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Abstract

Video super-resolution (VSR) techniques, especially
deep-learning-based algorithms, have drastically improved
over the last few years and shown impressive performance
on synthetic data. However, their performance on real-
world video data suffers because of the complexity of real-
world degradations and misaligned video frames. Since ob-
taining a synthetic dataset consisting of low-resolution (LR)
and high-resolution (HR) frames are easier than obtaining
real-world LR and HR images, in this paper, we propose
synthesizing real-world degradations on synthetic training
datasets. The proposed synthetic real-world degradations
(SRWD) include a combination of the blur, noise, down-
sampling, pixel binning, and image and video compres-
sion artifacts. We then propose using a random shuffling-
based strategy to simulate these degradations on the train-
ing datasets and train a single end-to-end deep neural net-
work (DNN) on the proposed larger variation of realistic
synthesized training data. Our quantitative and qualita-
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tive comparative analysis shows that the proposed training
strategy using diverse realistic degradations improves the
performance by 7.1 % in terms of NRQM compared to Re-
alBasicVSR and by 3.34 % compared to BSRGAN on the
VideoLQ dataset. We also introduce a new dataset that con-
tains high-resolution real-world videos that can serve as a
common ground for bench-marking.

1. Introduction
Video super-resolution (VSR) has extensive applications

such as high-definition television, remote sensing, surveil-
lance systems, etc.. [6, 15, 19]. Since the success of deep
learning, the VSR approaches are also massively evolving,
and these methods can be divided into two categories [14]:
I) Methods using synthetic datasets with pre-defined degra-
dations for training, such as VSRNet [11], FRVSR [20],
TecoGAN [5], Deep-Blind-VSR [18], BasicVSR [2], Ba-
sicVSR++, [3] etc. II) Methods using real-world degra-
dations, such as RealVSR [25], and RealBasicVSR [4].
The methods in category I synthesize LR images by a pre-
defined degradation model (PDM) that consists of a bicu-
bic downsampling, Gaussian blur, and noise. Such a degra-
dation model is inadequate and poses a challenge for real-
world VSR. Whereas the methods in category II, such as
RealVSR [25], try to overcome this issue by introducing a
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new real-world dataset using a multi-camera device but it
lacks generalizability in diverse degradations. In contrast,
RealBasicVSR [4] addresses this issue by adopting a very
large DNN and using a second-order degradation model [4]
that simulates degradations more than once. We observed
that significantly less work [4, 25] had been done toward
VSR for real-world videos.

We analyzed the performance of these VSR methods on
real-world datasets and have shown them in Figure 1. The
performance of the existing algorithm suffers because of the
lack of diverse degradations in the training dataset, which
is usually a synthetic dataset of LR-HR pairs with a pre-
defined degradation or second-order degradation. To over-
come these issues of diverse degradations we propose to
create a pool of diverse synthetic real-world degradations
(SRWD), and they are as follows:

Blur degradation: Existing methods [13, 29, 30] use
isotropic and anisotropic blur kernels to simulate blur
degradations whereas real-world images may have differ-
ent blur patterns. To have a realistic blur kernel, we propose
to extract blur kernels from real-world images using Ker-
nelGAN [1], a self-supervised kernel extraction algorithm.

Noise degradation: In addition to Gaussian noise in the
RGB space, we propose to add signal-dependent Poisson
noise in the sensor RAW space to have a realistic noise dis-
tribution in the training datasets.

Downsampling degradation: We use standard down-
sampling operations, such as bilinear, bicubic, etc., as done
in the existing methods [13, 29, 30].

The above degradations are applicable for both image
and video modes. Below degradations are specifically for
video mode, and they are as follows:

Pixel-binning degradation: In the video mode, the res-
olution is smaller than in the image mode of the same cam-
era. Pixel binning [10] refers to combining the electrical
charges of neighboring pixels to form a superpixel, and due
to this conversion, degradation is expected. We simulate
this degradation in the RAW space with the help of box fil-
ters of different sizes [10].

Compression artifact degradations: Here, we simulate
degradation because of compression that arises while saving
a video and we apply MPEG compression to simulate this
degradation.

In this paper, we do not consider other degradations, such
as motion blur, as the test datasets do not have motion blur
in them, and we focus on VSR to have a fair comparison
with the existing algorithms. However, the proposed SRWD
can be extended to include such degradations.

