incorporates ex-
tra lens information to enhance the learning process. To
this end, the team proposes an embedding technique that
facilitates the transformation of lens type, aperture size, and
disparity in the input images based on the image restora-
tion model Restormer [70]. This method enables our model
to learn distinct bokeh styles with increased accuracy and
verisimilitude. Additionally, the authors seek to alleviate
the undesired blurring of the foreground by leveraging al-
pha masks in the later stages of the training process. Specif-
ically, they exclude the foreground area from the loss func-
tion to prevent the bokeh effect from being applied in this
region. The overall framework is illustrated inFig. 12.

The model builds on Restormer [70], enhancing its func-
tionality. The authors “tensorize” the source and target lens
information as well as the disparity in the forward stage of
the model, which are subsequently fed through a novel sinu-
soidal embedding module to generate a tensor suitable for
model learning. These lens information tensors are concate-
nated and being processed by a MLP layer, and then con-
catenate with the image input tensors. The resulting longer
tensor is passed through an optimized transformation block.
The new transformation block involves scale and shift pro-
cessing with residual added.

Technical Details The team uses only the BETD [12, 51]
dataset. All the images are cropped to 256 × 256 or 384 ×
384 patches randomly before feeding to the network.

Training and Inference: The training process contains
two stages. The first stage uses 256×256 input size and the
loss is calculated between the output image from the model
and the target image. The second enlarges the input size to
384 × 384, and incorporates new loss function that calcu-
lates only the bokeh area loss, not including the foreground

area which should remain as original as possible.
The optimizer is Adam [29] with a fixed learning rate of

1e-4 and a batch size of 4 in the first training phase, and a
fixed learning rate of 5e-5 and a batch size of 2 in the sec-
ond training phase. By conducting this, the distribution of
transformation pairs obtains more blur-to-sharp transforma-
tions, which enhances the model robustness on sharpening
transformation.

4.7. SGLMS

Team IPAL Bokeh proposes an end-to-end network for
Bokeh Effect Transformation with Lens Mapping guided by
foreground segmentation, which is named Segmentation-
Guided Lens-Mapping Scheme (SGLMS). The main struc-
ture of the proposed network is shown in Fig. 13. It includes
two main components, the Foreground Segmentation Mod-
ule (FSM), and the Lens Mapping Module (LMM). The
FSM will generate a foreground mask estimation based on
the input image. The LMM will transform the blur part in
the Bokeh image from one lens to another lens. The output
image is generated by fusing the transformed image and the
source image, guided by the foreground mask to keep the
sharp foreground regions in the image.

Inspired by [28], the FSM has two branches: the de-
tail prediction Branch, which will predict the detail of the
foreground boundary, and the Semantic prediction Branch,
which will give a general prediction of the foreground. The
fusion branch will fuse the result of the two branches to
generate the foreground alpha image. The structure of the
FSM is shown in figure 14, and detail will be described in
the Global Method Description Section.

For each type of lens, the blur kernel k is different from
other types of lens. Therefore, the LMM is designed with
multi-encoders and multi-decoders to deal with the Bokeh
effect transformation between multi-lens. For the Bokeh
effect transformation task between four types of lenses, the
LMM will consist of four encoders and four decoders, as
shown in Fig. 15. The encoder will be chosen based on
the source lens information, and the decoder will be chosen
based on the target lens information.

Fig. 16 shows one encoder-decoder connection from the
LMM. The base architecture is designed as a U-Net [38],

Figure 13. Team IPAL Bokeh proposed SGLMS architecture.
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Figure 14. SGLMS Foreground Segmentation Module.

Figure 15. SGLMS Lens Mapping Module.

Figure 16. SGLMS: Encoder-Decoder Architecture in LMM.

which produces feature maps of different resolutions and so
extracts multi-scale features. There are four layers for both
the encoder and the decoder. As opposed to traditional U-
nets, the proposed network uses gated convolution and SK
fusion blocks [55] instead of traditional convolution blocks.

Technical details The team uses only the BETD [12, 51]

dataset, and Pytorch framework. The models are trained us-
ing AdamW with learning rete 0.001 and a cosine anneal-
ing schedule. The dataset is split using a holdout 80/20
split for training and local validation. The team trained
Foreground Segmentation Module (FSM) and Bokeh Effect
Transformation Module (BETM) separately. For FSM, they
resize the full image into (480, 640) and feed it to the FSM.
The FSM is trained for 40 epochs with each kind of lens.
For BETM, they randomly cropped images into (512, 512)
and randomly flipped them. The BETM is trained with the
reduced-size images, but is validated with the full-size im-
ages. Finally, the corresponding encoder-decoder of each
kind of Bokeh Transformation will be extracted from the
whole network and fine-tuned with the corresponding FSM.

4.8. IR-SDE

Team IR-SDE proposes Refusion: Enabling Large-Size
Realistic Image Restoration with Latent-Space Diffusion
Models [41], based on the IR-SDE [40].

