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Abstract

The task of single image super resolution (SISR) has
taken much attention in the last few years due to the wide
range of real-world applications. However, most of the
recently developed methods are computationally expensive
and need much more memory. To solve this issue, we pro-
pose a simple Transformer-style network (STSN) for the im-
age super resolution (SR) task. The idea of this method is
based on using convolutional modulation (Conv2Former),
which is a very simple block with a linearly compared to
quadratically as in Transformers. This Conv2Former is
simplified the self-attention mechanism based on utilizing
only convolutions and Hadamard product. Also, the orig-
inal Conv2Former is further improved to be able to ex-
tract local features, which is helpful for SR task. Based
on this Conv2Former and multi-layer perceptron (MLP), we
propose a convolutional modulation block (Conv2FormerB)
which is similar to the Transformers block. Based on this
Conv2FormerB, 3 × 3 convolution and enhanced spatial
attention (ESA) block, an STSN is designed for the SISR
task. This STSN achieved good results in multiple SR bench-
marks. Finally, our STSN model attained 5.6 × faster run
time compared to LWSwinIR.

1. Introduction
The SISR is a fundamental task of the computer vision

domain. This SISR task focuses on generating an out-
put high-resolution (HR) image corresponding to the low-
resolution (LR) input one [3,13,41]. There are different cri-
teria to classify this SISR task based on degradation, model
parameters, the use of deep learning, etc. For example, the
models are classified based on parameters into the classical
SR model [3, 41], lightweight SR models [13], and mobile
scale models [15]. In addition, the models can also classify
conventional methods [45] and deep learning-based meth-
ods [3, 13, 41].

Recently, the model based on deep learning is taken
much attention to solve the SISR task. Dong et al. [11]

developed the first deep learning model for the SISR task.
However, this model is a very shallow and is not able for
extracting more discriminative features. Then, the authors
in [29] introduced residual learning to the task of image
super-resolution, which helps to increase the model depth
to hundreds of layers. In addition, methods-based attention
mechanism are widely used due to the ability of attention
mechanism for extracting non-local features [10, 49]. Fi-
nally, the transformer-based model is successfully used to
solve the SISR task [9, 25, 28, 44].

For the transformer-based model, the initial method to
use Swin Transformer is made by Liang [28] (SwinIR) to
solve the SR task. This SwinIR model is based on using
residual Swin Transformer blocks (RSTB) to extract deep
feature, which takes benefits to form non-local features and
residual learning. After that, an efficient transform is sug-
gested [34] based on designing an efficient Transformer
model. Despite the success of these transformer-based mod-
els in this task, these models have large computational cost
issues for applications that require low latency due to the
process of computing self-attention.

In this paper, we tried to solve the Transformer-based
model’s problem for solving the SISR task. So, we pro-
pose a simple Transformer-style network for image super-
resolution (STSN). This STSN model is based on using
the original convolutional modulation, but the model is
improved to extract local features. This is done by de-
signing the convolutional modulation block (Conv2Former)
layer by introducing 3 × 3 instead of 1 × 1 for local fea-
ture extraction. Then, a convolutional modulation block
(Conv2FormerB) is built based on using Conv2Former and
multi-layer perceptron (MLP). Afterward, a convolutional
modulation group (Conv2FormerGroup) is designed based
on Conv2FormerB, 3 × 3 convolution, and enhanced spatial
attention (ESA) block. Finally, the STSN is built based on
using Conv2FormerGroup for deep feature extraction.

The paper contribution can be summarized as the follow-
ing:

• We propose Conv2FormerB, which works as a main
block for the SR model, in which its computation rises
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linearly rather than quadratically as in Transformer.

• Based on using the Conv2FormerB as the main block,
an STSN model is built for the image SR task.

• The proposed method attained the state-of-the-art on
the SR benchmark in run time with a good perfor-
mance. Also, an ablation study is performed to indi-
cate the impact of each model component.

2. Related Work
In this related work section, we will discuss the work

related, including two types: classical SR models and
lightweight SR models.

2.1. Classical SR

For the classical SR models, these models considered
as traditional models include the enhanced deep super-
resolution network (EDSR) [29] that is based on using
residual learning to improve the SR performance. After
that, this EDSR is a further improved residual dense net-
work [50] based on using the dense connection. The deep
back-projection networks (DBPN) [16] is introduced based
on exploiting iterative up- and down-sampling layers. Then,
the ODE-inspired network design model [17] is developed
based on using the ordinary differential equation (ODE).
Also, based on a graph neural network (GNN), a cross-scale
internal graph neural network (IGNN) [54] is developed.
However, the recent models that solve the classical SR task
are based on Transformer and attention mechanism.