In summary, we propose a realistic degradation model
incorporating the major source of variations in real-world
data and simulate these degradations on the synthetic train-
ing data for VSR. The reason behind creating a diverse
pool of SRWD is to match the characteristics of real-world
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Figure 2. Synthetic LR-HR pair creation. Our approach is based
on using random degradation techniques, as shown in (b).

videos. To simulate these degradations on the training
datasets, we use the random shuffling strategy as proposed
in BSRGAN [29]. We then train a VSR deep neural network
(DNN) on the proposed synthesized training datasets and
perform extensive experiments on completely blind real-
world public datasets, such as RealVSR [25] and VideoLQ
[4] datasets. The proposed algorithm yields objectively and
subjectively superior results compared to the existing real-
world VSR methods. We observe that both these public
datasets contain low-resolution videos and have camera-
specific degradations. Further, to boost the VSR research
community, we created a high-resolution real-world VSR
dataset captured using the K|Lens [9] and referred to this
dataset as the K|Lens dataset.

2. Related Work

Since VSR algorithms trained on a pre-defined degrada-
tion model suffer on real-world videos, the RealVSR [25]
algorithm addresses this issue by introducing a real-world
VSR dataset by capturing the LR-HR video pair from a
single device with a multi-camera system (Phone 11 Pro
Max). Along with this dataset, the RealVSR [25] provides a
benchmark by training different existing PDM-based-VSR
algorithms on their proposed dataset. The experimental re-
sults and comparison show that these algorithms signifi-
cantly improve the performance of VSR algorithms. Again,
this indicates that learning using a PDM is insufficient and
will suffer in real-world videos. However, the main draw-
back of this benchmark is that it cannot reflect a general-
izable benchmark as the RealVSR dataset [25] consists of
only degradations specifically for the iPhone camera.

Chan et al. [4] adopt a larger DNN and propose a pre-
processing stage to reduce the effect of noise and other
degradations before feeding it to the DNN. They analyze
how long-term propagation in the training process affects
the performance of real-world videos. They proposed using
a second-order degradation model [22] that simulates dif-
ferent degradations, such as blur, noise, compression, etc.,
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more than once. This is why the degradations are more re-
alistic as compared to the PDM. To validate their perfor-
mance on real-world datasets, they introduced a new dataset
(video) with 50 LR videos obtained using web crawling.

Unlike VSR, several image SR algorithms [28, 30] fo-
cus on simulating degradations on the training datasets and
achieve impressive performance. Recently, authors in BSR-
GAN [29] proposed to apply the different degradations in
random order instead of following a particular order, as
shown in Figure 2(b). The advantage of this strategy is
that because of the random order, a different combination of
degradations can be simulated, thus expanding the degrada-
tion space and training datasets. Inspired by this idea of ran-
dom shuffling, we follow a similar strategy of simulating di-
verse degradations in random order. In addition to this ran-
dom shuffling, this paper focuses on expanding the degra-
dations space by extracting blur kernels from real-world
images, signal-dependent sensor noise, pixel-binning, and
video compression artifacts. With a diverse pool of SRWD,
we then use a random-shuffling-based strategy to create the
LR/HR training data. Our experimental results and analysis
sis shows that the random-shuffling strategy-based SRWD
can model real-world degradations better than the existing
algorithms.

3. Proposed SRWD-VSR Algorithm
In the following subsections, we describe our realistic

degradation model (Section 3.1) and VSR architecture (Sec-
tion 3.2) for our SRWD-VSR algorithm.

3.1. Realistic Degradation Model

The super-resolution process aims at recovering a high-
resolution (HR) image from the given low-resolution (LR)
image. In general, the LR image (ILR) can be mathemati-
cally modeled as,

ILR = ∆(IHR; δ) (1)

where ∆ denotes the mapping function of degradation,
IHR is the corresponding HR image, and δ represents the
various parameters of the degradation process (e.g., blur,
downsampling, noise, etc.). Although in real-world im-
ages/videos, ∆ and δ are unknown, researchers try to imi-
tate the δ parameters such that the degradation ∆ is as close
as possible to the real-world images. As discussed earlier,
also, towards real-world VSR, two approaches have been
proposed in the literature. RealVSR [25] tries to get a real
IHR and ILR pair by using a multi-camera device, whereas
RealBasicVSR [4] trains their model on synthetically cre-
ated IHR and ILR pairs using a second order degradation
model. However, the degradation space is still limited and
has the following issues:

1) The blur kernels used in all the existing degrada-
tion models are standard isotropic or anisotropic kernels,
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Figure 3. Proposed SRWD model. The degradation bucket con-
tains all eight types of degradations from which the random selec-
tion is done, which are then followed by video compression.

