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Abstract

The aim of this paper is to propose a large scale
dataset for image restoration (LSDIR). Recent work in im-
age restoration has been focused on the design of deep neu-
ral networks. The datasets used to train these networks
‘only’ contain some thousands of images, which is still in-
comparable with the large scale datasets for other vision
tasks such as visual recognition and object detection. The
small training set limits the performance of image restora-
tion networks. To solve this problem, we collect high-
resolution (HR) images from Flickr for image restoration.
To ensure the pixel-level quality of the collected dataset,
annotators were invited to manually inspect each of the
collected image and remove the low-quality ones. The fi-
nal dataset contains 84,991 high-quality training images,
1,000 validation images, and 1,000 test images. In ad-
dition, we showed that the model capacity of large net-
works could be fully exploited by training on the large
scale dataset with significantly increased patch size and
prolonged training iterations. The experimental results on
image super-resolution (SR), denoising, JPEG deblocking,
deblurring, and demosaicking, and real-world SR show that
image restoration networks benefit a lot from the large scale
dataset.

1. Introduction
Image restoration (IR) refers to the problem of recover-

ing high-quality images from degraded images which are
derived by a degradation model. Depending on the degra-
dation model, the problem could be classified into several
sub-problems such as image super-resolution (SR) [9, 11,
17, 22, 37, 44, 48, 51], image denoising [6, 28, 73, 79, 86,
93], image deblurring [47, 50, 59, 68], image demosaic-
ing [29, 56, 80, 84, 95, 96], JPEG compression artifacts re-
moval [13, 16, 33, 93], raindrop removal [23, 39, 42, 45],
haze removal [4, 30, 40, 65, 66], and so on. Due to the dif-
ferent characteristics of those problems, resulting from the

different degradation models, those problems were tackled
independently by specifically designed algorithms before
the deep learning era such as sparse coding and dictionary
learning for image super-resolution [70,71,82,83], filtering
methods for image denoising [6, 14, 19], bidirectional in-
terpolation methods for image demosaicking [95, 96]. Dur-
ing the past ten years, with the fast development of deep
learning theories and computing hardware, deep neural net-
works emerged as a generalizable solution to those prob-
lems [11, 48, 86, 91, 100]. An indispensable component for
success - at least thus far - is the adoption of supervised
learning. Deep neural networks learn to restore the de-
graded image by utilizing the underlying mappings between
paired degraded and high-quality images. Yet, collecting a
real-world paired dataset for image restoration is extremely
difficult, which usually involves paired camera setup, post-
processing pipelines to estimate the ground truth, alignment
between image pairs and so on [1,7,10,36,49,61,63]. As an
alternative, the classical method to get paired data for image
restoration is by data synthesis [54,75,90,92]. The degraded
images are derived by applying typical and synthetic degra-
dation processes to the ground-truth images. The ground-
truth images are carefully selected to exclude undesired arti-
facts such as blur and noise corruption and to ensure a good
coverage of natural textures [3, 26, 51, 76, 78].

Most previous research in image restoration focuses on
the design of deep models. Their performance increases as
the networks get deeper and more complicated [17, 35, 37,
48,51,99,100]. With the fast development of image restora-
tion models, it becomes crucial to reconsider data based
on the following facts. First of all, it is well-known that
big models are data hungry [18, 53, 64, 72]. Training with
large-scale data could improve the prediction accuracy of
deep neural networks. For image restoration tasks, training
with large-scale dataset leads to better performance for both
small [17,41] and large image restoration networks [11,12].
Second, current IR benchmark datasets date back to decades
ago. Limited by the imaging technique, the image quality of
the old benchmark datasets are not well guaranteed (Fig. 1).
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Figure 1. Example images from different image restoration datasets. Images in the proposed dataset are in high resolution, of high quality,
and with detailed contents.

Thus, there could be a domain gap between the training and
test images, which could not faithfully reveal the perfor-
mance of IR models. Third, training with synthetic data is
not just out of research interest. Instead, it helps the im-
age restoration model to learn priors under simplified set-
ting. Recent works have also shown the great potential of
purely utilizing data synthesis for real-world image restora-
tion [75, 90, 92]. This removes the reliance on real-world
data for real-world image restoration.