The attention-based models show strong performance
in solving the SISR task based on finding non-local fea-
tures. One of the starting models to use this attention
is the residual channel attention network ( RCAN) [49]
based on using the channel attention mechanism. After
that, the second order attention (SAN) [10] is developed
using the second-order channel attention (SOCA), which
can adaptively rescale the channel-wise features. For the
Transformer-based image SR, the initial model is developed
based on Swin Transformer [33] to solve the image restora-
tion task in SwinIR [28]. Afterward, the RCAN [49] is fur-
ther improved [30] based on finding a proper training strat-
egy and minimal changing in the architecture.

Moreover, a hybrid attention transformer (HAT) [7] is
developed based on using overlapping cross-attention mod-
ules for improving the interaction between neighboring
window features. An efficient long-range attention network
(ELAN) [48] is developed by Zhang et al. based on calcu-
lating self-attention (SA) on non-overlapped feature groups.
In [44], a hybrid SR network of CNNs and transformer is
introduced based on using CNNS for captioning local fea-
tures and Transformers to capture long-range multi-scale
dependencies. A recursively defined residual network [36]

is developed based on the effective use of the attention
blocks. Also, a cross aggregation Transformer (CAT) [8] is
introduced based on using rectangle-window self-attention
(Rwin-SA) that uses parallel horizontal and vertical rect-
angle window attention in different heads for expanding
the attention area and aggregating the features cross differ-
ent windows. In [47], an attention retractable Transformer
(ART) model is developed based on using both dense and
sparse attention modules which permit the interaction of to-
kens from sparse areas for providing a wider receptive field.

2.2. Lightweight SR

For the lightweight SR model, there is strong progress in
using CNNs for solving the SR task based on the low com-
putational cost of the convolution operation. For example,
the information distillation network (IDN) [21] is developed
based on using the distillation of the feature maps. Then,
this IDN is further improved [20, 31] based on improving
the distillation task. This model is based on extracting fea-
ture channels based on the degree of channel redundancy. A
hybrid pixel-unshuffled network (HPUN) [39] is suggested
by Sun et al. based on using pixel-unshuffled operation for
downsampling the input features and utilizing grouped con-
volution for decreasing the channels. Also, attention in an
attention network (A2N ) [6] is developed based on the idea
that not all feature maps are helpful to the model.

In addition, Yang et al. [43] developed a feature similar-
ity ranking algorithm image SR task. An efficient non-local
contrastive attention (ENLCA) [42] is introduced based on
finding long-range dependencies and leveraging more rel-
evant non-local features. In addition, the pixel attention
module is further improved [52] based on reducing the
model parameters and producing better performance. Then,
a blueprint separable residual network (BSRN) [27] is intro-
duced based on designing two blocks one takes the place of
the redundant convolution operation. Also, Gendy et al. de-
veloped a balanced spatial feature distillation and pyramid
attention (BSPAN) [14] for lightweight SR task.

Moreover, the pixel attention module is further improved
[53] based on reducing the model parameters and producing
better performance. After that, a residual local feature net-
work (RLFN) [23] is developed by Kong et al. based on
using three convolutional layers to learn residual for simpli-
fying the feature aggregation. Afterward, many methods are
based on using the Transformers are developed [9, 25, 38].
Then, a cross-receptive focused inference network (CFIN)
[25] is developed based on using a hybrid model of CNNs
and a Transformer.

In addition, N-Gram context is developed for the im-
age super-resolution task based on using Transformer in
N-Gram in the Swin Transformers network [9]. In [38],
a wavelet-based Transformer for image super-resolution
(WTSR) is introduced, which is able to implicitly mine
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Figure 1. The architecture of the proposed STSN

the self-similarity of image patches on the wavelet domain.
Even though these Transformer-based models attained good
performance, these models need a long time for inference,
which limit their use in some applications. Based on this
limitation of these models, we tried to design a model with
linear computational complexity for a fast-processing.

