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Abstract

We propose a novel framework to compress human-
centric videos for both human viewing and machine analyt-
ics. Our system uses three coding branches to combine the
power of generic face-prior learning with data-dependent
detail recovery. The generic branch embeds faces into a
discrete code space described by a learned high-quality
(HQ) codebook, to reconstruct an HQ baseline face. The
domain-adaptive branch adjusts reconstruction to fit the
current data domain by adding domain-specific informa-
tion through a supplementary codebook. The task-adaptive
branch derives assistive details from a low-quality (LQ) in-
put to help machine analytics on the restored face. Adap-
tive weights are introduced to balance the use of domain-
adaptive and task-adaptive features in reconstruction, driv-
ing trade-offs among criteria including perceptual quality,
fidelity, bitrate, and task accuracy. Moreover, the proposed
online learning mechanism automatically adjusts the adap-
tive weights according to the actual compression needs. By
sharing the main generic branch, our framework can ex-
tend to multiple data domains and multiple tasks more flex-
ibly compared to conventional coding schemes. Our exper-
iments demonstrate that at very low bitrates we can restore
faces with high perceptual quality for human viewing while
maintaining high recognition accuracy for machine use.

1. Introduction
We investigate efficient compression of human-centric

videos. Specifically, this work focuses on videos where
human faces are the main regions of interest. Such “face-
centric” videos can be largely found in video conferenc-
ing, video surveillance, etc. These applications require
high performance compression, especially at low bitrates.
Since human faces are the main focus, an optimized codec
that exploits the highly structured characteristics of human
faces should be more effective than off-the-shelf standard
codecs [10, 12] or learned codecs using neural networks
(NN) [6, 18, 19] that are designed as versatile methods for
compressing general video content.

Depending on the application, the requirements of com-
pressed faces may vary. For example, for human viewing
the restored video should look realistic and perceptually
pleasant. For content analytics such as detection and recog-
nition, identity or fidelity cues should be restored to be ana-
lyzed by machine. Traditionally, videos are compressed for
human viewing, leading to compression induced degrada-
tion that can severely affect machine analysis. Due to the
complex relations among bitrate, distortion, and perceptual
quality [2, 3], previous methods customize a video coding
algorithm to optimize the compression efficiency either for
human use or for machine use. For example, for video con-
ferencing, NVIDIA proposed the Maxine solution based on
face reenactment [23,24]. For machine analytics, the recent
MPEG Video Coding for Machine (VCM) [17] and JPEG
AI [11] standardization activities optimize compression for
detection, segmentation or tracking tasks. It is non-trivial to
generalize the individually customized video coding meth-
ods for both human and machine use, or to perform multi-
ple tasks. Furthermore, when the data domain changes, e.g.,
from HD broadcase videos to webcam surveillance videos,
a new set of model parameters are usually needed even for
the same task, since compression models optimized for one
dataset may not work well for another.

More often than not, restored human-centric videos in
real-world applications are used for both human viewing
and multiple analytic tasks, such as face recognition, emo-
tion analysis, etc. In such cases, previous methods not only
require to maintain multiple compression models in the sys-
tem, but also need to compute and transmit multiple com-
pressed video streams. The lack of generalizability and
scalability has become an open issue.

In this work, we propose a novel framework for com-
pressing human-centric videos to better accommodate mul-
tiple tasks and multiple data domains. Our system com-
bines the power of generic face prior learning with data-
dependent detail recovery to achieve robust face restora-
tion with very low bitrates. As illustrated in Fig. 1, our
framework comprises of three branches: a generic branch,
a domain-adaptive branch, and a task-adaptive branch.

The generic branch takes advantage of the recent ad-
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vances in face representation learning [8,15,29] and recon-
structs a high-quality (HQ) generic face using a discrete HQ
generic codebook-based representation. Since face is highly
structured, the generic codebook learned from HQ face data
captures the essential components for HQ face generation.
With ultra-low transmission costs (e.g., only 256 10-bit inte-
gers indicating codeword indices), the reconstructed generic
face can achieve decent perceptual quality.

The domain-adaptive branch improves the perceptual au-
thenticity of the restored face by using a discrete domain-
specific codebook-based representation, with only a small
increase of bitrate (e.g., 256 integers). The domain-specific
feature is weighted combined with the generic feature for
domain-adaptive reconstruction. This provides supplemen-
tary information drawn from the current data distribution to
fit the current data domain. The combining weight balances
the reconstruction between having a higher perceptual qual-
ity or being more authentic to the current data domain. By
sharing the main generic branch while maintaining an in-
dividual domain-adaptive branch, our method can flexibly
scale to multiple data domains.