The proposed method leverages the diffusion models for
realistic image restoration. Specifically, IR-SDE [40] as the
base diffusion framework, which can naturally transform
the high-quality image to its degraded counterpart, without
caring how complicated the degradation is. As shown in
Figure 17, IR-SDE is a mean-reverting SDE in which the
forward process is defined as:

dx = θt (µ− x)dt+ σtdw, (4)

where θt and σt are time-dependent positive parameters
that characterize the speed of the mean-reversion and the
stochastic volatility, respectively. Since it is an Ito SDE, the
authors derive a reverse-time SDE:

dx =
[
θt (µ− x)− σ2

t ∇x log pt(x)
]
dt+ σtdŵ. (5)

At test time, the only unknown part is the score
∇x log pt(x) of the marginal distribution at time t. As other
diffusion-based models, they employ a CNN network to es-
timate the score to backward from the low-quality image to
the high-quality image.

It is also worth noting that running the above diffusion
model needs to repeatedly evaluate the scores and thus is
time-consuming, especially on tasks with high-resolution
images. For Bokeh Effect Transformation, all inputs
are captured with 1920 × 1440 × 3 pixels, which is a
computation disaster for diffusion models. To handle
it, the authors propose to perform the restoration on the
low-resolution latent space, by incorporating a pretrained
U-Net network. Different from latent-diffusion [48] that
uses VAE as the compressing model, the proposed U-Net
maintains multi-scale connections from the encoder to the
decoder, which better captures the image’s information and
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Figure 17. Team IR-SDE (a) Image restoration based on the IR-
SDE [40]. (b) The modified NAFBlock [8].

thus the reconstructed image is closer to the original image.
In this way, they are able to recover accurate HR images,
and the training for U-Net [49] is also much easier than
VAEs that use additional adversarial training.

Model Design. Unlike other L1 loss normally trained
networks which usually produce smooth/blurry results, the
proposed Refusion aims to achieve a highly competitive
perceptual performance as well as the distortion scores
(PSNR). Since the guiding information is in text for-
mation (such as “Sony50mmf1.4” or “Canon50mmf1.8”),
the team manually tensorize them by converting the
lens name to opposite numbers (-1 and 1). For ex-
ample, “Canon50mmf1.4BS” is converted to -1.4, and
“Sony50mmf16BS” is converted to 16.

In addition, the model can be further improved by up-
dating the score-network from U-Net [49] to NAFNet [8],
which is more efficient and also has a good performance
compared with recent Transformers [70]. To adaptively in-
sert the scalar times and lens information into the network,
the authors construct a simple MLP to learn two pairs of
scale-shift parameters and apply them to the features with
affine transforms. Such a network leads to better learning
of score function conditioned on current state xt, original
low-quality image xt, and time t.

Training and Inference description. The team first
train the U-Net on the BETD dataset [12, 51] for 300,000
iterations, then train the Reffusion model based on the U-
Net for 400,000 iterations. In U-Net training phase, all in-
put images are cropped to 128. In Reffusion model training
phase, all input images cropped to 512 × 512, while using
U-Net to compress them to 128 × 128. For both models,
they use the Lion [10] optimizer with learning rate initial-
ized with 3e-5 and decayed to 1e-7 by the Cosine scheduler.
The diffusion step is set to 100. For testing, first compress
the image to latent space and perform SDE to recover the
clean image, and then decompress the image back to HR
space.

4.9. BGNet

Team BIGbaodan proposes BGNet, based on the model
DeblurGANv2 [31] and added some data processing meth-
ods. The team found DeblurGANv2 [31] to work the best
among many other methods for image restoration and de-
blurring such as NAFNet [8].

According to the provided metadata, the authors di-
vided the data into two categories: from sharp to blur, and
from blur to sharp. They divide the image into two parts
(foreground and background) using a semantic segmenta-
tion model. In this part, the Deeplabv3+ [9] model from
mmsegmentation is used. The model is trained using as
ground-truth the provided alpha masks.

Next, they trained DeblurGANv2 [31] twice. First, us-
ing the picture pairs that changed from blur to sharp as
input and output. Second, using the picture pairs that
changed from sharp to blur as input and output. For train-
ing this model, the images are segmented using the ground-
truth alpha masks to cut out the foreground. During infer-
ence, the segmentation is done using the previously trained
Deeplabv3+ [9] model. Once the background has been pro-
cessed, the foreground is added back to the final image.

Technical Details The authors use only the new
BETD [12, 51]. The main model, DeblurGANv2 [31], was
trained using Adam optimizer [29] with a learning rate of
0.001 during 200 epochs, using random crops.

4.10. DoubleGAN

Team JiXiangNiu proposes a GAN [17] framework.
This framework is inspired in BGGAN [46] and Team
ZJUT-Vision solution [25]. They use two consecutive U-
net [49] as generators (G). As for discriminator (D), they
also use two discriminators in parallel. Specifically, both
generator U-net [49] contain 9 residual blocks and transpose
convolutions for upsampling. Also they use spatial attention
block and channel attention block to enhance performance.

