
NTIRE 2023 Video Colorization Challenge

Xiaoyang Kang* Xianhui Lin* Kai Zhang* Zheng Hui* Wangmeng Xiang* Jun-Yan He*
Xiaoming Li* Peiran Ren* Xuansong Xie* Radu Timofte* Yixin Yang Jinshan Pan
Zhongzheng Peng Qiyan Zhang Jiangxin Dong Jinhui Tang Jinjing Li Chichen Lin Qipei Li
Qirong Liang Ruipeng Gang Xiaofeng Liu Shuang Feng Shuai Liu Hao Wang Chaoyu Feng
Furui Bai Yuqian Zhang Guangqi Shao Xiaotao Wang Lei Lei Siqi Chen Yu Zhang

Hanning Xu Zheyuan Liu Zhao Zhang Yan Luo Zhichao Zuo

Abstract

This paper reviews the video colorization challenge on
the New Trends in Image Restoration and Enhancement
(NTIRE) workshop, held in conjunction with CVPR 2023.
The target of this challenge is converting grayscale videos
into color videos with better colorization performance and
temporal consistency. The challenge consists of two tracks.
For Track 1, the goal is achieving the best FID (Fréchet In-
ception Distance) while being constrained to maintain or
improve over the baseline method in terms of the temporal-
consistency metric. The Color Distribution Consistency
(CDC) index is used as the temporal consistency evaluation
metric in this challenge. For Track 2, the target is to obtain
a solution with the best CDC result while being constrained
to maintain or improve over the baseline method in terms of
FID. We use DeOldify-video as the baseline method for two
tracks. For the final testing phase of both tracks, six teams
submitted fact sheets and executable code of their solutions.
This report brings together descriptions and discussions of
all these solutions. Both tracks use the same data and the
datasets are available at this url.

1. Introduction
Video colorization aims to transform multiple consec-

utive single-channel grayscale video frames into three-
channel color video frames, and has received increasing at-
tention in recent years. Its applications are vast and var-
ied, spanning across the film industry, art, and visual me-
dia. Unlike image colorization, video colorization not only
demands high-fidelity single-frame results but also neces-
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sitates maintaining temporal consistency between frames.
In addition, instance consistency must be ensured in video
colorization, e.g., objects that appear in the previous frames
should retain the same semantic color in subsequent ones.
Thus, video colorization is a challenging problem in visual
enhancement and restoration.

Recently, a large number of image colorization methods
[7, 11, 16, 18, 19, 20, 35, 44, 45, 59] have been proposed
and achieved impressive results. One possible solution for
video colorization is to directly use the image colorization
model to independently colorize each frame of the video.
However, due to the lack of modeling of temporal infor-
mation between frames, these image-based methods often
result in temporal flickering and discontinuity.

In order to introduce temporal constraints, FAVC [22]
first uses deep learning methods to achieve automatic video
colorization by using self-regularization and diversity loss.
TCVC [28] propagates frame-level deep features in a bidi-
rectional manner, achieving better single-frame colorization
results while enhancing temporal consistency. To achieve
better flexibility and colorization results, some exemplar-
based video colorization methods [14, 38, 48, 58] have been
developed. These methods typically transfer colors from
reference sample images to grayscale image frames. BiST-
Net [53] uses bidirectional temporal feature fusion with the
guidance of semantic image prior to achieve progressive
colorization in a coarse-to-fine manner.

The goal of the NTIRE 2023 Video Colorization chal-
lenge is to promote further research in the video colorization
field and to establish the current state-of-the-art. As part
of the challenge, the participants were required to gener-
ate continuous color video frames giving multiple grayscale
video frames as input. The challenge contained two tracks,
namely Track 1 and Track 2. For Track 1, the aim is to
obtain a solution with the best FID (Fréchet Inception Dis-
tance) [12] while being constrained to maintain or improve
over the baseline method in terms of temporal-consistency
metric. We use the Color Distribution Consistency (CDC)
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described in [28] as the temporal consistency evaluation
metric. For Track 2, the aim is to obtain a solution with
the best CDC result while being constrained to maintain or
improve over the baseline method in terms of FID. Both
tracks use the famous open-source video colorization model
DeOldify-video [4] as the baseline method.