The task-adaptive branch provides detailed fidelity and
expressive information to help analytic tasks. A low-bitrate
low-quality (LQ) face input (highly compressed by a coding
method like VVC [12] or learned image compression (LIC)
[6]) is transmitted to the decoder, where detailed feature is
derived and weighted combined with the generic codebook
feature for task-oriented reconstruction. The task-adaptive
branch balances the bitrate, the reconstruction fidelity, and
the task performance, by adjusting the combining weight on
the encoder side, according to the compression requirement
of the current task. By sharing the main generic branch
while maintaining an individual task-adaptive branch, the
framework can flexibly scaled to multiple tasks.

We further propose a mechanism to automatically adjust
the combining weights for the domain-adaptive branch and
the task-adaptive branch at test time. Through online meta
learning (OML) [13] with direct stochastic gradient decent
(SGD), the combining weights are automatically tuned for
the current test data according to the actual reconstruction
need, e.g., to improve perceptual quality, perceptual authen-
ticity, or recognition accuracy.

Our main contributions are summarized as follows:

• A novel human-centric video compression framework
based on robust face restoration, to accommodate
compression needs for both humans and machines.
The generic branch ensures baseline HQ face re-
construction using a highly effective discrete generic
codebook-based representation. The domain-adaptive
branch provides supplementary information using a
domain-specific codebook, to adjust reconstruction for
the current data domain. The task-adaptive branch de-
rives additional detailed cues from an LQ input to as-

sist analytic tasks over the restored face. Our method
can easily scale to multiple data domains and tasks.

• Flexible quality control at test time. The HQ generic
feature and domain-adaptive feature are weighted
combined to balance the perceptual quality and au-
thenticity to the current data domain. Likewise, the
HQ generic feature and task-adaptive LQ feature are
combined using a combining weight that balances the
bitrate and task performance.

• An OML mechanism that automatically adjusts the
combining weights for the domain-adaptive feature
and the task-adaptive feature, according to the current
test data and the actual compression need.

In experiments, we evaluate the capabilities of domain
and task adaptation by training the generic branch with
high-quality faces from the FFHQ dataset [14], training the
domain-adaptive branch and task-adaptive branch with the
mediocre-quality internet faces from the CASIA-WebFace
dataset [27], and performing evaluation over the real-world
LFW dataset [9]. We also evaluate the flexibility of the
codebook-based representation in working with either the
off-the-shelf VVC [12] or NN-based LIC [6] for compress-
ing LQ faces in the task-adaptive branch. Experimental re-
sults demonstrate the effectiveness of our method in terms
of both restoration quality and recognition accuracy.

2. Related Work

2.1. Face reenactment & AI-based video conference

Face reenactment aims at transferring the facial motion
of one driving face to another source face. It is widely used
for applications like animated avatar manipulation or con-
trollable face generation, by injecting 2D [23] or 3D [7] ge-
ometric pose and expression from the driving face to the
identity and appearance generation of the target face. It
is intuitive to use face reenactment for video conferenc-
ing. By transferring and storing a few HQ faces carrying
identity and appearance cues of the subject, the decoder can
synthesize the remaining frames of that subject based on
new driving keypoints. Only keypoints need to be trans-
ferred for most successive frames, which reduces bitrates
dramatically. However, when applied to real faces in the
wild, they usually produce severe artifacts due to the diffi-
culty in generating real hair, teeth, accessories, or any con-
tent that cannot be represented by facial keypoints. Also,
the mismatch between the appearance of the source frame
and the pose/expression of the driving frame makes such
methods sensitive to changes in illuminations, poses, ex-
pressions, etc. Some artifacts can be reduced by using mul-
tiple source faces and constraining reenactment only to tight
face regions [16, 20], but the innate instability remains.
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Figure 1. The overall framework of the proposed method. The generic branch reconstructs an HQ generic face. The domain-adaptive
branch improves restoration authenticity. The task-adaptive branch provides fidelity and expressive details for analytic tasks.

