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Abstract

Image dehazing is one of the most challenging imaging
inverse problems that estimates the haze-free images from
hazy ones. While recent transformer/convolutional neural
network-based methods have shown excellent performance
in handling both homogeneous and non-homogeneous de-
hazing problems, these networks are often trained end-
to-end to estimate the haze-free image directly and re-
quire a large number of parameters. In this work, we
propose a novel, lightweight two-stage deep network for
non-homogeneous dehazing. In particular, our proposed
method, denoted as TransER, consists of two separate
deep neural networks which are TransConv Fusion De-
haze (TFD) model in Stage I and Lightweight Ensemble
Reconstruction (LER) network in Stage II. The first model
(TFD) using transformer-based encoder and decoders gen-
erates two estimates of the haze-free image: a parameter-
based dehazed output based on the physical modeling of
the problem and a pseudo haze-free output generated di-
rectly by the model in an end-to-end fashion. LER in stage
II reconstructs the final dehazed output fusing the two es-
timates from stage I. We incorporate knowledge distilla-
tion to develop a teacher network with the same archi-
tecture as LER, allowing it to supervise the intermediate
features. Extensive experiments performed on challeng-
ing real and synthetic scene image datasets (NTIRE 2019-
2023, and RESIDE-indoor) demonstrate that TransER can
outperform many state-of-the-art competing methods while
using a significantly lower number of parameters. The
source code is available at https://github.com/
trungpsu1210/TransER.

1. Introduction

The restoration of hazy images, also known as image de-
hazing, is a crucial topic in low-level vision, as haze is a
common natural phenomenon caused by floating particles

(a) Hazy Input Image (b) TransER’s Result

(c)

Figure 1. (a) The hazy input image of NH-Haze 2023 test set [9].
Our proposed method (TransER) is able to produce haze-free im-
age with high perceptual quality (b). (c) is the formation of hazy
image in atmospheric model [35].

in the atmosphere that scatter or absorb light. The presence
of haze in digital images can obscure or partially block ob-
jects, leading to color and texture distortion, which can neg-
atively impact high-level vision tasks such as image classifi-
cation, segmentation, or object detection. Therefore, restor-
ing hazy images has become a challenging ill-posed prob-
lem that has received increasing attention in the computer
vision community.

Image dehazing aims to restore the clear/haze-free im-
age from the observed hazy image. This problem has been
actively researched over the past two decades [2,4–6,20,21,
36,44,45,53], in which the majority of work can be divided
into two categories: single image dehazing and multi-image
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dehazing. However, multi-image dehazing requires mul-
tiple images of the same scene under different weather or
environmental conditions, which may not always be avail-
able [28]. Thus single image dehazing has gained popular-
ity [13]. For the single image dehazing problem, there is a
physical haze model introduced by [35], which is illustrated
in Figure 1(c) and can be described by the equation:

I(x) = J(x)t(x) +A(x)(1− t(x)) (1)

where I is the captured hazy image, J is the true scene ra-
diance, A is the ambient light intensity, and t is the trans-
mission map. We use A(x) to describe haze with varying
density for the non-homogeneous dehazing task. The trans-
mission map can be mathematically expressed as t(x) =
e−βd(x), where β represents the attenuation coefficient of
the atmosphere and d is the scene depth. The main chal-
lenge in single image dehazing is the ill-posed nature of the
problem, as described in Eq. (1), which requires significant
modeling capacity. It can be observed from Eq. (1) that
there are several potential solutions for any given hazy im-
age input. Besides, recovering J becomes much simpler if
information regarding d is available, but in practice, depth
information is rarely accessible.

Earlier single image dehazing methods attempt to re-
cover the haze-free image J based on the captured hazy
image I via estimating t and A by applying dark chan-
nel priors and color regularizers, etc [1, 10, 17, 22, 46, 57].
Recent research has shifted towards end-to-end Vision
Transformer/CNN-based image dehazing methods that di-
rectly learn hazy-to-clear image translation [13, 18, 30, 39,
44, 45, 50]. However, there exist several issues: 1) these
methods usually require a large number of image pairs
{I, J} during the training process, such as 13990 in Reside-
ITS dataset [27]. 2) Several existing state-of-the-art meth-
ods excel in either homogeneous or non-homogeneous de-
hazing, but not both [18, 30]. 3) Many previous approaches
focus on performance improvement by increasing model
complexity, resulting in resource limitations for mobile or
embedded devices. For instance, TNN [54] and TDN [30],
which are two winner methods for non-homogeneous de-
hazing tasks on NTIRE 2021 [8] and NTIRE 2020 [7] Chal-
lenges respectively have over 45 million parameters.