The challenge has 93 and 130 registered participants for
two tracks, respectively. Among them, 6 participating teams
submitted valid models and fact sheets in the final testing
stage of each track. They introduce new technologies in net-
work architectures, loss functions, ensemble methods, data
augmentation methods, etc. We present detailed challenge
results in Section 3.

This challenge is part of the NTIRE 2023 challenges on:
night photography rendering [34], HR depth from images
of specular and transparent surfaces [55], image denois-
ing [26], video colorization [17], shadow removal [36, 37],
quality assessment of video enhancement [27], stereo super-
resolution [39], light field image super-resolution [42], im-
age super-resolution (×4) [61], 360° omnidirectional im-
age and video super-resolution [5], lens-to-lens bokeh effect
transformation [8, 33], real-time 4K super-resolution [9,
56], HR nonhomogenous dehazing [3], efficient super-
resolution [25].

2. Challenge

The NTIRE 2023 Video Colorization Challenge ad-
dresses the black-and-white video colorization task. To the
best of our knowledge, this is the first challenge to focus on
general video colorization. It aims to assess and advance
the latest level of video colorization and sets up two tracks
that emphasize high-fidelity and time-consistent solutions
respectively. The rest of this section describes challenge
settings, including the dataset, evaluation, as well as phases
of challenges.

2.1. Dataset

For the NTIRE 2023 Video Colorization Challenge,
we employ a subset of Large-scale Diverse Video (LDV)
dataset [49, 50, 51] as the training set and the validation set.
The LDV dataset includes diverse categories of contents,
various kinds of motion and different frame-rates. The orig-
inal LDV dataset contains 240 high-quality videos with a
resolution of 960 × 536. We use 200 of them as the train-
ing set and 15 of them as the validation set. The validation
set is further divided into video frames that are publicly
available to minimize the differences caused by different
video decoding methods. The video frames are converted
to grayscale using ‘cv2.cvtColor()’.

The test set contains 15 diverse videos collected from
YouTube. Each video contains 100 grayscale frames in the
size of 960 × 540. The videos contain multiple types of

scenes, e.g., animal, city, human, indoor, scenery, sports,
and so on.

2.2. Evaluation

Following the experimental protocol of most existing
colorization methods, we mainly use Fréchet Inception Dis-
tance (FID) [12] to evaluate the colorization performance
of the methods, where FID measures the distribution sim-
ilarity between generated images and ground truth images.
Although colorization is an inverse problem, it is a widely
held view that the pixel-level metrics such as Peak Signal-
to-Noise Ratio (PSNR) [13] may not well reflect the actual
colorization performance [7, 16, 18, 35, 45].

For temporal consistency, we adopt Color Distribution
Consistency index (CDC) described in [28]. It is computed
on the output colorized frames. Specifically, it computes
the Jensen-Shannon (JS) divergence of the color distribution
between consecutive frames:

CDCt =
1

3× (N − t)

∑
c∈{r,g,b}

N−t∑
i=1

JS(Pc(I
i), Pc(I

i+t)),

(1)
where N is the video sequence length and Pc(I

i) is the nor-
malized probability distribution of color image Ii across c
channel, which can be calculated from the image histogram.
t denotes the time step. A smaller t indicates short-term
temporal consistency, while larger t indicates long-term
temporal consistency. The JS divergence can measure the
similarity between two color probability distributions. The
overall index can be calculated by:

CDC =
1

3
(CDC1 + CDC2 + CDC4). (2)

which considers the long-term and short-term temporal con-
sistency together.