Figure 4. Kernel Pool. Some examples from the proposed kernel
pool. These kernels are extracted from 6 real-world images using
the KernelGAN method [1].

whereas real-world images may have different blur patterns
[1]. 2) The real sensor noise is very different from the Gaus-
sian Noise, which is used as a noise factor in these degra-
dation models [27]. 3) Also, not performing any blur oper-
ation on RAW space to consider the effect of pixel-binning.

Considering all these points in context with VSR, we
propose to expand the degradation space, and we list them
below. An overview of the proposed realistic degradation
model is shown in Figure 3.

Blur Kernel Pool. Most degradation models rely on fixed
blur kernels, such as Gaussian kernel filters [22], to get a
synthesized ILR image from a given IHR image. In con-
trast, real-world LR images do not comply with this as-
sumption. To match the blurring characteristics in real-
world images, we propose to extract blur kernels from the
real-world images using KernelGAN [1]. The KernelGAN
[1] is a dataset invariant, fully unsupervised, and single in-
put image method which can predict the blur kernel in the
wild. KernelGAN consists of a generator (G) and a discrim-
inator (D) to downscale. This fully-convolutional G and D
work together to predict the SR kernel of the given image.
At a patch level, G learns to downscale the given image so
that, for D, it is indistinguishable from the image.

In this paper, we create a kernel pool of approximately
5000 kernels from a dataset of 5000 images collected from
different sources for generality and we refer to them as
(Breal). Figure 4 shows some examples of these kernels.
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Sensor Noise Addition. Simple noise models like addi-
tive white Gaussian noise are not enough for a realistic
degradation model as the real-world color images are com-
plicated. Collecting real noisy and clean images is tedious
and unsuitable for large-scale learning. We propose inject-
ing realistic noise in the raw sensor space by first converting
the image from sRGB to raw space.

Most VSR methods use Gaussian noise and/or a step-by-
step technique of inverting camera image signal processing
(ISP) to convert sRGB into raw data [29]. The drawback of
such an approach is that it needs prior information on the
targeting camera device. It is also challenging to reverse
several camera imaging pipeline engineering operations. In
the proposed degradation model, we use CycleISP [27], an
image noise synthesizer that uses a Poisson-Gaussian noise
model [7] and can generate realistic synthetic clean/noisy
paired data in raw and sRGB spaces. We name the injected
noise as Nreal.

Traditional degradations. Apart from the above-
mentioned realistic blur and noise models, adding
traditional down-sampling, noise, and blurring can be used
for augmentation and make the degradation model more
comprehensive [29]. Therefore, the proposed degradation
model also uses the following traditional degradations:

Gaussian Blur: In the proposed degradation model, we
perform two Gaussian blur operations: Biso with isotropic
blur kernels and Baniso with anisotropic blur kernels.

Down-sampling: There are three types of downsam-
pling ways used in the proposed degradation model, i.e.,
nearest neighbor interpolation (Ds

nearest), bilinear interpo-
lation (Ds

bilinear), bicubic interpolation (Ds
bilinear), down-

up sampling (Ds
down−up), where s is the scaling factor.

Gaussian and JPEG compression noise: We adopted
the three-dimensional zero-mean Gaussian noise model
(NG) and JPEG compression noise (NJPEG) with quality
factors ranging [30, 95] in the proposed degradation model.

Pixel Binning. In general, blur operations are conducted
on sRGB instead of sensor RAW space. Furthermore, in
the video mode, the resolution is smaller than in the image
mode for the same camera. This decrease in resolution for
the same sensor size is achieved by a process commonly
referred to as pixel binning [10]. Combining the electri-
cal charges of neighboring pixels to form a super-pixel is
termed pixel binning [10]. The main benefit of this tech-
nique is that the combined charges would overcome the real
noise at the expense of spatial resolution. To simulate the
effect of pixel binning, we use box filters of different dimen-
sions for this purpose. The sizes for box filters are randomly
chosen to range from 3×3 to 15×15.
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Figure 5. Proposed VSR Architecture. On a high level, we cal-
culate the optical flow of the current frame ILR

t with respect to
the previous ILR

t−1 and the next ILR
t+1 frames. We warp the fea-

tures Hf
t−1 and Hb

t−1 based on the flow calculated (F f
t and F b

t ) in
the Bidirectional Feature Propagation Module and pass the outputs
Hf

t and Hb
t to the super-resolution network. The features Hf

t and
Hb

t are channel-wise concatenated and fed to the RRDBNet for
upsampling.