Images with non-homogeneous haze have varying levels
of haze across different regions, presenting a challenging
task for image dehazing algorithms. Recently, NTIRE orga-
nized several non-homogeneous dehazing challenges [7–9]
and introduced several small-scale real-world datasets. For
instance, the dataset used in the NTIRE 2023 Challenge [9]
features high-resolution non-homogeneous haze with sharp
changes in haze level from certain regions to others, adding
to the difficulties posed by limited training data and com-
plex hazy patterns. The high resolution of the digital im-
ages in this challenge makes both the training and inference

process more challenging.
To overcome the challenges mentioned above and effec-

tively handle the complex distribution of non-homogeneous
hazy images, we propose a novel two-stage lightweight
learning-based deep method called TransER, which is in-
spired by vision transformer [16], dehazing fusion network
[20,21,36,53], ensemble learning [14], and knowledge dis-
tillation [23]. TransER comprises two deep networks: the
TransConv Fusion Dehaze (TFD) model in Stage I and the
Lightweight Ensemble Reconstruction (LER) network in
Stage II and learns from hazy images to reconstruct high-
quality, haze-free images. Despite using a small number
of training samples, our two-stage method achieves high
fidelity and perceptual performance in both homogeneous
and non-homogeneous datasets, as shown by an example in
Figure 1(a) and (b) on the NTIRE 2023 test set. In particu-
lar, TFD estimates the scene information via A and t respec-
tively and contains one more Vision Transformer-based de-
coder to jointly recreate the clean image along with A and t.
Notably, we encouraged our second network to imitate the
simple image reconstruction task from Teacher Reconstruc-
tion Network (TRN) model by supervising the intermedi-
ate features in the second stage of TransER. We designed
the LER as an ensemble technique to ensure robust perfor-
mance in reconstructing haze-free images. In summary, our
contributions are as follows:

• A two-stage deep network (TransER) to reconstruct
haze-free images from hazy inputs. TransER includes
two novel models (TFD and LER) and incorporates
teacher-student learning from a TRN network learned
image reconstruction task.

• A new TransConv Dehazing (TCD) block combines
the feature attention module (FAM) with Vision Trans-
former, enabling it to extract both local and global in-
formation simultaneously. This integration adds flexi-
bility in effectively handling haze in images.

• Our proposed method is extensively evaluated on var-
ious datasets and analyzed comprehensively through
ablation analysis, demonstrating its effectiveness and
outperforming many state-of-the-art methods on both
dense haze and non-homogeneous haze scenes.