For Track 1, the aim is to obtain a solution with the
best FID while being constrained to maintain or improve
over the baseline in terms of CDC. For Track2, the aim
is to obtain solutions with the best CDC while being
constrained to maintain or improve over the baseline
in terms of FID. For both tracks, we choose DeOld-
ify, the famous open-source colorization method, as
the baseline defining the maximum CDC / FID. The
baseline evaluation code can be found in https:
//modelscope.cn/models/damo/CVPR2023_
NTIRE_Video_Colorization/summary.

2.3. Challenge Phases

The whole challenge consists of three phases: the devel-
oping phase, the validation phase, and the testing phase.

In the developing phase, the participants can access to
both grayscale and color videos of the training set. This
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period allows them to become familiar with data structure
while also developing their algorithms.

In the validation phase, the participants can access the
grayscale video frames of the validation set. The partici-
pants had the opportunity to test their solutions on the val-
idation images and receive immediate feedback by upload-
ing results onto the server. A validation leaderboard is avail-
able.

In the testing phase, the participants can access the
grayscale video frames of the test set. A test server and
a leaderboard are provided. At the end of the test phase, the
participants need to submit the executable file and a detailed
description file outlining their methods before receiving the
final rank.

3. Results
From 93 and 130 registered teams in two tracks, 15 and

14 teams advanced to the final testing phase respectively.
Among them, 6 teams submitted valid results and fact sheets
for both tracks. These teams are ranked according to the
evaluation metrics presented in Section 2.2.

3.1. Track 1: Fréchet Inception Distance (FID) Op-
timization

For Track 1, we use DeOldify-video [4] as the base-
line method. The final results are ranked by FID, which
means that top solutions are expected to achieve a lower
FID score while maintaining its CDC score lower than
DeOldify-video’s. Table 1 reports the FID, CDC scores, and
the final ranking of each team. Fig. 1 shows the qualitative
results. The proposed methods of each team are described
in Section 4.1.

Table 1. FID and CDC score over the test set and final rankings on
Track 1. We denote in bold the main metric of the track.

Team Author FID↓ CDC↓
NJUSTer Yixin Yang 21.5372 0.001717

CUCPLUS Jinjing Li 26.7915 0.000963
MiAlgo Shuai Liu 41.9539 0.001450
vectoria Siqi Chen 55.9904 0.001714

ppzz Hanning Xu 56.8085 0.001122
LVGroup HFUT Zhao Zhang 60.0732 0.002548

baseline - 61.2961 0.002149

3.2. Track 2: Color Distribution Consistency (CDC)
Optimization

For Track 2, we use DeOldify-video [4] as the baseline
method. The final results are ranked by CDC, which means
that top solutions are expected to achieve a lower CDC
score while maintaining its FID score lower than DeOldify-
video’s. Table 2 reports the FID, CDC scores, and the final
ranking of each team. Fig. 2 shows the qualitative results.

The proposed methods of each team are described in Sec-
tion 4.2.

Table 2. FID and CDC score over the test set and final rankings on
Track 2. We denote in bold the main metric of the track.

Team Author FID↓ CDC↓
MiAlgo Shuai Liu 54.7238 0.000819

CUCPLUS Jinjing Li 26.7934 0.000962
vectoria Siqi Chen 63.7640 0.001017

NJUSTer Yixin Yang 62.4467 0.001066
ppzz Hanning Xu 56.8085 0.001122

LVGroup HFUT Zhao Zhang 63.7058 0.001525
baseline - 61.2961 0.002149

4. Teams and Methods
In this section, we briefly describe the methods pro-

posed by teams participating in the final testing phase of
the NTIRE 2023 Video Colorization Challenge.