In this paper, we aim at building a large scale high-
resolution dataset for image restoration tasks. Earlier
datasets contain a limited number of images. For exam-
ple, the most commonly used dataset DIV2K [3, 46, 88]
contains 800 training images and 100 validation images.
Fickr2K offers another 2,650 2K resolution images [51].
Those datasets have been used as the standard training sets
for image restoration during the past five years. Recently,
ImageNet [15] has also been used to train image restora-
tion networks [11, 41]. Yet, since ImageNet is not collected
specifically for image restoration, it comes with some un-
desirable artifacts such as noise and blur, both detrimen-
tal for image restoration. In addition, the resolution of
the images is usually quite low. With the development
of ever larger deep learning models (especially transform-
ers [11, 12, 41, 48]) and large-scale datasets for high-level
vision tasks (ImageNet [15], MSCOCO [52]) and vision-
language tasks (YFCC100M [69], WIT [64]), a new large-
scale dataset for image restoration is called for.

In response, we built a large-scale dataset for image
restoration. It is composed of 84,991 training images,
1,000 validation images and 1,000 test images. To ensure
the dataset’s diversity, over 20,000 keywords were used
to search for the images automatically. All images in the
dataset are carefully checked to ensure the image quality.
Beyond that, we also investigated the characteristics and

benefits of training with this large scale dataset. We can
summarize our conclusions and findings as follows. 1) The
benefit of the large scale dataset is that it enables to fully
exploit the capacity of large models with significantly in-
creased patch size and prolonged training iterations. 2) By
contrast, overfitting is observed when training with the pre-
vious small scale datasets DIV2K and DF2K (See Fig. 3).
3) Large models get a significant performance boost with
the proposed dataset. For example, EDSR [51] achieves
performances comparable with or even better than those re-
ported in the SwinIR paper [48].

2. Related Work
Image restoration methods. Traditional image restora-

tion methods includes the model-based [6, 8, 14, 20, 27, 28,
62,95] methods and the exampled-based methods [9,22,67,
70, 71, 82]. With the thriving of deep learning, deep neural
networks are used to deal with image restoration problems
including image SR [17, 35, 37, 43, 44, 46, 51, 88, 89, 94],
image denoising [2, 24, 74, 81, 91, 93], JPEG artifacts re-
moval [48, 100] and so on. Recently, generalized deep
neural networks have been developed to deal with image
restoration tasks jointly [11, 41, 48, 100]. Among the image
restoration networks, there is a trend that the network be-
comes deeper and more complicated. Most of the previous
work focuses on the design of neural network. However, the
training dataset is not paid enough attention to.

Image restoration datasets. Learning based image
restoration methods rely on the external training dataset to
learn the mapping between degraded and ground-truth im-
ages. Early methods uses small datasets such as the 91
images proposed in [82] and the 400 images from BSD
dataset [57]. Since the resolution of those images is not high
enough, DIV2K and Flickr2K datasets are proposed which
contain 800 and 2,650 2K resolution training images respec-
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tively. Yet, compared with datasets such as ImageNet [15]
and MSCOCO [52], the diversity of the contents in the im-
age restoration datasets is limited. In some work, ImageNet
is also used to train image restoration networks. But the
resolution of images in ImageNet is not very high (about
256 × 256) and the pixel-level quality of the images is not
guaranteed. Thus, a much larger image restoration dataset
with diverse content is called for. A couple of other datasets
are also often used for image restoration tasks including
FFHQ [34], WED [55], OST [76], SCUT-CTW1500 [85],
and DIV8K [26]. Besides the training dataset, there are
also a couple of test sets used to benchmark different image
restoration methods, which includes Set5 [5], Set14 [87],
BSD [57], Kodak24 [21], McMaster [96], Urban100 [31],
Manga109 [58], DIV2K validation set [3] and so on.

3. Data Collection Pipeline
We introduce the LSDIR dataset, a new Large Scale

Dataset for Image Restoration. Examples of the images in
this dataset are shown in Fig. 2. The data collection pipeline
is introduced in this section.

3.1. Blur and Noise Suppression

Different from high-level vision tasks such as visual
recognition and object detection, it is important to en-
sure the pixel-level quality of the images in the restoration
dataset. The major challenge for its collection is the variety
of possible artifacts. The most commonly occurring arti-
facts in natural images are blur and noise corruption, which
need to be suppressed during data collection [3,26,51]. Yet,
blur detection and noise estimation are already non-trivial
problems in their own right. Instead, we adopt multiple
strategies to suppress the artifacts. First, during data crawl-
ing, we use a simple and efficient blur detection method via
the variance of the image Laplacian [60]. Second, to sup-
press artifacts such as noise and JPEG image compression
artifacts, the crawled original images are down-sampled.
Third, the collected images are labelled by human annota-
tors. Only images that pass two rounds of human inspection
are labelled as high quality and are kept in the dataset. Addi-
tionally, we also use a simple method to detect images with
too many flat regions and exclude those from the dataset.
The blur detection and flat region detection are described
next.