3. Proposed Model.
Our model is built based on using three stages of shadow

and deep feature extraction modules and the image recon-
struction module. A traditional convolution layer is used for
shallow feature extraction. After that, we designed the deep
feature extraction based on using the convolutional modula-
tion group (Conv2FormerGroup). Next, we will discuss the
details of each block.

3.1. Convolutional Modulation Group
(Conv2FormerGroup)

The Conv2FormerGroup is built based on stack n
Conv2FormerB blocks with 3 × 3 convlution and ESA
[32]. Assuming the input feature Fi−1, the functions of
Conv2FormerGroup, then function of this block can be rep-
resented as:

Fi = HConv2FormerBi
(Fi−1), i = 1, 2, .., n (1)

Fcon3 = HConv3(Fn), (2)

FESA = HESA(Fcon3), (3)

where HConv2FormerBi is the function of ith

Conv2FormerB, HConv3 is the function of 3 × 3
convolution, and HESA is the function of the ESA layer.
This 3 × 3 convolution is utilized for extracting the local
features. Also, FESA is the output feature map of the
Conv2FormerGroup. Therefore, the operation of the gth

Conv2FormerGroup can be represented as:

Fg = HCFG(Fg−1), (4)

where HCFG is the function of the Conv2FormerGroup and
Fg the output of gth layer of Conv2FormerGroup.

3.2. Convolutional Modulation Block
(Conv2FormerB)

The Conv2FormerB is designed similarly to the Trans-
former block of LayerNorm and convolutional modulation
(Conv2Former) layer and multi-layer perceptron (MLP).
The function of ith Conv2FormerB block (HConv2Formeri )
is defined as follows:

FLN−1 = HLN (Fi−1), (5)

FCF = HConv2Former(FLN−1) + Fi−1, (6)

FLN−2 = HLN (FCF ), (7)

Fi = FMLP (FLN−2) + FCF , (8)

where FLN−1, FCF , Fi are outputs of of Layernorm layer,
Conv2Former layer, and the output feature, respectively.
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Also, HLN , HConv2Former, and FMLP are the functions
of the Layernorm layer, Conv2Former layer, and the MLP
layer, respectively. The operation of the HConv2Former
will be explained in the next section.

3.3. Convolutional Modulation (Conv2Former)
Layer.

The convolutional modulation (Conv2Former) layer
[18] is first developed for improving the traditional self-
attention. However, this Conv2Former layer has some limi-
tations, such as it cannot extract local features, which makes
it not helpful for image SR task. To solve this problem, we
further replaced the 1 × 1 with a traditional 3 × 3 convo-
lution, so the model can extract local features. Given an
input feature map FLN−1 ∈ RH×W×C , the Conv2Former
is designed using two branches. The first one is built using
only one pointwise convolution, and the second is built us-
ing another pointwise convolution followed by depth-wise
convolution with a kernel size of k × k. Then, these two
branches are multiplied using the Hadamard product. We
can express the function of this operation as follows:

FDC = HDConvk×k
(HConv1(FLN−1)), (9)

Fconv1 = HConv1(FLN−1), (10)

FCF = HConv1(FDC ⊙ Fconv1), (11)

where ⊙ represents the Hadamard product. Also, HConv1

defines the pointwise convolution layer. HDConvk×k
rep-

resents a depthwise convolution with kernel size of k ×
k. FDC , Fconv1, FCF are the outputs of the depthwise
convolution, pointwise convolution, and the output of the
Conv2Former layer. Therefore, the above operations of the
Conv2Former can be defined as follows:

FCF = HConv2Former(FLN−1), (12)

where HConv2Former is the function of Conv2Former.
As proved in ref. [18], the computational complexity of

convolution modulation is proportional linearly, the com-
plexity of our model rises linearly because it depends on
convolution modulation instead of the similarity score ma-
trix in self-attention in the Transformer.

3.4. The simple Transformer-style network (STSN)
Framework

Our STSN framework is built based on three modules of
shallow feature extraction, deep feature extraction, and im-
age reconstruction, as shown in Fig. 1. The shallow feature
extraction is designed using 3 × 3 convolution (Hconv3) to
extract coarse features (F0) from the LR input image. So,
we can define this module as:

F0 = Hconv3(x) (13)

Then, the deep feature extraction is made using m layers
of Conv2FormerGroup (HCFG).