4.1. Track 1

4.1.1 NJUSTer

The NJUSTer team adopted BiSTNet [53] as their baseline
model. BiSTNet is a deep video colorization method that
leverages semantic image prior to guide bidirectional tem-
poral feature fusion. It can effectively exploit the color in-
formation of reference exemplars and propagate it to col-
orize each frame. BiSTNet consists of several core com-
ponents: (a) bidirectional temporal fusion block (BTFB),
which fuses the features of adjacent frames in both forward
and backward directions; (b) mixed expert module (MEB),
which selects different colorization strategies based on the
semantic image prior; (c) multi-scale recurrent framework
(MSRB), which progressively colorizes each frame from
coarse to fine. BiSTNet has been evaluated on multiple
datasets and demonstrated its superiority in both quantita-
tive and qualitative aspects.

For example-based video coloring methods, high-quality
reference frames are crucial. The NJUSTer team first exper-
imented DISCO [46], an image colorization method, to gen-
erate colorful reference frames. They fine-tuned this model
with the NTIRE2023 Video Colorization training dataset,
and colored ‘f001.png’, ‘f050.png’, and ‘f100.png’ frames
(key colorful frames) required by BiSTNet. Experimental
results show that DISCO generates reference frames with
good visual effects but overall colorfulness is far from satis-
factory. Moreover, since DISCO does not consider temporal
consistency between frames, selecting reference frames will
cause color inconsistency of the same objects. They discov-
ered that the accuracy of the color greatly impacts the calcu-
lation of the FID score. Even if the generated image color is
reasonable, there is a significant difference from the ground
truth, which can result in a high FID value (the lower, the
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Figure 1. Qualitative Results for Track 1. Best viewed in color.
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Figure 2. Qualitative Results for Track 2. Best viewed in color.

better). Therefore, they ultimately chose to search for the
closest possible color images from the internet as reference
frames for BiSTNet. The video colorization model based on
these reference frames performs very competitively (please
see in Table 3). In conclusion, their research demonstrates
that our model performs well enough when there are high-
quality reference frames available. When high-quality ref-
erence frames are not accessible, image colorization meth-
ods (like DISCO) equipped with human manual coloring
are also a good alternative solution.

Table 3. Team NJUSTer: the impact of the colorful reference.
source of key frames FID↓ CDC↓

from the internet 21.5372 0.001717
from the DISCO [46] 73.4874 0.001716

Figure 3. The pipeline of BRT proposed by Team CUCPLUS.

4.1.2 CUCPLUS

The CUCPLUS team proposed a Bi-directional Recurrent
Transformer Network for Video Colorization [24]. As
shown in Fig. 3, the proposed network BRT is based on
RTN [38], with the difference being that the transformer
adopted in it is the Restormer Network [57]. BRT takes a se-
ries of video frames as input, a shallow feature, and optical
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flow information will be obtained after Encoder and Flow,
respectively. Learnable Guided Mask [38] module will fu-
sion this information and feed the output feature maps into
Restormer Network, which can capture more multi-scale se-
mantics during training and reduce the occurrence of color
artifacts. The Learnable Guided Mask block adopted in
BRT is with the same setting as in RTN [38]. In addition,
the proposed BRT employs adversarial training as the same
as RTN [38] during the training process.

During the inference phase, considering the potential
discrepancy between the input image distribution during
model training and testing, the proposed BRT employed the
TLC [47] strategy to alleviate such a gap in the inference
phase. As shown in Fig. 4, BRT leverages different model
weights to perform inference predictions on subsets of the
test set. At the same time, some video clips in the test set
contain rich content, such as numerous characters, and the
generalization ability of BRT is poor on such clips. To ad-
dress this issue, firstly, BRT utilized the baseline [4] method
to generate synthetic data, and then trained the model on
these data. Secondly, BRT is trained with the extra clips
which are collected from YouTube for finetuning.

4.1.3 MiAlgo

The MiAlgo team proposes a multi-model fusion strategy
for Track 1. As shown in Fig. 5, the approach involves
training CT2 [44] on a large amount of unfiltered YouTube
data [52] and naming the model as ”CT2 classic”. Sub-
sequently, the data is cleaned and filtered to select video
frames of common scenes using the official training set. An-
other CT2 model is trained on the filtered data, and named
”CT2 vivid”. During testing, a content-based image re-
trieval system (CBIR) is utilized to match the test video and
the filtered training set. If the distance exceeds a thresh-
old, the vivid result is used, otherwise, the classic result is
used. This design is intended to increase the robustness of
the method by using different models for common and un-
common scenarios.