The target loss functions contains two parts, i.e. G loss
and D loss. In particular, the G loss contains five parts:
adversarial loss [17], perceptual loss, L1 loss, SSIM loss
and FFT loss. Specifically, the FFT loss is a frequency loss,
the team noticed that two images with different Bokeh effect
have different frequency components, therefore, the define
the FFT loss as a L2 loss in frequency domain, to better
guide the model to transfer bokeh effects.

Technical Details The model is implemented with Ten-
sorflow, and trained using Adam [29] optimizer with the
learning rate set to 1e-5. The team only uses the BETD [12,
51], and a classical GAN training strategy. The complete
training takes two GPU RTX 3090 days.
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5. Conclusion

We introduced the novel Bokeh Effect Transformation
Dataset (BETD) and benchmark. Previous work focused
mainly on rendering realistic Bokeh effects, yet in this
work we study neural networks capable of transforming the
Bokeh effect of one lens to the effect of another lens with-
out harming the sharp foreground regions in the image. For
a given input image, knowing the target lens type and its
settings, we can render or transform the Bokeh effect ac-
cordingly to the lens style. To study this novel task, we
built the BETD dataset using two full-frame cameras, and
diverse lens setups, and both simulated and real data.

While we have attempted to model many aspects of this
real-world problem, there are still some limitations in us-
ing synthetic data only for training; real data can exhibit
larger differences in spatial and color alignment, nonlinear
sensor effects, more complex depth and occlusion based ef-
fects, noise and so on. We believe future studies can build
on this work to close the sim-to-real gap that can exist, and
for example use a larger set of real lens-to-lens images also
for training. By its nature, Bokeh is a aestheticly subjective
image feature, and it will also be informative to conduct hu-
man preference studies around such results as well as evalu-
ate numerically. However to the best of our knowledge, we
are the first attempt to solve this novel task, and we provide
the first dataset and benchmark, gauging the state-of-the-art
in Bokeh effect rendering and transformation.
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6. Appendix

6.1. NTIRE 2023 Team

Title: NTIRE 2023 Lens-to-Lens Bokeh Effect Transfor-
mation Challenge Organization
Members: Marcos V. Conde, Tim Seizinger, Radu
Timofte
Affiliations: Computer Vision Lab, CAIDAS, IFI, Uni-
versity of Würzburg, Germany

6.2. Glass Imaging, Inc.

Title: NTIRE 2023 Workshop Co-organizers
Members: Manuel Kolmet, Tom E. Bishop

Affiliations: Glass Imaging, Inc. https://glass-
imaging.com/

6.3. SRC-B

Title: NAFBET: Bokeh Effect Transformation with Pa-
rameter Analysis Block based on NAFNet
Members: Xiangyu Kong, Dafeng Zhang, Jinlong Wu,
Fan Wang
Affiliations: Samsung Research China - Beijing (SRC-B)

6.4. AIA-Smart

Title: SBTNet: Selective Bokeh Transformation
Members: Juewen Peng, Zhiyu Pan, Chengxin Liu, Xian-
rui Luo, Huiqiang Sun, Liao Shen, Zhiguo Cao, Ke Xian
Affiliations: 1 Huazhong University of Science and Tech-
nology 2 Nanyang Technological University
https://github.com/JuewenPeng/SBTNet

6.5. NUS-LV-Bokeh

Title: CBTNet: Modulated Bokeh Transformation
Members: Chaowei Liu1, Zigeng Chen1, Xingyi Yang1,
Songhua Liu1, Yongcheng Jing3, Michael Bi Mi2, Xinchao
Wang1

Affiliations: 1National University of Singapore
2Huawei 3University of Sydney
https : / / github . com / lcwLcw123 /
BKchallenge

6.6. BokehOrNot

Title: BokehOrNot: Bokeh effect transformation based
on lens and aperture size
Members: Zhihao Yang, Wenyi Lian, Siyuan Lai
Affiliations: Uppsala University
https : / / github . com / indicator0 /
bokehornot

6.7. IPAL-Bokeh

Title: A Segmentation-Guided Lens-Mapping Scheme for
Bokeh Effect Transformation
Members: Haichuan Zhang, Trung Hoang, Amirsaeed
Yazdani, Vishal Monga
Affiliations: Department of Electrical Engineering, Penn-
sylvania State University, USA
http://signal.ee.psu.edu

6.8. IR-SDE

Title: Refusion: Enabling Large-Size Realistic Image
Restoration with Latent-Space Diffusion Models
Members: Ziwei Luo, Fredrik K. Gustafsson, Zheng
Zhao, Jens Sjölund, Thomas B. Schön
Affiliations: Department of Information Technology, Up-
psala University
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6.9. BIGbaodan

Title: BGNet: Improving DeblurGAN-v2 for Bokeh
Members: Yuxuan Zhao, Baoliang Chen, Yiqing Xu
Affiliations: Key Laboratory of Intelligent Perception and
Image Understanding of the Ministry of Education, Xidian
University, Xi’an, China

6.10. DoubleGAN

Title: DoubleGAN
Members: JiXiangNiu
Affiliations: North China University of Technology
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