Video Compression. Once all the degradations are sim-
ulated, we apply video compression to LR frames to gen-
erate artifacts due to compression. Unlike image degra-
dations, video compression implicitly considers the inter-
dependencies between video frames, providing us with tem-
porally and spatially varying degradations [4]. Therefore, in
each iteration, we randomly selected one of the following
codecs: “libx264”, “h264”, “mpeg4”, and a bitrate ranging
between [104, 105].

3.1.1 Random Shuffling Strategy

In this paper, we simulate the degradations mentioned above
in a random-shuffling strategy as proposed in BSRGAN
[29] that helps to expand the degradation space and is
depicted in Figure 3. As shown in Figure 3, the pro-
posed SRWD pool contains 1) Blur Kernels consisting of
real-world kernels Breal as well as isotropic (Biso) and
anisotropic (Baniso) kernels, 2) Downsampling operations
(Ds), 3) Noise (Nreal, NG, NJPEG), 4) Pixel binning and
5) video compression.

For a given clean HR video frame (IHR) with no degra-
dations, the proposed algorithm shuffles these eight degra-
dations in a random order, followed by video compression,
and applies each of them to generate a realistic synthesized
ILR. More specifically, these 8 degradations are : Breal,
Biso, Baniso, Nreal, NG, NJPEG, Ds and pixel binning.

3.2. Video Super Resolution Model

The proposed SRWD model is utilized to simulate a
training dataset for a blind VSR and can be used to enhance
the performance of any video super-resolution algorithm.
For experiments and analysis, in this paper, we adopt the
widely-used FRVSR model [20] as a backbone architecture,

1202



with some changes to account for varied, realistic degra-
dation and shuffling strategies. Since the degradations are
complex and complicated, it is very vital to have the right
sub-module in the architecture and this is why we propose
to optimize each of the components in order to have a better
super-resolution. In the following, we describe the architec-
ture used for training shown in Figure 5, and the important
blocks of the architecture are described below.

Optical Flow. To consider severe degradations, we re-
place the optical flow estimation module with FlowNet2 [8],
which is robust to degradations, such as noise and blur.

Bidirectional Flow. The bidirectional propagation has
proven to help learn the VSR better than unidirectional [2].
Hence, the unidirectional propagation of FRVSR is replaced
by bidirectional propagation, i.e., each frame receives ac-
cumulated information from both directions (forward and
backward).

Feature Warping. The image space warping is also re-
placed with the feature space warping. The reason behind
this is that in the image space, the warped images inevitably
suffer from blurriness and incorrectness due to the inaccu-
racy of optical flow estimation [2].

Super resolution. The upsampling module is re-
placed by RRDBNet [23, 26] to enhance the performance
of FRVSR architecture. The first convolutional block of
RRDBNet has also been changed to take 128 channel
frames as input instead of 3 channel frames because of the
introduction of the feature warping module. We replace the
VGG-based discriminator with a U-Net-like discriminator
with skip connections [22]. The normalized spectral reg-
ularization stabilizes the training dynamics, and this archi-
tecture can also provide per-pixel feedback to the generator.

We then train the above VSR architecture on the simu-
lated training datasets using loss functions in [22], which
is a weighted combination of content loss, perceptual loss,
and vanilla adversarial loss.

4. Proposed K|Lens datasets
RealVSR [25], and VideoLQ [4] are two publicly avail-

able blind VSR datasets in the literature. The RealVSR
testing dataset consists of 50 videos, 50 frames each video,
512 × 1024 dimension each frame. The VideoLQ dataset
also contains 50 videos downloaded from various video-
hosting websites. The videos are approximately 100 frames
each and have 640 × 480 resolution for each frame. The
videos of the RealVSR dataset are captured using an iPhone
camera and hence contain only phone camera-specific
degradations, and both these datasets have low-resolution
videos.