2.2. Face restoration
Blind face restoration aims at recovering the HQ face

from its LQ counterparts, which is degraded from the HQ
version in an unknown way, such as low-resolution, noise,
blur, compression, etc. Various face priors have been used
to improve the LQ-to-HQ mapping in this ill-posed prob-
lem. Comparing to traditional geometry facial landmarks
[5], the recent generative priors have shown great potential,
which embed face priors into the encoder-decoder network
structure and at the same time use the structural information
from the input for high-quality and high-fidelity reconstruc-
tion, e.g., GLEAN [4], GPEN [26], and GFPGAN [25].

On the other hand, sparse representation learning has
been explored to model generic images. VQVAE [21]
learns a highly compressed codebook by a vector-quantized
autoencoder. VQGAN [8] further improves restoration
quality by using GAN training with adversarial and percep-
tual loss. Such learned codebooks are optimized end-to-end
(E2E), to balance efficiency and reconstruction quality. The
latest CodeFormer [29] learns a discrete HQ codebook by
predicting code sequences through global modeling. Faces
can be restored using the HQ codebook without heavy de-
pendency on feature fusion with LQ visual cues, which im-
proves the generation robustness significantly.

2.3. Video coding for machine analysis
Traditionally videos are compressed for human viewing,

and the degradation from compression can severely affect
the performance of automated machine analysis, such as
surveillance, diagnostics, etc. Standardization efforts such
as MPEG VCM [17] and JPEG AI [11] have been launched
to study video coding frameworks specialized for machine.
Typically, a compression method is designed to optimize the
compression efficiency for each task, such as object detec-
tion, segmentation, or tracking. Although significant bits

can be saved by such customization, these methods lack
generalizability and scalability in reality. Optimized for one
analytic model of one task, the compression method gener-
ally cannot work well for another task or even a different
model of the same task. It is practically impossible to de-
sign and learn a compression method for each potential task.
How to compress videos to support multiple tasks and to
support both human and machine use remain open.

Fortunately, for videos focusing on human faces, the re-
cent advances in face representation learning enable our so-
lution to benefit from the powerful generic codebook-based
restoration. Relying on a generic face prior for a baseline
HQ reconstruction, domain-adaptive and task-adaptive de-
tails can be provided additionally to improve the perceptual
quality and analysis accuracy for human and machine con-
sumption, respectively. Compared to previous customized
compression for each machine analysis task, our framework
not only can better scale to different tasks and better gener-
alize to different data domains, but can also provide control
to balance perceptual quality, fidelity, and task performance.

3. Our Video Compression Framework
A general task-oriented video compression system that

supports both human and machine use has an Encoder
and a Decoder. Given input video frames, the Encoder
compresses each frame to compute a latent representation,
which is sent to the Decoder with much less bits than the
original frame. Then the Decoder reconstructs the frame
based on the latent representation. The goal is to minimize
the loss of visual quality (e.g., distortion like MSE, or per-
ceptual quality loss like LPIPS [28]), minimize the bitrate,
and maintain task performance (e.g., recognition accuracy).

For human-centric videos where faces are the main fo-
cus, the Encoder starts with face detection. Face regions
consisting of an extended bounding box containing mainly

1123



the detected and aligned face are cropped and resized (e.g.,
to 512×512) as the input (denoted as X) to the remain-
ing processing modules. Correspondingly, the Decoder
inverse-transforms and resizes the restored face (denoted as
X̄), which is used to perform the end task and also blended
back to the remaining part of the frame.

3.1. Generic branch

Aiming at using a highly compressed and HQ learned
codebook for generating HQ faces, we use the latest Code-
Former restoration network [29] as the generic branch.
Comparing with its ancestors like VQVAE [21] or VQGAN
[8], CodeFormer focuses on learning an HQ codebook for
restoring HQ face, and does not overly rely on feature fu-
sion with LQ cues from the skip connections. Since faces in
real-world videos generally have lower quality than bench-
mark HQ training faces, without heavy dependence on the
LQ cues not only increases the system robustness, but also
enables generating a face with high perceptual quality even
when the quality of the original input is quite low.