Fg = HCFGg
(Fg−1), g = 1, 2, ..,m (14)

where Fg defines the output of the g layer of the
Conv2FormerGroup. Following that, both the coarse fea-
ture map (F0) and the deep feature Conv2FormerGroup
(Fg; g = 1, 2, . . . ,m) are concatenated. Then, we included
both 3 × 3 and 1 × 1 to smooth the aggregated the features
as fellows:

FComb = HConv(HConCat(F0, F1, F2, . . . , Fm), (15)

where the HConCat is mean to concatenate the the channel
dimension. Also, HConv defines 1 × 1 convolution next by
a 3 × 3 convolution, Fcomb represents the overall feature
map form combing both coarse and deep features. Finally,
the output SR image is generated using reconstruction mod-
ules as follows:

y = Hrecont(Fcomb + F0), (16)

where Hrecont defines the reconstruction function, which
contains both 3 × 3 convolution and Sup-pixel upsampling.
Finally, y represents the output of the model.

4. Experiment
4.1. Benchmarks

For the training section, the DIV2K [1] dataset is uti-
lized for training our method, and an down-sampling the
HR image using the bicubic down-sampling to generate the
LR image. We tested the model using a benchmark of
5 datasets, including Set5 (5 images) [5], Set14 (14 im-
ages) [46], B100 (100 images) [4], Urban100 (100 images)
[19], and Manga109 (109 images) [35]. Finally, the PSNR
and the structural similarity index (SSIM) [40] are used for
model evaluation based on using the Y channel.

4.2. Implementation Details

We set the patch size to 96, 144, 192 for scales the ×
2, × 3, and × 4, respectively. Also, batch sizes of 32 are
used for training. In addition, 90, 180, and 270 degrees
of random rotation and horizontal flipping are used as aug-
mentation methods for the input images. Then, the num-
ber of Conv2FormerGroup blocks (m) is set to 4 for STSN
models. Additionally, the number of the Conv2FormerB (n)
in the Conv2FormerGroup is empirically set to 4 for STSN
models to balance the performance and computation. More-
over, the number of features is set to 50 for the STSN. The
ADAM optimizer [22] is utilized with β1 = 0.9, β2 = 0.99
and ϵ= 1e−8. Also, the learning rate begins with 5 × 10−4
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Table 1. Benchmark Datasets Results for Quantitative evaluation. Best is shown in Bold and Second Best is shown in Underline. The Time
in (ms) Averaged on DIV2K validation dataset.

Method Scale #Params #Mult-
Adds Time Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [11] 2 8K 52.7G 23 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN [12] 2 12k 6.0G 15 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710

CARN [2] 2 1,592K 222.8G 207 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
LapSRN [24] 2 251K 29.9G 360 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.55 0.9732

IDN [21] 2 553K 174.1G 250 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 38.01 0.9749
IMDN [20] 2 694K 158.8G 165 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
RFDN [31] 2 626K 120.4G 160 38.08 0.9606 33.67 0.9190 32.18 0.8996 32.24 0.9290 38.95 0.9773
A2N [6] 2 1036K 247.5G 310 38.06 0.9608 33.75 0.9194 32.22 0.9002 32.43 0.9311 38.87 0.9769

LWSwinIR [28] 2 878K 195.6G 3590 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ELAN-light [48] 2 582K 168.4G 940 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782

STSN (Our) 2 881.9k 197.7G 640 38.19 0.9611 33.78 0.9199 32.30 0.9013 32.68 0.9336 39.13 0.9778
SRCNN [11] 3 8K 52.7G 14 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117

FSRCNN [12] 3 12 k 5.0G 9 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210
CARN [2] 3 1,592K 118.8G 117 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IDN [21] 3 553K 105.6G 181 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403

IMDN [20] 3 703K 71.5G 82 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
RFDN [31] 3 626K 54.1G 81 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547 33.78 0.9458
A2N [6] 3 1036K 117.5G 158 34.47 0.9279 30.44 0.8437 29.14 0.8059 28.41 0.8570 33.78 0.9458

LWSwinIR [28] 3 886K 87.2G 1687 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
ELAN-light [48] 3 590K 75.7G 405 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478

STSN (Our) 3 888.7K 99.9G 298 34.62 0.9292 30.54 0.8466 29.22 0.8090 28.59 0.8621 34.11 0.9480
SRCNN [11] 4 8K 52.7G 10 30.48 0.8626 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

FSRCNN [12] 4 12 k 4.6G 8 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
CARN [2] 4 1,592K 90.9G 93 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084