4.1.4 vectoria

The vectoria team proposes Temporal Consistent Automatic
Video Colorization with Semantic Correspondence [60],
which combines semantic correspondence network into au-
tomatic video colorization. As illustrated in Fig. 6, the pro-
posed framework is divided into two stages. The first stage
involves an automatic image colorization network, and the
second stage includes a semantic correspondence network
and an image colorization network. In the first stage, the
first frame of each video is selected to be automatically col-
orized. And the resulting image is then regarded as a refer-

ence image in the second stage.

I labref = C1(I l0) (3)

In which C1 represents the image colorization network in
the first stage. Ii, Iref denote the ith frame and the ref-
erence image respectively. For maintaining temporal con-
sistency, rather than only correlating to the previous few
frames, the colorization of the remaining grayscale frames
also depends on their semantic correspondence with the ref-
erence image, which can be denoted by:

Î labn = C2(S(I ln, I labref ), Î
lab
n−1) (4)

Where S represents the semantic correspondence network,
and C2 the image colorization network in the second stage.
Thus, this approach is capable of better maintaining tempo-
ral consistency along time series. They train another model
without the semantic correspondence network to represent
its effectiveness, and the visual comparison is illustrated in
Fig. 7. Without a semantic correspondence network, the
object can have diverse colors in different frames. With the
semantic correspondence network, the frames with large in-
tervals still maintain pleasant temporal consistency.

The image colorization network in the first stage is
an encoder-decoder structure with skip connections, group
convolutions, and dilated convolutions [54]. The seman-
tic correspondence network is a CNN-Transformer struc-
ture [30] with non-local operation [41]. And the image col-
orization network in the second stage combines the encoder-
decoder structure in the first stage with a Transformer
branch.

The training of the networks in two stages is indepen-
dent. For the network in the first stage, the image col-
orization network is trained on images from ImageNet [10],
REDS [29], DAVIS [31], SportMOT [1] and the official
training set in the competition. The images in odd colors,
low resolution, or low contrast are removed. About 1.1 mil-
lion images are involved in training. Image-based objec-
tives: L1 loss, perceptual loss, generator loss, and smooth-
ness loss [58] are adopted. And for networks in the sec-
ond stage, the training set includes DAVIS [31], Videvo [2],
and FVI [6] dataset. 2090 videos in total are collected.
Moreover, The pre-trained models in [43, 58] are used to
initialize the parameters. Besides the image-based objec-
tives, video-based objective temporal warping loss [28] is
also adopted.

4.1.5 ppzz

The ppzz team proposed a method that uses two pretrained
models to generate the final test results. They use a Col-
orFormer [16] pretrained on ImageNet to generate the ex-
emplar images regarding each video clip. These exemplar
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Figure 4. Team CUCPLUS: Test phase inference strategy. Firstly, BRT uses TLC [47] to alleviate the gap between training and testing.
Secondly, different clips of the test set are predicted by different model weights.

Figure 5. Overview of the approach used by Team MiAlgo.

images are further utilized by a Deep-Exemplar [58] pre-
trained on Videvo and Hollywood2 datasets to produce the
colorized frames.

Compared with other SOTA images colorization mod-
els [44, 45], employing ColorFormer [16] as the exemplar-

generation backbone has three advantages: 1) stability to
produce highly-coefficient images when given frame se-
quences; 2) fast inference speed; 3) low memory consump-
tion.