2. Related Work
Single Image Dehazing. Image dehazing methods

can be divided into two categories: prior-based and deep
learning-based. Prior-based methods rely on handcrafted
priors such as dark channel prior (DCP) [22], color-lines
[17], haze-lines [10], and color attenuation prior (CAP)
[57], rank-one prior [29]. While these methods can pro-
duce images with good visibility, they may lead to unre-
alistic results when scenes do not fit these priors. For ex-
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ample, DCP performs poorly in large white regions due to
its empirical statistics. Deep learning-based methods dif-
fer from prior-based methods in that they generalize from
large-scale datasets to estimate haze-free images. Various
methods have been proposed to estimate the transmission
map and global atmospheric light [12,21,26,41] in the phys-
ical model [35] or directly learn hazy-to-clean image trans-
lation through end-to-end training [15, 31, 39, 40, 42, 50].
Notably, AtJ-DH et al. [21] used a shared-encoder multi-
decoders architecture to be trained jointly to estimate A
and t which is proven to be very effective and achieved
top place in NTIRE 2019 Dehazing Contest [3], while two
end-to-end DW-GAN [18] and TDN [30] networks, which
are the two winners of non-homogeneous dehazing NTIRE
Challenges recently, have been proposed to directly recon-
struct the haze-free images without using atmospheric scat-
tering model. In addition to this, many researchers have
developed GAN-based architectures [19] to improve their
results [40, 54]. In [18, 54], an additional discriminator was
incorporated as a regularization loss term to evaluate the
authenticity of the reconstructed haze-free images. Qu et
al [40] proposed an enhanced Pix2Pix network based on
GAN for dehazing, that can strengthen the dehazing ef-
fect in both color and details. Very recently, Vision Trans-
former (ViT) [16] has shown promising results in low-level
and high-level computer vision tasks [32, 47, 48, 55], and
has also demonstrated advantages in image dehazing. De-
Hamer [13] proposed a novel transmission-aware 3D po-
sition embedding to involve haze density-related prior in-
formation into Transformer, while in [44], a U-Net-like
vision transformer model was designed with various im-
provements such as modified normalization layer, activa-
tion function, and spatial information aggregation scheme.
Although these methods have shown promising achieve-
ments in homogeneous dehazing task due to the availabil-
ity of large training datasets, they struggle with the high-
resolution input hazy images and complex haze distribu-
tions found in the real-world NH-Haze 2023 dataset [9].

Knowledge Distillation. Knowledge distillation [23] is
a technique used to transfer knowledge from one deep learn-
ing model (the teacher) to a student model. This method
has been successfully applied to a wide range of tasks, in-
cluding image classification, object detection, and image
segmentation [16]. In the field of image dehazing, [49]
proposed a dual-network approach for knowledge transfer,
where the teacher network learned the distribution of clear
images through an image reconstruction task, and provided
prior knowledge to assist the dehazing network in restoring
clear images from hazy ones. Our work is inspired by this
approach, but we apply it in different ways. Particularly, in
Stage II of TransER, our student model reconstructs the fi-
nal clear image from parameter-based dehazed and pseudo
haze-free images, while the teacher model performs a clear

image reconstruction task.
Ensemble learning. Ensemble learning has been shown

to effectively reduce variance in neural networks [14]. It is
well-established that an ensemble model can outperform a
single network when used in isolation [11]. In the context of
non-homogeneous dehazing, researchers have explored var-
ious methods to improve performance. For instance, [53]
proposed a sequential hierarchical ensemble of two differ-
ent dehazing networks with varying modeling capacities to
generate clear images. Similarly, [54] developed a learnable
fusion tail that effectively fuses the outputs from two differ-
ent neural network branches. In our proposed method, TFD
generates two pseudo haze-free images, each of which fo-
cuses on different haze regions. Our ensemble model, LER,
which can be classified as a Mixtures of Experts, combines
the two TFD’s outputs to generate the final haze-free image.
Furthermore, unlike the existing state-of-the-art works that
are trained end-to-end, our approach consists of two sep-
arate stages and does not include any additional pre/post-
processing operations.

3. Proposed Method
To overcome the challenge of single image dehazing,

particularly in non-homogeneous scenarios, we developed a
two-stage deep network called TransER. Our proposed net-
work leverages the strengths of two different learning-based
models in each stage. TransConv Fusion Dehaze (TFD)
model is able to utilize information from regions with
varying levels of haze, while the Lightweight Ensemble
Reconstruction (LER) network treats distinct levels of haze
differently. In this section, we present the structure of our
proposed network as well as loss functions.

3.1. Network Structure

The proposed method, illustrated in Figure 2, consists
of a two-stage deep network that transforms a hazy input
image to a haze-free output. Note for brevity, some connec-
tions from encoder to decoder are omitted. The objectives
of the two stages are as follows:

• Stage I: TFD learns to generate two different clean im-
ages from a hazy input: a pseudo haze-free through an
independent decoder and a parameterized clear image
via physical inspiration [35].

• Stage II: LER is designed to generate the final clean
image by utilizing the TFD’s estimated outputs, and
to enhance its performance, we incorporate knowledge
distillation from the teacher model.