Specifically, as shown in Fig. 1, following the recipe of
VQGAN [8], the input face X ∈ Rw×h×3 is first embed-
ded as a generic latent feature Zgeneric ∈Ru×v×d through
a Generic Embedding network Eemd

generic, which is then
mapped to a generic quantized feature Zq

generic ∈Ru×v×d.
Each “pixel” Zq

generic,l (l=1, . . . , k, k=u×v) corresponds
to a codeword cgeneric,l in the learnable generic HQ code-
book Cgeneric= {cgeneric,l ∈Rd} that is nearest to the cor-
responding latent feature Zgeneric,l of the “pixel”. To pro-
vide rich and robust visual cues for HQ face generation, the
HQ codebook is trained by using HQ faces as inputs and
minimizing a joint loss:

Lgeneric =L1(X, X̄)+Lper(X, X̄)

+Lcode(Zgeneric, Cgeneric)+λadLad(X, X̄),(1)

where L1(X, X̄), Lper(X, X̄), and Lad(X, X̄) are L1

loss, perceptual loss [28], and adversarial loss of a
discriminator [8] respectively. The code-level loss
Lcode(Zgeneric, Cgeneric) [8] reduces the intermediate
loss between codeword cgeneric,l and embedded feature
Zgeneric,l: ||sg(Zgeneric,l)− cgeneric,l||22 +α||Zgeneric,l −
sg(cgeneric,l)||22 (sg(·) as stop-gradient), which regularizes
codebook learning.

To reduce the influence of unknown quality of the in-
put face that causes inaccurate codeword matching, a more
accurate quantized feature Zq∗

generic is computed through
a Transformer T . The key idea is to make use of the
global interrelations of the codebook representation for bet-
ter code prediction [29]. Specifically, the latent feature
Zgeneric ∈ Ru×v×d is reshaped to a number of k = u×v
features of d dimensions. Then it is fed into the Trans-
former T , which predicts the code sequence p1, . . . , pk in
the form of the probability of the M -way classification,

where pl ∈ {0, . . . ,M − 1} and M is the size of the code-
book. The predicted code sequence then retrieves the k re-
spective code items from the learned codebook, forming the
quantized feature Zq∗

generic ∈ Ru×v×d to compute an HQ
face through the same reconstruction network. In [29], the
Transformer T is trained by fixing the above learned HQ
codebook and reconstruction network, and then using the
LQ face as input to minimize the code prediction loss:

Lpred = λtokenLtoken + Lfeat
code , (2)

where Ltoken =
∑

l −phql log(pl) and phql is the ground-
truth code sequence obtained with HQ input. Lfeat

code =∑
l ||Zgeneric,l − sg(chqgeneric,l)||22 forces embedded feature

Zgeneric,l using LQ input to approach the HQ codewords
chqgeneric,l that are retrieved using phql .

Since Zq∗
generic can be represented by a k-dim vector

Ygeneric consisting of codeword indices p1, . . . , pk, it can
be efficiently transmitted to the Decoder with very little bit
consumption. The Decoder first recovers the generic quan-
tized feature Zq∗

generic based on the received vector Ygeneric

using codebook Cgeneric, and then reconstructs the HQ re-
stored face X̄ based on Zq∗

generic.

3.2. Domain-adaptive branch

When applied to a specific domain of data, e.g., videos
from hand-held devices with motion blur, the restored HQ
face from the generic branch may not be authentic to the
true input, due to the large domain change. The domain-
adaptive branch bridges such domain difference by us-
ing a domain-specific learned codebook to provide supple-
mentary information drawn from the current data domain.
Through a discrete domain-specific codebook-based repre-
sentation, the reconstruction is tailored to fit the current data
domain while maintaining a low bitrate. The framework is
more flexible to scale to multiple data domains by sharing
the generic branch, contrary to the traditional way of train-
ing a whole set of compression model for each data domain.

Similar to the generic branch, the input face X ∈
Rw×h×3 is embedded as a domain-adaptive latent feature
Zadaptive ∈ Ru×v×d through a Domain-Adaptive Embed-
ding network Eemd

adaptive, which is then mapped to a domain-
adaptive quantized feature Zq

adaptive ∈ Ru×v×d. Each
“pixel” Zq

adaptive,l (l = 1, . . . , k, k = u× v) corresponds
to a codeword cadaptive,l in the learnable domain-adaptive
codebook Cadaptive = {cadaptive,l ∈ Rd} that is near-
est to the corresponding latent feature Zadaptive,l of the
“pixel”. Since Zq

adaptive can be represented by a k-dim vec-
tor Yadaptive consisting of codeword indices similar to the
generic branch, it can also be efficiently transmitted to the
Decoder with very little bit consumption.