LapSRN [24] 4 502K 149.4G 113 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900
IDN [21] 4 553K 81.87G 150 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 29.41 0.8942

IMDN [20] 4 715K 40.9G 58 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
RFDN [31] 4 643K 31.0G 55 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883 30.61 0.9096
A2N [6] 4 1047K 72.4G 110 32.30 0.8966 28.71 0.7842 27.61 0.7374 26.27 0.7920 30.67 0.9110

LWSwinIR [28] 4 897K 49.6G 945 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ELAN-light [48] 4 601K 43.2G 230 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150

STSN (Our) 4 898.2K 50.3G 168 32.46 0.8982 28.76 0.7860 27.68 0.7405 26.39 0.7971 30.93 0.9142

for the STSN, and half every 200 epochs. The L1 loss func-
tion is used to train the model for 1000 epochs. In addition,
the warm-start strategy [23] is used for the STSN but not
used for the ablation study. Finally, we built the model us-
ing the PyTorch [37] framework and trained based on using
Nvidia 2080 Ti GPUs.

4.3. Comparison with State-of-the-art SR models

This section compares our methods with 8 state-of-
the-art lightweight images SR methods such as SRCNN
[11], FSRCNN [12], CARN [2], LapSRN [24], IDN [21],
IMDN [20], RFDN [31], A2N [6], ELAN-light [48], and
LWSwinIR [28]. We compared our model with these meth-
ods in three factors quantitative, qualitative, and model size
analyses.

4.3.1 Quantitative Evaluations

To show the quantitative result of our model, five test
datasets are used to compare our model with other state-
of-the-art models, as illustrated in Table 1. In this case, the
STSN model is used for different scale factors. It is clear
from the table that our model achieved better performance
compared to A2N [6], ELAN-light [48] and LWSwinIR
[28]. However, our model achieved a much faster run time
due to the simple model design. For instance, the STSN

model improved from 38.06 dB and 32.22 dB to 38.19 dB
and 32.30 dB compared to A2N at the scale of × 2. Also,
the STSN model improved from 34.00 dB to 34.11 dB com-
pared to ELAN-light at the scale of × 3 in the Manga109
dataset. In addition, the SSIM for our model at the scale
of × 4 is improved from 0.8976 and 0.7858 to 0.8982 and
0.7860 compared to LWSwinIR for Set5 and Set14, respec-
tively.

4.3.2 Qualitative Evaluations

To show the efficient performance of our model, we made a
comparison with a state-of-the-art model in the qualitative
result. As indicated in Fig. 2, our model shows good re-
sults compared to the other models. For example, for img
070 in the Urban100 dataset, the details are much clearer
compared to the LWSwinIR, which represents the state-of-
the-art result. In addition, for img 074 , the details of the
lines are much more clearer compared to the other meth-
ods. It is clear from the result that our model can achieve
good visual quality.

4.3.3 Model Size Analysis

We tried to make a comparison with other state-of-the-art
models in the case of parameters, Multi-Adds, and runtime,
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Figure 2. Urban100 Dataset Visual Comparison at × 4 SR.

as shown in Table 1. The table indicates that our model has
many similarities in parameter and Multi-Adds compared to
LWSwinIR [28]; however, our model has a much faster run
time. In addition, our model has lower parameters, Multi-
Adds, than A2N [6] for all the SR scales. For example,
our model has 17 % and 25 % fewer in the number of pa-
rameters, and Multi-Adds compared to the A2N with much
better performance. Moreover, for the run time, our model
is 5.6 × faster runtime than to LWSwinIR, with mostly sim-
ilar performance. This indicates that our model is efficient
for the application that needs faster models.

4.4. Ablation Study

In our ablation, the STSN model is used before using the
warm-start strategy to save time. Also, we used the model
at scale of × 2. The study aim is to study the impact of
factors, the impact of some modules in the Conv2Former,
the impact of modules in the Conv2FormerB, the impact of
modules in the Conv2FormerGroup, and the impact of the
warm-Start Strategy.

4.4.1 Ablation Study in the Conv2Former Block

The impact of using 3 × 3 instead of 1 × 1. To illustrate
why the 1 × 1 conv of the original Conv2Former is replaced
by 3 × 3 conv, the improved Conv2Former and the original
one are used independently in the proposed model, as indi-
cated in Fig. 3a (Model 1). The results are listed in Table
2, where 1st row represents the results of using improved
Conv2Former, and 2nd row represents the results of using
the original Conv2Former. The result indicated that the 3
× 3 greatly impacts all test datasets, especially for the Ur-
ban100 dataset. This is because the 3 × 3 can extract local
features, leading to performance improvement.