To further boost the VSR community and to have a high-
resolution video dataset, in this paper, we propose introduc-
ing a new dataset that contains real-world videos captured
using K|Lens [9] camera.The unique optical lens developed

Figure 6. Example frames from the proposed K|Lens dataset.
These videos are taken from K|Lens camera with varied scenes
(indoor/outdoor) and object motions.

by K|Lens [9] enables any camera with exchangeable lenses
to capture multiple perspectives of a scene with a single ex-
posure as regular color images on the camera sensor. It is a
new optical lens, and the images or videos shot by K|Lens
contain 9 perspectives of a scene, and most importantly, we
observe that the number of degradations, such as noise and
blur, also vary among these nine perspectives. Thus, shoot-
ing one scene results in 9 videos and each of these 9 videos
differs in perspectives and amount of degradations. This
is one of the reasons why we chose to create a video-SR
dataset with K|Lens to have diverse levels of degradations
in the datasets. The proposed K|Lens dataset contains 56
videos with 100 frames each with resolution 1600 × 1080
resolution videos. The dataset consists of indoor and out-
door scenes with varied motions, degradations, and lighting
conditions. We have shown a few example scene shots with
K|Lens in Fig. 6. Compared to existing datasets, the pro-
posed K|Lens dataset has high-resolution videos with di-
verse degradation levels.

5. Experiments and Analysis
In this section, we extensively perform experiments

on public datasets, such as VideoLQ [4] and RealVSR
[25], and also show comparisons on the proposed K|Lens
datasets. We show quantitative and quality comparisons in
our experiments for analysis and discussion.

5.1. Training

Training datasets Our training dataset combines the
Vimeo [24] and REDS [21] datasets. Vimeo consists of
277 video scenes, each having 120 frames, and REDS con-
sists of 240 HD scenes, each having 100 frames. We ex-
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(a) K|Lens Dataset (b) Bicubic (c) SRWD-VSRv1 (d) SRWD-VSRv2 (e) SRWD-VSR

(f) RealVSR dataset (g) Bicubic (h) SRWD-VSRv1 (i) SRWD-VSRv2 (j) SRWD-VSR

(k) VideoLQ dataset (l) Bicubic (m) SRWD-VSRv1 (n) SRWD-VSRv2 (o) SRWD-VSR
Figure 7. Qualitative Comparison for all ablations. These zoomed-in scenes are two times super-resolved images using all the versions
of the proposed SRWD-VSR. It can be noticed that the overall results of SRWD-VSR, i.e., (e), (j), and (o), are visibly more plausible. the
letter ‘a’ in (j), all the text in (o), and the eye of the bird with much fewer artifacts. (Zoom-in for best view)

tract patches of size 128 × 128 for scale 2 (2 times SR)
and 256 × 256 for scale 4 from these datasets to gener-
ate HR videos. We consider these HR datasets and apply
the proposed SRDW model to produce the corresponding
LR videos. We use 10 consecutive frames of a video and
use a batch size of 4, so a total of 40 images are processed
in a batch. For degradation simulations with a batch size
of 4, each having 10 frames, the first 10 frames will be
blurred with the same kernel, same downsampling opera-
tions, and have the same noise level setting in addition to
pixel-binning and video compression, and the second group
of 10 frames may have different blur kernels, noise, etc.
from the first group. This is done to avoid a case where
subsequent frames with two extreme levels of blur, i.e., no
blur and heavy blur, which is not a realistic scenario. Data
augmentation consisting of random horizontal and vertical
flips is also applied for better generalization.

Training details We implement the network in PyTorch
and leverage the built-in Adam optimizer [12] with β1 = 0.9
and β2 = 0.99 and an initial learning rate of 5 × 10−5. To

speed up the training, we freeze the weights of Flownet2 [8]
as it is already pre-trained and initialize the RRDB network
with the model [29] and train the network for 75, 000 iter-
ations. Similar to this [22], all degradation operations are
implemented with CUDA acceleration to synthesize train-
ing pairs on the fly. A training queue is maintained to in-
crease the degradation diversity in the batch. The queue
size is set to 180.