Blur detection. To detect blurry images, we use the vari-
ance of the Laplacian [60] as an indicator.

L(x, y) =
∂2I

∂x2
+

∂2I

∂y2
, (1)

Sblur = Var(L(x, y)), (2)

where I denotes the input image, (x, y) are the coordinates
of a pixel, and Sblur is the blur score. A small score Sblur

means that the image is blurred. On the other hand, a large
score often corresponds to noisy images. Thus, we only
select images with score Sblur in the range [Sl

blur,Sh
blur].

The two thresholds Sl
blur and Sh

blur are empirically set to
150 and 8,000.

Flat region detection. To detect images dominated by
flat regions, we develop a voting based method. Specif-
ically, the whole image is divided into non-overlapping
patches with patch size 240 × 240. The score for flat re-
gion detection is calculated by the Sobel filter, a good edge
detector. The assumption about a flat region is that it does
not contain a lot of edges. Thus, the variance of the mag-
nitude of the image derivative along the two axis is used as
indicator of the flatness of a region, namely,

G(x, y) =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

, (3)

Sflat = Var(G(x, y)). (4)

If the score Sflat of an image patch is lower than a thresh-
old St

flat, then the patch is classified as a flat region. We
empirically set the score St

flat to 800. If the percentage of
flat patches in an image is more than 50%, then the image is
classified as a flat image and is excluded from the dataset.

3.2. Data Collection

Source. We automatically crawled images from Flickr1.
Data crawling is conducted by keyword search. Search-
ing by different keywords via Flickr API can return scenes
with quite different content and texture. Thus, to collect the
large-scale dataset and guarantee the diversity of the im-
ages, we used a large set of keywords split into four subsets
including flickr2k, flickr tag, imagenet, and imagenet 21k.
1) flickr2k: This subset contains the 133 queries used to
create the Flickr2K dataset [51]. 2) flickr tag: This sub-
set is collected by us and contains the hottest 200 tags and
their related tags on the Flickr website. 3) imagenet & 4)
imagenet 21k: Additionally, we also used the 1,000 labels
from ImageNet, and the 21,843 labels from ImageNet 21K.
Note that we only used the labels from ImageNet while the
images from ImageNet are not used nor included in the col-
lected dataset. Repetitions of search keywords in the four
subsets are removed.

Data selection criteria. During the data crawling phase,
we iterate several rounds to validate the quality and content
of the collected images. During each round, 1,000 images
are collected and their quality and content are inspected.
Depending on that, a set of automatic image selection crite-
ria is deployed to ensure the quality of the images. The im-
ages are selected according to the license, resolution, aspect
ratio, captured date, and tags. We also found out that the

1https://www.flickr.com/

1777



Figure 2. Examples of validation images from the LSDIR dataset.

most common artifact in the original images is blur. In ad-
dition, high-resolution images with flat regions occur very
frequently, which defies our aim of providing diverse con-
tents in the dataset. Thus, to solve those two issues, we use
a blur detector and a flat region detector to filter the images.
This filtering process guarantees a high quality for most im-
ages.

Data storage. Each image that passes the automatic se-
lection criteria and its meta information are stored. The
original images are cropped to a multiple of 48 pixels on
both sides. This removes the additional cropping operation
for image SR with different up-scaling factors such as ×2,
×3, ×4. The meta information of the image includes the
search keyword for the image, the download link, the cam-
era information, the captured date, the resolution of the im-
age, the blur score Sblur, the percentage of flat patches in
the image, etc. The rich meta information leaves the door
open to other uses of the dataset. Since the camera informa-
tion is provided in the meta data, one example use of this
information is to study image translation between different
cameras.

3.3. Image Quality Control

During the data crawling phase, 4K resolution images
are collected from Flickr. To ensure the quality of the
collected images, the quality of each image is manually
checked following the procedure given below.

Annotator. Human annotators are asked to check the
quality of the images in the collected dataset.

Selection criteria. A high quality standard is set for the
quality inspection. The human annotators are required to do
a binary classification of high-quality and low-quality im-
ages. The high-quality images are the sharp high-resolution
images without blur and noise. For quality control, two ma-

jor types of classification errors are considered including
false positive and false negative. False positive means that
a low-quality image is classified as a high-quality one while
false negative means a high-quality one classified as low-
quality. Since the aim of the quality inspection is to guar-
antee the quality of the images in the remaining dataset, we
are more tolerant to false negative than false positive. Based
on this philosophy, we design the two rounds of manual se-
lection to guarantee both image quality and productivity of
the process. The first round of inspection provides a coarse
selection. Due to the high standard of the image quality
and the tolerance to false negative, the annotators could go
through the images quickly and remove most (more than
70%) of the images. After the first round, most of the low-
quality images are removed. Then during the second round
inspection, the annotators need to check the remaining im-
ages. And the aim of this round is to remove the false posi-
tive images.