In Decoder, the domain-adaptive quantized feature
Zq
adaptive can be retrieved based on the received vector
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Figure 2. Framework of online adaptive learning. Combining weights for the domain-adaptive feature and task-adaptive feature are
automatically adjusted through online SGD, according to the actual compression need that is defined by the online loss.

Yadaptive using codebook Cadaptive. Then the generic quan-
tized feature Zq∗

generic and the domain-adaptive quantized
feature Zq

adaptive are weighted combined to reconstruct
the restored face X̄ . Specifically, the Controllable Fea-
ture Transformation (CFT) module from [29] is used. Let
Θc denote the parameters of the CFT module CFTcode to
combine codebook-based features Zq

adaptive and Zq∗
generic.

Actually Zq
adaptive tunes the generic feature Zq∗

generic into
Zcode=Zq∗

generic+wc∗(βc∗Zq∗
generic+γc), where βc, γc are

affine parameters βc, γc = Θc(con(Z
q∗
generic, Z

q
adaptive)),

and con(·) is the concatenation operation.
To learn the domain-adaptive codebook Cadaptive and

module CFTcode, the training faces from the current data
domain are used to minimize a joint loss similar to Eqn. (1):

Ladaptive=L1(X, X̄)+Lper(X, X̄)

+Lcode(Zadaptive, Cadaptive)+λadLad(X, X̄).

wc=1 during the training stage for all inputs.

3.3. Task-adaptive branch

The restored faces from codebook-based representations
are perceptually pleasant for human eyes, but can be subop-
timal for machine analysis. The facial details may be altered
and the identity information may be lost, which may cause
severe performance drop for tasks relying on such informa-
tion and details, e.g., face recognition, emotion analysis etc.

The task-adaptive branch provides supplementary iden-
tity and expressiveness details to the restored face to assist
analytic tasks. A highly-compressed string YXlq

is com-
puted from the input X in Encoder and is transmitted to the
Decoder with very low bitrate. Then the Decoder decodes
an LQ input X̂lq and computes an LQ embedded feature
Zlq from X̂lq using the LQ embedding network Eemd

lq . The
LQ feature Zlq and the generic quantized feature Zq∗

generic

are weighted combined to reconstruct the task-oriented face
X̄ . Similar to the domain-adaptive branch, a CFT module
CFTlq is used for this combination. Let Θlq denote the
parameters of CFTlq. Zlq tunes the generic Zq∗

generic into
Ztask=Zq∗

generic+wlq∗(βlq∗Zq∗
generic+γlq). βlq, γlq are affine

parameters βlq, γlq =Θlq(con(Z
q∗
generic, Zlq)). The frame-

work is more flexible to scale to multiple tasks by sharing

the generic branch, in comparison to training a whole cus-
tomized compression system for each task.

It is worth mentioning that the video encoder/decoder in
the task-adaptive branch for computing YXlq

and recovering
X̂lq can be arbitrary video compression methods, including
both NN-based LIC methods like [6] or off-the-shelf tools
like VVC [12]. We evaluate both choices in Section 4.

The CFT module CFTlq is trained with finetuning the
embedding network Eemd

generic into the LQ embedding net-
work Eemd

lq at the same time, using the training data of the
current analytic task. The training loss includes the L1 loss
L1, the perceptual loss Lper, the code-level loss Lcode, and
the adversarial loss Lad from Eqn. (1), and the code feature
loss Lfeat

code from Eqn. (2). In addition, the task loss Ltask

is also used, e.g., the triplet loss of the embedded face fea-
ture through FaceNet [22] for face recognition in our exper-
iments. wlq=1 during the training stage for all inputs.

3.4. Online adaptation

Our compression framework provides flexibility to con-
trol the restoration according to the current input X . For
human viewing, the domain-adaptive branch is used with
weight wc, to balance the perceptual quality and authen-
ticity to the current data domain. For machine analysis, the
task-adaptive branch is used with weight wlq, to balance the
bitrate and task performance.

At test time, given an online compression goal, i.e., a
loss function Lonline(X, X̄), its reconstruction task can be
seen as drawn from a task distribution and weights wc and
wlq are meta variables of the distribution. As described in
Fig. 2, the OML method [13] can be used to adaptively tune
wc and wlq through direct SGD by back-propagating the
gradients of Lonline(X, X̄). Instead of online tuning NN
parameters, tuning the weights is much more stable. Also,
only the tuned weight wc or wlq needs to be additionally
sent to Decoder with almost no transmission overhead.