3.1.1 Stage I design

TransConv Fusion Dehaze Network. The proposed
TFD network is mainly composed by the following build-

1672



Figure 2. Illustration of our model architecture - TransER.

ing blocks: 1) one shared encoder, which is constructed
based on the novel TransConv Dehaze module, and 2) three
separate decoders which have similar structures as the en-
coder. Skip connections are used between the encoder and
the decoders as in U-net. The complete network struc-
ture is illustrated in Figure 2. To have better information
flow as suggested in [25], several feature maps from en-
coder and decoders are connected by Selective Kernel Fu-
sion (SKF) [45]. Figure 3(c) illustrates the architecture of
SKF, it is a channel attention-based fusion technique that
has been shown to be more efficient than simple concate-
nation. The network architecture includes three decoders
to predict the different estimated values Â(x), t̂(x), and
Ĵdirect(x), where x is the pixel location. Then, the esti-
mated value of ĴAT is obtained using the physical model,
and the estimated values of Â(x) and t̂(x) by the equation:

ĴAT (x) =
I(x)− Â(x)(1− t̂(x))

t̂(x)
(2)

where I is the input hazy image. In the Figure 2, Ĵdirect is
denoted as pseudo haze-free S(x), while ĴAT is the param-
eterized clear P (x). As described in Section 2, S(x) has
better performance than P (x) in regions with dense haze,
while for regions with shallow haze, P (x) performs better.

TransConv Dehaze Module. In scenes with non-
homogeneous haze, the distribution of haze is not uniform
across all image pixels. To address this issue, we draw in-
spiration from the feature attention module (FAM) [39] and
modified Vision Transformer (ViT) [44] and propose a new
TransConv Dehaze (TCD) block. The TCD block extracts
feature maps in parallel, and the output from the FAM and
ViT is fused using the SKF module. The FAM includes
both channel and pixel attention blocks, as shown in Figure
3(a). By incorporating FAM into TFD, the network is able
to focus more on relevant information such as textures, col-
ors, and dense haze regions. This additional flexibility in
dealing with non-homogeneous haze enables the proposed
method to achieve superior performance.

3.1.2 Stage II design

We propose a dual network comprising of a teacher and
student model, which are trained on different tasks while
sharing the same architecture.

Lightweigh Ensemble Reconstruction. We propose
a lightweight and straightforward ensemble reconstruction
network called LER. LER follows a multi-level informa-
tion extraction approach similar to U-net and is composed
of two encoders and one decoder that employs the gate con-
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(a) Feature Attention Module (FAM)

(b) Gate Convolution Module (GCM)

(c) Selective Kernel Fusion (SKF)

Figure 3. The architecture of feature attention module (FAM), gate
convolution Module (GCM), and selective kernel fusion (SKF).

volution module (GCM) [45]. The GCM is a residual block
that utilizes gating mechanisms and its architecture is de-
picted in Figure 3(b). The feature maps are extracted from
two different inputs S(x) and P (x) by the encoders, and
then combined using an adaptive feature addition (AFA) to

effectively preserve information. Besides, the SKF module
is used to dynamically fuse the feature maps from the en-
coders and decoder.

Knowledge Transfer. To enhance the naturalness of the
generated clean images, we introduce a teacher network,
TRN, which is trained on the task of clear image recon-
struction. The TRN provides prior knowledge to the LER
model through distillation loss. By leveraging the interme-
diate feature maps, LER can learn the distribution of clear
images from TRN, thereby improving performance.

3.2. Network Learning Loss

The stages of the TransER method have been optimized
with five loss functions which are the L1 reconstruction loss
LL1 , perceptual loss Lp, MS-SSIM loss Lssim, standard
deviation loss Lstd, and knowledge distillation loss LKD.