The impact of using attention module. In this task, all
the contents of the conv2Former block are removed, except
of the 3 × 3 to indicate the impact of the attention module,
as indicated in Fig. 3b (Model 2). The obtained results are
indicated in Table 2, where 1st row represents the results of
using the Conv2Former, and 3rd row represents the results
without using the attention module. The results show that
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Figure 3. The Models Used in our Ablation Study.

Table 2. The Ablation Study on the Conv2Former Block at the Scale × 2

Method #Params #Mult-
Adds

Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STSN 881.9k 197.7G 38.16 0.9611 33.74 0.9191 32.29 0.9012 32.58 0.9326 39.06 0.9775
STSN W conv1 561.9k 123.9G 38.13 0.9610 33.73 0.9194 32.26 0.9008 32.48 0.9317 39.01 0.9775

STSN W/O attention 702.7k 156.3G 38.08 0.9607 33.61 0.9176 32.21 0.9000 32.20 0.9291 38.85 0.9774

Table 3. The Ablation Study on the Conv2FormerB Block at Scale × 2

Method #Params #Mult-
Adds

Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STSN 881.9k 197.7G 38.16 0.9611 33.74 0.9191 32.29 0.9012 32.58 0.9326 39.06 0.9775
STSN W/O Conv2Former 339.5 73.2G 37.97 0.9605 33.58 0.9175 32.16 0.8994 32.06 0.9275 38.70 0.9770

STSN W/O MLP 701.1k 156.5G 38.11 0.9607 33.74 0.9195 32.23 0.9004 32.30 0.9306 38.86 0.9772

the attention module has a big impact on performance. For
instance, the PSNR dropped from 33.77 dB to 33.61 dB on
the Set14 dataset. So, these results show that the attention
module can greatly impacts the performance.

4.4.2 Ablation Study in the Conv2FormerB Block

The impact of using the Conv2Former block. In
this task, the conv2Former block is removed from the
Conv2FormerB to indicate the impact of the conv2Former
on the performance, as indicated in Fig. 3c (Model 3). The
obtained results are listed in Table 3, where 1st row repre-
sents the results of using Conv2Former, and 2nd row repre-
sents the results of model without using the conv2Former
layer in conv2FormerB block. The results indicate that
this block has an impact on performance. For exam-
ple, the PSNR dropped from 39.06 dB to 38.70 dB on
the Manga109 dataset. So, the conv2Former block in the
Conv2FormerB block can greatly impact the performance
due to its ability to extract local and non-local features.

The impact of using the MLP block. In this task, the
MLP block is not included from the Conv2FormerB to in-

dicate the impact of the MLP on the performance, as in-
dicated in Fig. 3d (Model 4). The obtained results are
shown in Table 3, where 1st row represents the results of us-
ing the full model, and 3rd row represents the results with-
out using MLP layer in conv2FormerB block. The results
show that the MLP block has a significant impact on perfor-
mance. For instance, the PSNR decreased from 32.58 dB to
32.30 dB on Urban100 dataset. So, the MLP block in the
Conv2FormerB block could impact the performance due to
its ability to make feature transformations.

4.4.3 Ablation Study in the Conv2FormerGroup Block

The impact of using the ESA block. In this task, the ESA
is not included in the Conv2FormerGroup to show the im-
pact of the ESA on the performance, as shown in Fig. 3e
(Model 5). The obtained results are indicated in Table 4,
where 1st row represents the results of using the the full
model, and 2nd row represents the results without using
ESA layer. The results illustrates that the ESA convolution
impacts performance. For example, the PSNR decreased
from 38.16 dB to 38.10 dB on the Set5 dataset. So, these
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Table 4. The Ablation Study on the Conv2FormerGroup Block at Scale × 2

Method #Params #Mult-
Adds

Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STSN 881.9k 197.7G 38.16 0.9611 33.74 0.9191 32.29 0.9012 32.58 0.9326 39.06 0.9775
STSN W/O ESA 855.3k 195.9G 38.10 0.9609 33.78 0.9192 32.27 0.9009 32.43 0.9314 39.00 0.9777