The online loss can be flexible. For human viewing,
Lonline is distortion D(X, X̄), e.g., combination of MSE
and LPIPS. For machine analysis, Lonline =D(X, X̄)+
λtaskDtask(X, X̄), which includes task-oriented distortion
Dtask(X, X̄). For example, Dtask(X, X̄) can be MSE be-
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tween output features from a face embedding network like
FaceNet [22], using X or X̄ as input.

During online learning, the generic quantized feature
Zq∗
generic, the domain-adaptive quantized feature Zq

adaptive

and the LQ embedded feature Zlq are kept unchanged. That
is, the transmission bitrate remains unchanged since the
generic Ygeneric, the adaptive Yadaptive and the LQ YXlq

remain the same. The inference time in Decoder remains
unchanged. We only need to perform multiple inference
iterations in Encoder over the CFTcode/CFTlq and recon-
struction module, and only 5 SGD iterations are taken in
total. The additional time complexity in Encoder is small.

4. Experiments
To evaluate domain and task adaptation performance, the

generic branch uses the pre-trained model from [29], which
is trained with the FFHQ dataset [14] consisting of 70,000
HQ Flicker images at 1024×1024 resolution; the domain-
adaptive branch is trained with the CASIA-WebFace dataset
[27], consisting of 455,594 images from 10,575 identities
crawled from webpages with mediocre quality; and evalua-
tion is over the real-world LFW dataset [9], which consists
of 13,233 images from 5,749 identities and is one of the
most challenging datasets for face recognition.

We evaluate PSNR, SSIM, LPIPS for human use and
recognition accuracy for machine analysis. Several meth-
ods are tested, i.e., “code only” using only codebook-based
features targeting at human use, where the generic Zq∗

generic

and domain-adaptive Zq
adaptive are combined for recon-

struction, and the task-adaptive methods “t-adapt” and “t-
adapt oml” where the generic Zq∗

generic and task-adaptive
Zlq are used, with or without online learning, respectively.

We also test the flexibility of using different en-
coder/decoder to compress the LQ face in the task-adaptive
branch, including off-the-shelf VVC [12] and NN-based
LIC [6]. The bitrate of the encoder/decoder determines the
quality of the LQ face, which further influences reconstruc-
tion. So we test different bitrate configurations too. For
each image, only the largest face in the center are consid-
ered. Each detected face is extended and cropped to include
twice the area of the detection box using the facelib library,
and then resized to 512×512. For LIC, we use pre-trained
models from the CompressAI library [1]. For face recog-
nition, the FaceNet from PyTorch model zoo embeds the
restored face into a feature vector for similarity matching,
and the reported accuracy is over 10-fold cross-validation.

To present the final result, we use our algorithm to com-
press the extended face area, which is then merged back to
the VVC/LIC compressed image. For human viewing, the
codebook-based solution (“code only”) reconstructs face
using Zq∗

generic and Zq
adaptive from the generic and domain-

adaptive branches. The bit costs include the sparse Ygeneric

and Yadaptive for the extended face area and the bit counts
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Figure 3. Performance with LIC [6] as video encoder/decoder for
task-adaptive branch. q= 2 gives a balanced trade-off among bi-
trate, visual quality, and recognition accuracy.

for the remaining pixels. For machine analysis the task-
adaptive solution (“t-adapt”) uses the generic Zq∗

generic and
task-adaptive Zlq for face reconstruction. The bit costs in-
clude Ygeneric and the entire VVC/LIC encoded image. An
image-based approach is taken following the setup in stan-
dard evaluation like VCM [17]. That is, the all-intra mode
is used for VVC to compress images with intra-prediction.

4.1. Performance pairing with LIC
Using the NN-based LIC [6] as the video en-

coder/decoder in the adaptive branch, Fig. 3 shows the per-
formance comparison with 6 pre-trained models from Com-
pressAI corresponding to 6 target bitrates. To get ultra-low
bitrates, the original X is downsampled 4× (i.e. 16× resolu-
tion reduction) before compressed by LIC, and the decoded
image from LIC is upsampled 4× to the original size. The
bicubic filter is used for resizing.