Stage I optimization. The total loss of stage I can be
summarized as follows:

LSI
= LL1 + λ1Lp + λ2Lssim + λ3Lstd (3)

LL1
= |J − S|1 + |J − P |1

Lp = ||G(J)−G(S)||22 + ||G(J)−G(P )||22
Lssim = −SSIM(J, S)− SSIM(J, P )

Lstd = σ2
Â

Stage II optimization. The total loss of stage II can be
derived as:

LSII
= LL1 + γ1Lp + γ2Lssim + γ3LKD (4)

LL1 = |J − Ĵ |1 ; Lp = ||G(J)−G(Ĵ)||22
Lssim = −SSIM(J, Ĵ)

LKD = |MidTRN (J, J)− MidLER(S, P )|1
where λ1, λ2, λ3, γ1, γ2, and γ3 are hyperparameters used
to balance the contribution of each loss term. We use LL1 as
the main loss function to train networks, which is reported
by [7, 56] that training with L1 loss achieved a better per-
formance than L2 loss in terms of PSNR and SSIM metrics
in many image restoration tasks. S, P , and Ĵ are pseudo
haze-free S(x), parameterized clear P (x), and final haze-
free images Ĵ(x) respectively (as shown in Figure 2). Lp

is obtained from the outputs of feature extraction layers of
a pre-trained VGG16 [43] where G(.) is the function repre-
senting the features extracted from 3rd, 8th, and 15th layers
of the VGG model. Lssim is used to maximize the value of
SSIM, which is refereed as Multi-Scale Structure Similarity
(MS-SSIM) [51] while Â is regularized by minimizing its
variance σ2

Â
through Lstd. We employ L1 loss to calculate

the LKD, in which MidTRN (.) and MidLER(.) denote the
intermediate feature maps (after AFA’s output) of TRN and
LER models. Additionally, we only use L1 loss to optimize
the TRN network.
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4. Dataset, Training, Testing and Metric
4.1. Dataset

In this study, we evaluate the performance of TransER on
both synthetic and real-world datasets. We use the Indoor
Training Set (ITS) and the Synthetic Objective Testing Set
(SOTS) from RESIDE [27] for the synthetic dataset. For
the real-world datasets, we experiment with Dense-Haze
used in NTIRE 2019 Dehazing Challenge [3], NH-Haze
from NTIRE 2020 Dehazing Challenge [7], NH-Haze 2 in
NTIRE 2021 Dehazing Challenge [8], and high resolution
NH-Haze 3 from NTIRE 2023 Dehazing Challenge [9].

RESIDE provides a benchmark for single image dehaz-
ing, with a collection of large-scale training and testing im-
ages across indoor and outdoor scenarios. We train our pro-
posed method using 13,990 synthetic images from ITS and
evaluated it on 500 indoor images from SOTS. For real-
world evaluation, we use the Dense-Haze, NH-Haze, NH-
Haze 2, and NH-Haze 3 datasets provided by the NTIRE
Challenges. Dense-Haze consists of 45 training, 5 vali-
dation, and 5 testing dense hazy images, while NH-Haze
contains 45 training data, 5 validation data, and 5 testing
data. NH-Haze 2 and NH-Haze 3 contain 35 and 50 non-
homogeneous images respectively. We utilized the official
training, validation, and testing split for Dense-Haze and
NH-Haze. However, because the ground truth images for
validation and testing sets have not yet been released, we
choose the first 20 pairs as the training set and the remain-
ing 5 pairs to evaluate for NH-Haze 2 experiments, and we
only present qualitative results on the high resolution NH-
Haze 3 dataset.

4.2. Training

During the training process, we randomly apply aug-
mentations, including horizontal flipping and rotation by
90◦, 180◦, and 270◦. Input patches of size 256×256 are ex-
tracted from the training images. We use the AdamW opti-
mizer [34] with default values of β1 = 0.9 and β2 = 0.999.
The initial learning rates for TFD, TRN, and LER mod-
els are set to {4, 1, 1} × 10−4, respectively, and we apply
the cosine annealing schedule [33] to gradually reduce the
learning rate from the initial values to {4, 1, 1}× 10−7. We
adapt a multi-step strategy to train our proposed method,
TransER, as described below:

• Step 1 - TFD Training. In this step, we only train the
TFD model for 8000 epochs with a batch size of 16.
The values of the hyperparameters λ1, λ2, and λ3 are
set to 0.1, 0.5, and 0.0001 respectively, through cross-
validation [37].

• Step 2 - TRN Training. The TRN network is trained
using a batch size of 32 and optimized for 80 epochs
in the clean reconstruction task.