5.2. Results and comparison

Here, we adopted three real-world datasets: RealVSR
[25], VideoLQ and [4], proposed K|Lens [9] for our ex-
perimental analysis. All these three datasets are real-world
datasets without ground truths. Therefore, similar to Real-
BasicVSR [4], no-reference quality assessment metrics are
adopted as the comparison method in this paper. We used
NRQM [16] and BRISQUE [17] metrics for this purpose.
The higher the value of NRQM better is the performance of
the VSR algorithm, while the lower the value of BRISQUE
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(a) Our Dataset (b) BSRGAN [29] (c) TecoGAN [5] (d) RealVSR [25] (e) BasicVSR [4] (f) SRWD-VSR

(g) RealVSR [25] (h) BSRGAN [29] (i) TecoGAN [5] (j) RealVSR [25] (k) BasicVSR [4] (l) SRWD-VSR

(m) VideoLQ [4] (n) BSRGAN [29] (o) TecoGAN [5] (p) RealVSR [25] (q) BasicVSR [4] (r) SRWD-VSR
Figure 8. Comparison with SR Algorithms. We compared SRWD-VSR with four SOTA algorithms i.e., [4, 5, 25, 29] (× 4 SR). Overall,
the SRWD-VSR performs better visibly, for example, ‘Made in Germany’ text in (l) and ‘124’ in (r). (Zoom in for best view)

Table 1. Step-wise performance of our VSR algorithm. Sym-
bols ‘↑’ indicates a higher value is better while ‘↓’ indicates a
lower value is better. Overall, SRWD-VSR performs consistently
better. (Note: These results are for × 2 super-resolution)

Algorithm NRQM↑ BRISQUE↓

K
|L

en
s

SRWD-VSR 7.1013 26.9868
SRWD-VSRv2 6.8011 27.3214
SRWD-VSRv1 6.5914 27.9245

Bicubic 3.3132 48.9655

R
ea

lV
SR

SRWD-VSR 6.7507 29.1829
SRWD-VSRv2 6.4121 32.8701
SRWD-VSRv1 6.2120 34.9144

Bicubic 3.3715 55.8189

V
id

eo
L

Q SRWD-VSR 6.9054 29.4897
SRWD-VSRv2 6.8012 30.3145
SRWD-VSRv1 6.7111 31.9148

Bicubic 4.0072 45.0282

better is the VSR algorithm.
To demonstrate the effect of the proposed SRWD model

and modified architecture, we train the proposed algorithm
with different settings:

SRWD-VSRv1: This version is trained with the pro-

Table 2. Degradation analysis of our VSR algorithm. Symbols
‘↑’ indicates a higher value is better while ‘↓’ indicates a lower
value is better. Overall, SRWD-VSR performs consistently better.
(Note: These results are for × 2 super-resolution)

Algorithm NRQM↑ BRISQUE↓

K
|L

en
s

SRWD-VSR 7.1013 26.9868
SRWD-VSR-KG 6.9201 27.0948
SRWD-VSR-SN 6.8014 27.1512
SRWD-VSR-PB 6.8812 27.2002

R
ea

lV
SR

SRWD-VSR 6.7507 29.1829
SRWD-VSR-KG 6.5480 29.9901
SRWD-VSR-SN 6.5210 30.0124
SRWD-VSR-PB 6.5912 29.9189

V
id

eo
L

Q SRWD-VSR 6.9054 29.4897
SRWD-VSR-KG 6.8112 29.6814
SRWD-VSR-SN 6.7614 29.6610
SRWD-VSR-PB 6.7514 29.6150

posed SRWD model but without architecture modification
and no shuffling.

SRWD-VSRv2: This version is trained with the pro-
posed SRWD model, with proposed architecture modifica-
tion but with no shuffling.
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Table 3. Performance comparison of proposed SRWD-VSR
with existing algorithms. ‘-’ symbol indicates the unavailabil-
ity of the pre-trained weights or the training script for that method.
It can be observed that the proposed SRWD-VSR performs better
in terms of NRQM and BRISQUE parameter values.

×2 SR ×4 SR
NRQM↑ BRISQUE↓ NRQM↑ BRISQUE↓

R
ea

lV
SR

[2
5]

Proposed 6.7507 29.1829 6.7257 17.5603
RBVSR [4] - - 6.4080 23.6932
RVSR [25] 3.6927 46.6572 2.8689 51.7278

Teco [5] 6.7251 38.1057 3.0610 50.1514
BSR [5] 5.1487 37.3136 5.7911 26.3568

RESR [22] 5.8664 30.4356 6.0012 28.1113

V
id

eo
L

Q
[4

] Proposed 6.9054 29.4897 6.5993 23.3656
RBVSR [4] - - 6.1618 27.5545
RVSR [25] 3.3715 31.9713 3.0727 43.7101