From the results, without online learning, using only
codebook-based features, “code only” gives good overall
visual quality for PSNR, LPIPS and SSIM, but bad accu-
racy. Here the bitrate is computed by using the codebook-
based representation for the face area while using LIC com-
pression for remaining pixels. With the help from the LQ
face input, the “t-adapt” method restores faces that are bet-
ter for recognition, but with reduced visual quality. The
better the compression quality of the LQ face, the better the
reconstruction quality, and the larger the bit consumption.
With online learning, using adaptive combining weights wlq

the “t-adapt oml” method largely improves the recognition
accuracy, with only little drop of the visual quality. The
compression model of q= 2 gives a balanced performance
overall, where the 0.078 bpp is fairly evenly distributed to
generic Ygeneric (0.041 bpp) and YXlq

(0.037 bpp) and the
recognition accuracy reaches 0.966 with reasonable percep-
tual quality. After q=2, the accuracy saturates. This shows
that reasonably good details have been captured by the low-
bitrate LQ face to perform recognition.
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Table 1. Performance for human viewing using VVC as video
encoder/decoder for task-adaptive branch. The domain-adaptive
“code only” gives the best visual quality for both configurations.

QP=30 psnr ssim lpips bpp
vvc 26.35 0.807 0.341 0.0999

code only 27.52 0.824 0.231 0.0995
QP=42 psnr ssim lpips bpp

vvc 23.93 0.704 0.406 0.0320
code only 24.85 0.743 0.329 0.0450

4.2. Performance paring with VVC
We test two bitrate configurations for VVC as the video

encoder/decoder in the task-adaptive branch: QP =30 and
QP =42. Same as Section 4.1, the original X goes through
4× downsampling before VVC encoding and 4× upsam-
pling after VVC decoding to get ultra-low bitrates. The
bicubic filter is used for resizing. Table 1 and Table 2 give
the performance for human viewing and machine analysis,
respectively. Fig. 4 gives some reconstruction examples.
4.2.1 For human viewing
From Table 1, the “code only” method for human view-
ing largely outperforms VVC in both configurations with
44%/38% PSNR improvement and 48%/23% LPIPS im-
provement for QP=30/42. From Fig 4, with similar over-
all bitrates using QP=30 for “code only” (0.0995 bpp) and
VVC (0.0999 bpp), our reconstructed faces are clearly more
visually pleasing than the VVC compressed version. When
bitrate is decreased from QP=30 to QP=42, the visual qual-
ity of VVC drops significantly. As for “code only”, quality
of faces reconstructed by codebook is the same, and the per-
formance drop comes from the remaining pixels.
4.2.2 For machine analytics
For face recognition, as shown in Table 2, by using the
generic Zq∗

generic and task-adaptive Zlq, our “t-adapt oml”
method largely outperforms VVC for both configurations,
i.e., 37%/28% PSNR, 44%/22% LPIPS, and 17%/41% ac-
curacy improvements for QP=30/42. Also, our recon-
structed faces look much more pleasant than the VVC com-
pressed ones as shown in Fig.4. Often our results look even
better than the original ground-truth, thanks to the powerful
HQ face prior learned by the HQ generic codebook, exceed-
ing the quality of the actual input.

Without online adaptation, the “t-adapt” method gives
reasonably good reconstruction using QP=30 with 0.957 ac-
curacy, and “t-adapt oml” further boosts the performance by
online learning. For QP=42 where the decoded LQ face has
very bad quality, online learning plays an important role by
per-datum adaptation, which improves both visual quality
and recognition accuracy significantly.
4.2.3 More discussions
We can flexibly configure our method according to dif-
ferent compression needs. Considering Table 1, Table 2,

Table 2. Performance for machine analytics using VVC as video
encoder/decoder for task-adaptive branch. The “t-adapt” method
outperforms VVC, and “t-adapt oml” further boosts the perfor-
mance, especially at low bitrates.

QP=30 psnr ssim lpips accuracy bpp
vvc 26.35 0.807 0.341 0.826 0.100

t-adapt 27.11 0.811 0.239 0.957 0.140
t-adapt oml 27.33 0.815 0.236 0.976 0.140

QP=42 psnr ssim lpips accuracy bpp
vvc 23.93 0.704 0.406 0.680 0.032

t-adapt 23.91 0.695 0.360 0.857 0.073
t-adapt oml 24.61 0.726 0.334 0.962 0.073

and Fig. 4 together, for human viewing we recommend
“code only” using Zq∗

generic and Zq
adaptive with QP=30.