• Step 3 - LER Training. In the last step, we freeze
the parameters of the TFD and TRN models and only
update the parameters of the LER network. We train
LER for 100 epochs using a batch size of 32. The hy-
perparameters of loss functions, γ1, γ2, and γ3 are 0.1,
0.2, and 1.0 respectively.

Our models are implemented using Pytorch framework
[38] and all experiments are performed on two NVIDIA Ti-
tan X (12GB) GPUs 1

4.3. Testing and Metric

The proposed method involves a sequential processing
of the input hazy image through TFD and LER modules to
generate the final haze-free output. For quantitative eval-
uation, we adopt the Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Index Measure (SSIM) which
are often used as criteria for evaluating image quality in de-
hazing task. Notably, we do not employ commonly used
model-ensemble or self-ensemble techniques to produce the
clean image.

5. Experimental Results
In this section, we present the experimental results of our

TransER method, including an ablation study of different
components and loss terms, as well as comparisons with
state-of-the-art methods.

5.1. Ablation Study

To ensure fairness, we conduct ablation studies on the
NH-Haze 3 validation dataset provided in NTIRE 2023 [9],
which includes 5 hazy inputs without ground truth images.
After completing the experiments, we uploaded 5 recon-
structed haze-free images to the validation server and report
the received results in Tables 1 and 2.

Effects of TCD module, LER, TFD, and TRN models.
In Table 1, we show quantitative results between 7 meth-
ods. We use the notation TFD (without TCD) to indicate
that instead of using the proposed TCD block, we utilize
a modified vision transformer [44] for the TFD model of
our network. It is clear that the use of TRN can help the
LER model in reconstructing the haze-free images, hence
significantly enhancing the PSNR and SSIM. Furthermore,
our two-stage method performs much better than those only
with one stage (either LER or TFD), indicating the effec-
tiveness of our design. Our full model achieves a PSNR of
21.28 dB and an SSIM of 0.693, the scores demonstrate that
the effective combination of the three models with the TCD
module leads to a notable performance improvement.

Effects of different loss terms. We also analyze the
effect of removing different loss terms from the total loss

1Please find implementation details at https://github.com/
trungpsu1210/TransER
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(a) RESIDE-indoor SOTS [27] (b) NTIRE 2019 Dense-Haze [3]

(c) NTIRE 2020 NH-Haze [7] (d) NTIRE 2021 NH-Haze 2 [8]

Figure 4. The qualitative results on different testing datasets.

Table 1. Ablation study results of TransER’s architecture.

Method Results

PSNR SSIM

LER 19.53 0.662
TFD (without TCD) 20.01 0.675

TFD 20.96 0.685
TFD (without TCD) + LER 20.14 0.667

TFD + LER 20.95 0.684
TFD (without TCD) + LER + TRN 21.16 0.688

TransER (ours) 21.28 0.693

functions LSI
and LSII

in Eq. (3) and (4) respectively.
We can observe that the total customized losses increase the
performance. Specifically, the perceptual loss, MS-SSIM,
and knowledge distillation losses have a significant impact
on both PSNR and SSIM results, while the standard devia-
tion loss has some effect on the PSNR results.

5.2. Comparison with State-of-the-art Methods

This section illustrates the comparisons between
TransER with the state-of-the-art (SOTA) methods on the
datasets introduced in Section 4. These SOTA methods
compared in our experiments consist of one prior-based im-
age dehazing method, DCP [22], and five learning-based
methods, namely FFA [39], TDN [30], DW-GAN [18], De-
Hamer [13], and FSDGN [52]. TDN and DW-GAN are the
winner methods in NTIRE 2020 and NTIRE 2021 NonHo-

Table 2. Ablation studies for different loss function terms.