STSN W/O conv3 791.7k 176.8G 38.12 0.9609 33.73 0.9194 32.26 0.9008 32.44 0.9313 39.00 0.9777

Table 5. The Ablation Study on Warm-Start Strategy at Scale × 2

Method #Params #Mult-
Adds

Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STSN 881.9k 197.7G 38.16 0.9611 33.74 0.9191 32.29 0.9012 32.58 0.9326 39.06 0.9775
STSN W Warm-Start 881.9k 197.7G 38.19 0.9611 33.78 0.9199 32.30 0.9013 32.68 0.9336 39.13 0.9778

results show that the ESA block could impact the perfor-
mance due to its ability to use spatial attention to improve
the performance.

The impact of using the 3 × 3 convolution. In
this task, the 3 × 3 convolution is removed from the
Conv2FormerGroup to show the impact of the 3 × 3, as
indicated in Fig. 3f (Model 6). The obtained results are
shown in Table 4, where 1st row represents the results of us-
ing the full model, and 3rd row represents the results with-
out using 3 × 3 convolution. The results show that the 3
× 3 convolution impacts performance greatly. For instance,
the PSNR decreased from 32.58 dB to 32.44 dB on the Ur-
ban100 dataset. So, these results show that the 3 × 3 con-
volution could impact the performance due to its ability to
extract local features.

4.4.4 The Ablation Study on Warm-Start Strategy

In this task, the warm-start strategy [23] is used to retrain
the model again, starting from the pre-train model on the
same scale. The obtained results are indicated in Table 5,
where 1st row represents the results of using the full model,
and 2nd row represents the results with this strategy. The
results indicate the model performance on PSNR improved
from 32.58 dB and 39.06 dB to 32.68 dB and 39.13 dB on
the Urban100 and Manga109, respectively. So, these results
show that this strategy can impact the performance without
any additional parameters and Multi-Adds.

4.5. STSN for NTIRE 2023 Challenge

We took part in NTIRE 2023 Image Super-Resolution
Challenge [51], and our model achieved a good result,
as shown in Table 6. Our STSN model is changed
from the STSN model in the paper; it contains five
Conv2FormerGroup blocks containing 4 Conv2FormerB, in
which the number of feature maps is set to 150. Also, the
channel number of the ESA is set to 32, similar to [32],
and we set the RGB range to 255, not to 1, as in the paper.
In our training, we used DIV2K and LSDIR [26] to train
the model. After that, the model is trained in the follow-
ing steps. At the starting stage, the model is trained from

Table 6. The Results of the Top 10 Teams on NTIRE 2023 Chal-
lenge

Rank Team Name PSNR SSIM
1 ZZPM 31.232 0.8750
2 Graphene 31.200 0.8665
3 IPLAB 31.181 0.8660
4 Samsung Research China - Beijing (SRC-B) 31.163 0.8656
5 LDCC 31.155 0.8655
6 NTU607 SR 30.966 0.8617
7 Swin2SR 30.859 0.8603
8 TUK-IKLAB 30.804 0.8595
9 GarasSjtu (Our) 30.780 0.8582
10 AhRightRightRight 30.649 0.8555

scratch using the DIV2K and LSDIR [26] datasets, with a
patch size of 192 × 192. We train our model using a batch
size of 16 for 70 epochs. Then, the pre-trained weights are
used to train it again for 450 epochs with the same setting
based on using the warm-start strategy [23]. In this training,
L1 loss function is used with the Adam optimizer. After the
previous stage, we trained the model starting from the pre-
vious pre-trained weights using the DIV2K and Flickr2K
datasets with an learning rate of 5 ×10−5 for 200 epochs
using L1 loss. Using this model design and training strat-
egy, we got among the best 10 teams of the competition.

5. Conclusion
In this paper, we propose a simple Transformer-style

network (STSN) for single image super-resolution (SISR).
The STSN is designed to be similar to the Transformers
block but with linear complexity. The idea of this method is
based on using convolutional modulation (Conv2Former),
which is a very simple block with a linearly compared to
quadratically in Transformers. This model simplified the
self-attention mechanism based on using only convolutions
and Hadamard product. Our methods achieved faster run
time based on the experimental result in SR models.
Acknowledgment. This work was supported in part by the
National Key Research and Development Program of China
under Grant 2019YFB2204500, in part by the National Nat-
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