Inspection Tool. To facilitate the manual inspection,
an inspection tool was developed. This tool automatically
finds the path of all the images in a folder. Then the tool
loads the images one by one. The user needs to determine
whether the current image is of high quality or not. The
tool improves the productivity of the manual inspection sig-
nificantly. The time spent for manual inspection and more
information about the inspection tool are given in the sup-
plementary.

Quality check. After the manual inspection phase, the
remaining images are divided into nine parts. As different
human annotators might have their own image quality stan-
dards and we are more tolerant to the false negative, the
remaining number of images in each part is different. To
check the image quality in the nine parts, we compare the
image restoration performance by training networks with
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Table 1. Quality check of the different parts. PSNR reported on Urban100 for image SR with upscaling factor ×4.

Partition Part1 Part2 Part3 Part4 Part5 Part6 Part7 Part8 Part9

Num. images 13587 2862 15923 4880 13193 7129 8655 12621 6141
MSRResNet [77] 26.01 26.00 26.01 26.01 26.00 25.98 26.00 25.99 26.01

EDSR [51] 27.15 26.70 27.14 26.86 27.09 26.99 26.98 27.09 26.96

Table 2. Investigation of downsampling schemes used to suppress blur and noise artifacts. Image SR results. The upscaling factor is ×4.

Method Dataset Set 5 Set 14 BSD100 Urban100 Manga109 DIV2K Val.
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IMDN [32]
LSDIR X2 32.10 / 0.885 28.60 / 0.769 27.57 / 0.725 26.08 / 0.776 30.51 / 0.898 30.38 / 0.827
LSDIR X4 32.02 / 0.884 28.60 / 0.769 27.56 / 0.725 26.13 / 0.778 30.44 / 0.897 30.37 / 0.827
LSDIR 2160 32.10 / 0.885 28.61 / 0.769 27.57 / 0.724 26.05 / 0.775 30.59 / 0.898 30.38 / 0.827

EDSR [51]
LSDIR X2 32.66 / 0.892 29.00 / 0.778 27.81 / 0.734 27.11 / 0.807 31.68 / 0.911 30.86 / 0.838
LSDIR X4 32.66 / 0.892 28.99 / 0.779 27.81 / 0.734 27.22 / 0.810 31.53 / 0.911 30.87 / 0.839
LSDIR 2160 32.62 / 0.891 29.00 / 0.779 27.82 / 0.734 27.13 / 0.808 31.71 / 0.911 30.86 / 0.838

SwinIR [48]
LSDIR X2 32.83 / 0.895 29.11 / 0.782 27.91 / 0.738 27.70 / 0.823 32.09 / 0.917 31.08 / 0.843
LSDIR X4 32.79 / 0.895 29.16 / 0.784 27.91 / 0.739 27.83 / 0.826 32.03 / 0.917 31.10 / 0.844
LSDIR 2160 32.83 / 0.895 29.14 / 0.783 27.91 / 0.738 27.71 / 0.823 32.20 / 0.917 31.07 / 0.843

them separately. MSRResNet [77] and EDSR [51] are used
as baseline networks. Observing Tab. 1, we see that the dif-
ference in the validation accuracy on Urban100 is largely
due to the number of images. Thus, by this investigation,
we can safely conclude that the image quality of all the nine
parts after quality inspection is good. All nine parts are
used in the later experiments.

3.4. Post Processing

As mentioned in Sec. 3.1, the original images are down-
sampled to suppress the undesired artifacts. The Lanczos
resampling method is used as down-sampling method to
keep the high-frequency information as much as possible.
The down-sampling factor needs to be chosen carefully to
trade off noise suppression and detail preservation. If it is
too small, the artifacts will not be removed. Yet, if it is too
large, too much detail will be lost. For the older DIV2K
dataset [3], the down-sampling factor is manually deter-
mined depending on the image content. For Flickr2K, the
images are down-sampled to a fixed maximum dimension
2,040 [51]. To determine a proper down-sampling factor,
we used three down-sampling schemes: down-sampling by
a factor of 2, by a factor of 4, or such that the maximum
image dimension is 2,160 pixels. And the corresponding
versions of the dataset are represented by LSDIR X2, LS-
DIR X4, and LSDIR 2160, respectively. We investigate the
down-sampling schemes based on empirical studies for im-
age SR and grayscale image denoising. The experimental
results for image SR are shown in Tab. 2 and the supple-
mentary, respectively.