Compared with other SOTA video colorization mod-
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Figure 7. Team vectoria: visual comparison of colorization results with or without semantic correspondence network. The images are
selected from the official test set. Each interval of the adjacent frames is 30.

els which are based on single image colorization meth-
ods [21, 22, 23, 28], employing Deep-Exemplar [58] as the
video colorization backbone also has three advantages: 1)

astonishing high temporal consistency between generated
frames especially when the exemplar image has the similar
structure as the gray frames; 2) fast inference speed; 3) low
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Figure 8. The network architecture employed by team LV-
Group HFUT for Track 1.

memory consumption.

4.1.6 LVGroup HFUT

The LVGroup HFUT team uses U-Net [32] as the back-
bone of the proposed method for Track 1. The skip con-
nection [15] is applied between mirrored layers in the en-
coder and decoder stacks as shown in Fig. 8. They add skip
connections between each layer i and layer n − i , where
n is the total number of layers. Each skip connection sim-
ply concatenates all channels at layer i with those at layer
n − i . This approach promotes the decoder to preserve low-
level details and facilitates the convergence of the whole
system since the gradients easily pass to encoder layers.

4.2. Track 2

4.2.1 MiAlgo

As illustrated in Fig. 5, the models used for testing Track 2
are the same as those employed in Track 1. These models
are used to calculate the CDC of each test sequence. After
the CDC values have been calculated, inter-frame smooth-
ing is applied with varying strengths based on the CDC
value. The purpose of this approach is to improve the per-
formance of the method by reducing the impact of camera
motion on the visual content of the test sequence.

4.2.2 CUCPLUS

The CUCPLUS team proposes the same method for both
tracks, which is described in Section 4.1.2.

4.2.3 vectoria

The vectoria team proposes the same method for both
tracks, which is described in Section 4.1.4.

Figure 9. The network architecture proposed by team LV-
Group HFUT for Track 2.

4.2.4 NJUSTer

The NJUSTer team proposes the same method for both
tracks, which is described in Section 4.1.1.

4.2.5 ppzz

The ppzz team proposes the same method for both tracks,
which is described in Section 4.1.5.

4.2.6 LVGroup HFUT

The LVGroup HFUT team proposes a Channel Enhance-
ment Module to enhance the performance of Deoldify [4]
for Track 2. As shown in Fig. 9, the proposed Chan-
nel Enhancement Module (CEM) mainly adopts ECA [40]
to enhance channel information locally. A local cross-
channel interaction strategy without dimensionality reduc-
tion is used to avoid dimension reduction for channel atten-
tion learning. Additionally, the appropriate cross-channel
interaction can significantly reduce model complexity while
maintaining performance.
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Zürich (Computer Vision Lab) and University of Würzburg
(Computer Vision Lab). We thank ModelScope for spon-
soring this challenge. We thank all organizers and all the
participants for their great work.

Appendix
A. Teams and Affiliations

NTIRE2023 Video Colorization Challenge Orga-
nizers

Members:
Xiaoyang Kang1 (kangxiaoyang.kxy@alibaba-inc.com)
Xianhui Lin1 (xianhui.lxh@alibaba-inc.com)
Kai Zhang2 (kai.zhang@vision.ee.ethz.ch)

1577

mailto:kangxiaoyang.kxy@alibaba-inc.com
mailto:xianhui.lxh@alibaba-inc.com
mailto:kai.zhang@vision.ee.ethz.ch


Zheng Hui1 (huizheng.hz@alibaba-inc.com)
Wangmeng Xiang1 (wangmeng.xwm@alibaba-inc.com)
Jun-Yan He1 (leyuan.hjy@alibaba-inc.com)
Xiaoming Li3 (csxmli@gmail.com)
Peiran Ren1 (peiran.rpr@alibaba-inc.com)
Xuansong Xie1 (xingtong.xxs@alibaba-inc.com)
Radu Timofte4,2 (radu.timofte@uni-wuerzburg.de)
Affiliations:
1 DAMO Academy, Alibaba Group, China
2 Computer Vision Lab, ETH Zürich, Switzerland
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