For machine analytics, we recommend “t-adapt oml” us-
ing Zq∗

generic and Zlq with QP=42. In such cases, we can
achieve good perceptual quality or accuracy with 0.1 bpp.
When the reconstruction is used for both human and ma-
chine, we recommend “t-adapt oml” with QP=30, where
results are both visually pleasing and good for recognition,
still having a reasonably low bitrate of 0.14 bpp.

From another perspective, the task-adapative solution
can be seen as an augmentation to off-the-shelf codecs like
VVC. That is, when using VVC at very low bitrates, by
transmitting an additional discrete codebook-based repre-
sentation Ygeneric (2560 bits/frame), we can improve the
task accuracy from 0.680 to 0.962 for QP=42 and from
0.826 to 0.976 for QP=30. The perceptual quality is also
largely improved in general.

We notice that it is hard to balance task loss and visual
quality in training the task-adaptive branch. It is proba-
bly because of the limited regularization power of the dis-
criminative task loss, similar to the common problem in
GAN training. Online learning can mitigate this issue and
largely improve the performance with task-oriented online
loss. Also, online tuning of wc only brings marginal gain
over the preset wc=1. This can be caused by the same dis-
tortion loss used for both online and offline training of the
domain-adaptive branch. The network is already optimized
for that loss, leaving little room for online improvement.

4.2.4 Limitations
Our approach uses the structural characteristics of human
faces to achieve high compression efficiency. It can poten-
tially be used on other types of content with highly struc-
tured features (e.g., human body) where a generic sparse
neural representation can be learned. It may not be effec-
tive when being applied to general video content.

Similar to the VCM evaluation, our method compresses
each frame individually. This is due to the lack of large-
scale labeled video sets and video-oriented models trained
for recognition tasks. As a compression method, we should
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gGround truthg

0.413|

gVVC (QP=42)g

0.413|25.17|0.612|0.023

gVVC (QP=30)g

0.300|28.25|0.754|0.077

gcode onlyg

0.257|28.80|0.773|0.081

gt-adaptg

0.304|25.95|0.663|0.064

gt-adapt omlg

0.255|28.35|0.761|0.118

0.413| 0.364|24.27|0.712|0.024 0.261|26.02|0.817|0.068 0.208|26.09|0.816|0.071 0.245|27.07|0.774|0.065 0.205|26.00|0.814|0.109

0.413| 0.309|21.48|0.774|0.031 0.194|22.96|0.862|0.094 0.131|23.10|0.867|0.092 0.204|22.16|0.821|0.075 0.168|23.10|0.865|0.135

0.413| 0.388|22.90|0.662|0.036 0.228|26.08|0.830|0.108 0.198|26.34|0.833|0.110 0.312|23.42|0.683|0.077 0.192|26.10|0.826|0.149

0.413| 0.355|23.54|0.711|0.031 0.244|25.43|0.811|0.093 0.199|25.83|0.827|0.094 0.233|24.66|0.765|0.072 0.187|26.13|0.834|0.134

Figure 4. Examples using VVC as video encoder/decoder in task-adaptive branch. Numbers under each reconstruction result are
“LPIPS|PSNR|SSIM|bpp”. In general, the domain-adaptive “code only” performs well objectively, and the task adaptive “t-adapt oml”
gives the best recognition accuracy with good perceptual quality. For both VVC configurations our approaches subjectively outperform the
VVC compressed counterparts significantly.

not restrict and retrain machine task models, and the image-
based method is therefore used to be plugged into the ex-
isting machine task models. One naive way to extend to
video is to compress I-frames only. However, as shown
in experiments the reconstructed I-frames then may have
higher quality than the original inputs, and the traditional
inter-prediction may not be efficient anymore. One future
work is to investigate effective temporal prediction methods
to improve video compression efficiency.

5. Conclusions
We proposed a robust framework for human-centric

video compression to accommodate both human view-
ing and machine analytics. The generic branch used the

highly efficient generic codebook-based representation to
ensure face reconstruction with high perceptual quality. The
domain-adaptive and task-adaptive details were provided in
addition to improve, respectively, the visual authenticity to
the current data domain for human use and the task perfor-
mance for machine analysis. The combining weights of the
generic, domain-adaptive and task-adaptive features were
online adjusted to fit different compression needs. Exper-
iments demonstrated superior perceptual quality and task
accuracy with very low bitrate. Comparing to conventional
coding methods, our framework can be flexibly configured
and can better scale to multiple data domains and tasks.
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