Teco [5] 6.1405 30.9813 5.2951 32.7901
BSR [29] 6.3892 30.4867 6.3858 30.4369

RESR [22] 6.3690 27.7421 5.8140 30.5699

K
|L

en
s

D
at

as
et Proposed 7.1013 26.9868 6.4678 24.5906

RBVSR [4] - - 6.1259 24.9979
RVSR [25] 3.3510 40.5177 5.7346 47.9872
BSR [29] 5.3301 33.3556 5.1832 33.0617

RESR [22] 5.0024 34.3215 4.8346 35.5532

SRWD-VSR: In this version, shuffling is performed on
the proposed SRWD model with the architecture modifica-
tions.

Table 1 summarizes the performance of all these versions
on three datasets. It can be observed from the table that the
proposed SRWD-VSR is better in all the datasets. We have
also shown the visual comparisons between these versions
to demonstrate the qualitative analysis in Figure 7. It can be
observed that the results of SRWD-VSR are more visibly
plausible than the compared versions. For instance, only
SRWD-VSR could generate patches with negligible arti-
facts (see Figure 7 (e), (j), (o)). The above experiments give
an analysis of the contribution of each of the SRWD mod-
els, shuffling-based strategy, and architecture modifications
on the proposed SRWD-VSR. This analysis also quantifies
the performance gains coming from the architecture modifi-
cations as compared to the ones coming from the proposed
degradation pipeline. Next, we study the effect of the differ-
ent degradations in the SRWD model and train the proposed
algorithm with different settings as described below:

SRWD-VSR-KG: In this version, we analyze the in-
fluence of KernelGAN over isotropic and anisotropic ker-
nels. Instead of generating kernels from KernelGAN, we
generate 5000 kernels of isotropic and anisotropic kernels
by tuning the variance parameters. In this version, all the
proposed degradations are taken into account except 5000
real-world kernels are replaced with 5000 isotropic and

anisotropic kernels. Here, we use the proposed architecture
with shuffling-based degradations simulation.

SRWD-VSR-SN: In this version, we analyze the influ-
ence of sensor noise. Here, all the degradations are taken
into account except sensor noise and we use the proposed
architecture modifications and shuffling.

SRWD-VSR-PB: In this version, we discuss the influ-
ence of pixel-binning and video compression operations.
Here, again all the degradations are taken into account ex-
cept pixel-binning and video compression degradations and
we use proposed architecture modifications and shuffling.

Table 2 summarizes the performance of all these versions
on three datasets. Here, SRWD-VSR is the case where all
the degradations are taken into account with shuffling and
architecture modification. This experiment quantifies the
performance gains coming from the different degradations
and the removal of any one of the degradations will reduce
the performance of the proposed SRWD-VSR algorithm.

Comparison to State-of-the-Art (SOTA) We compare
our SRWD-VSR method with several state-of-the-art meth-
ods, including RealBasicVSR [4], RealVSR [25], Teco-
GAN [5], BSRGAN [29], Real-ESRGAN [22]. Since Teco-
GAN [5] uses the FRVSR [20] generator with an additional
discriminator and trains its algorithm with sophisticated
loss functions, thus we include TecoGAN, not FRVSR, in
the experimental sections and analysis.

We compare these existing state-of-the-art methods sub-
jectively and objectively on scenes from all three datasets,
and the results are shown in Table 3 and 8. The proposed
algorithm generates much more detail in fine regions, im-
proving visual quality, as seen in Figure 8. Regarding com-
parison using no-reference performance parameters, i.e.,
NRQM and BRISQUE, the proposed SRWD-VSR performs
better than all the five super-resolution methods for all three
tested datasets and is shown in Table 3. Thus, we can con-
clude that the proposed algorithm is better in all the datasets.

6. Conclusion

LR-HR pairs’ formation for VSR algorithms’ training
plays an important role, especially for real-world videos.
In this paper, we have investigated a realistic degradation
model for video super-resolution methods by introducing a
synthetic dataset of real-world degradations and using a ran-
dom shuffling strategy to train a state-of-the-art VSR DNN
architecture. We observed that none of the existing degrada-
tion models could imitate the complicated real-world degra-
dations in its LR-HR pairs for training their VSR models
to the same extent as ours. The experimental analysis con-
ducted in this paper suggests that the proposed SRWD-VSR
performs qualitatively and quantitatively better than all the
existing VSR models in the literature.
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