Loss terms Results

LL1 Lp Lssim Lstd LKD PSNR SSIM

✓ 20.37 0.671
✓ ✓ 20.68 0.675
✓ ✓ ✓ 20.85 0.688
✓ ✓ ✓ ✓ 20.95 0.684

✓ ✓ ✓ ✓ ✓ 21.28 0.693

mogeneous Dehazing Challenge.
Table 3 compares the quantitative results of different

methods, which indicates our TransER achieves the best and
second best performances on both synthetic and real-world
datasets. Notably, by utilizing point-wise and depth-wise
separable convolution [24] to efficiently aggregate infor-
mation and transform features, TransER achieves the best
parameter-performance trade-off, compared to the other
SOTA approaches, especially the champion models [18,30].
For visual quality, in Figure 4 we observe that most meth-
ods generate pleasing images on synthetic dataset, except
for DCP, which produces images with color distortion for
both two types of data. Especially, on real-world datasets,
although other learning-based methods can generate better
results, there are still obvious visual problems such as low
brightness and blurry borders. In contrast, TransER gener-
ates visually pleasing results, which are close to the ground
truth images in terms of color and object details.
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Table 3. Quantitative comparisons between TransER and state-of-the-art methods over RESIDE-indoor [27], Dense-Haze [3], NH-Haze [7]
and NH-Haze 2 [8]. The best results are in bold, and the second-best results are underlined.

Method Venue RESIDE-indoor NTIRE 2019 NTIRE 2020 NTIRE 2021
# Parameters

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [22] CVPR 2009 16.62 0.817 10.85 0.404 12.29 0.411 11.30 0.605 -
FFA [39] AAAI 2020 36.39 0.989 16.26 0.545 18.51 0.637 20.40 0.806 4.68 M
TDN [30] CVPRW 2020 34.59 0.975 15.50 0.508 20.44 0.668 20.23 0.762 46.18 M

DW-GAN [18] CVPRW 2021 35.94 0.986 16.49 0.591 21.51 0.711 21.99 0.856 56.73 M
DeHamer [13] CVPR 2022 36.63 0.988 16.62 0.560 20.66 0.684 20.72 0.815 132.45 M
FSDGN [52] ECCV 2022 38.63 0.990 16.91 0.581 19.99 0.731 20.05 0.786 2.73 M

TransER (ours) - 37.24 0.992 17.03 0.597 21.64 0.743 21.59 0.871 2.60 M

Figure 5. Test results of high resolution non-homogeneous dehazing NTIRE 2023 challenge [9] over 5 hazy images. The first row shows
the original hazy inputs and the second row illustrates dehazing results using TransER.

5.3. NTIRE 2023 Dehazing Challenge

We did not use any pre-trained models or extra datasets
during the NTIRE 2023 dehazing challenge [9]. Moreover,
we only employed the TransER pipeline without any self-
ensemble/model-ensemble or pre/post-processing methods
to boost performance. The dehazed images we generated,
presented in Figure 5, clearly show the removal of haze in
the 47.png, 48.png, and 50.png cases. In Table 4, we com-
pare TransER with other leading methods, and the results
are verified and reported in the final ranking table [9] by the
organizers. As shown, TransER achieved good performance
in terms of PSNR, SSIM, and LPIPS, while using signifi-
cantly fewer parameters and low inference time. These re-
sults validate the effectiveness of TransER.

6. Conclusion

This study introduces a two-stage learning-based ap-
proach for single image dehazing. In the first stage, inspired
by the physical haze model, our proposed method jointly
estimates the global atmospheric light, transmission map,
and haze-free scene directly using the novel TransConv De-
haze module, which can extract both global and local in-

Table 4. Comparison between our network against other top per-
forming methods participating in the competition over the test set
provided in NTIRE 2023. Results are reported in [9].

IR-SDE DWT-FFC-GAN TransER

PSNR ↑ 20.83 22.87 22.01

SSIM ↑ 0.61 0.71 0.70

LPIPS ↓ 0.406 0.346 0.384

# Parameters 78 M 373 M 2.6 M

Runtime 5.0 s 23.3 s 0.72 s

formation in parallel. The second stage is a simple and
lightweight model inspired by gate mechanism architecture,
ensemble learning, and knowledge distillation, to generate
the final haze-free output. Experimental results on vari-
ous synthetic and real-world datasets with dense and non-
homogeneous haze demonstrate the superior performance
of our TransER method over state-of-the-art alternatives.
Notably, our method achieves good results on the high-
resolution non-homogeneous NTIRE 2023 dataset, outper-
forming many competing methods.
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