The final down-sampling scheme is determined by
joint consideration of the artifact suppression effect, de-
tail preservation, and the objective image restoration per-
formance in terms of PSNR and SSIM. First, LSDIR X2
is not the preferred version. One reason is that by ana-
lyzing the experimental results LSDIR X2 could be out-

performed by either LSDIR X4, or LSDIR 2160. In ad-
dition, the small down-sampling factor might not have a
good effect in noise suppression. Second, both LSDIR X4
and LSDIR 2160 can be used for image restoration. De-
pending on the validation set in Tab. 2, either LSDIR X4
or LSDIR 2160 could lead to higher accuracy. One prop-
erty of LSDIR 2160 is that the down-sampling factor for
images with different resolutions could be adjusted. Thus,
different image content and information condensation could
be achieved for images with different resolutions. But the
disadvantage is that the down-sampling factors of most im-
ages are smaller than 4. Thus, the required storage space
of LSDIR 2160 is larger than LSDIR X4. Finally, during
the quality inspection phase, the original images are also
down-sampled by a factor of 4 to suppress noise. The man-
ual inspection procedure might cause that the quality of re-
maining images are implicitly fitted to that setting. Thus,
considering all the factors, we will use LSDIR X4 for the
following experiments.

3.5. Validation and Test Sets Split

Apart from the 84,991 images in the training set, there
are additionally 2,150 images used for validation and test-
ing. Since the images contain different contents, some
images might be more challenging when used for image
restoration tasks. Thus, the 2,150 images should be properly
split in order to maintain a balanced performance between
the validation and test set. In Tab. 3, the 2,150 images are
divided into 9 splits with 250 images in the first 8 splits and
150 images in the last split. The validation accuracy on the
9 splits is reported for 3 image SR networks and 2 image
denoising networks. According to the validation results, the
splits S1, S4, S6, S7 constitute the validation set while the
splits S2, S3, S5, S8 constitute the test set. Split S9 is not
included in either of the two sets. The validation set will be
released along with the training set. The test set will be kept
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Table 3. Validation and test set split. Upscaling factor is ×4 for SR. Noise level is 15 for denoising.

Method Split Val.
Set

Test
SetS1 S2 S3 S4 S5 S6 S7 S8 S9

IMDN [32] 26.23 26.88 26.69 26.37 25.94 27.13 26.31 26.46 27.20 26.51 26.49
EDSR [51] 26.77 27.40 27.23 26.84 26.43 27.69 26.80 26.91 27.76 27.03 26.99
SwinIR [48] 26.96 27.62 27.44 27.02 26.62 27.91 26.99 27.08 28.00 27.22 27.19

DnCNN [93] 31.90 32.28 32.17 31.88 31.53 32.29 31.79 31.65 32.33 31.97 31.91
DRUNet [91] 32.25 32.65 32.53 32.19 31.85 32.64 32.10 31.97 32.68 32.29 32.25

Table 4. Influence of training patch size on the performance of image SR and denoising networks. The networks are trained with the
proposed LSDIR dataset. PSNR and SSIM reported on Urban100.

Method Patch size BSD100 / BSD68 Urban100 DIV2K LSDIR Val. LSDIR Test
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IMDN [32] 48 × 48 27.56 / 0.725 26.13 / 0.778 30.37 / 0.827 26.51 / 0.741 26.49 / 0.739
240 × 240 27.58 / 0.726 26.22 / 0.781 30.41 / 0.828 26.55 / 0.743 26.53 / 0.741

EDSR [51] 48 × 48 27.81 / 0.734 27.22 / 0.810 30.87 / 0.839 27.03 / 0.761 26.99 / 0.760
256 × 256 27.88 / 0.737 27.48 / 0.818 30.99 / 0.841 27.15 / 0.766 27.11 / 0.764

DnCNN [93] 40 × 40 31.68 / 0.883 32.77 / 0.921 33.76 / 0.901 31.97 / 0.906 31.91 / 0.906
256 × 256 31.70 / 0.883 32.87 / 0.922 33.79 / 0.901 32.00 / 0.907 31.95 / 0.906

DRUNet [91] 128 × 128 31.89 / 0.888 33.50 / 0.931 34.11 / 0.908 32.29 / 0.913 32.25 / 0.913
256 × 256 31.91 / 0.888 33.59 / 0.932 34.15 / 0.908 32.34 / 0.914 32.29 / 0.914

(a) Influence of larger training patch
size 256× 256.

(b) Influence of increased training
iterations.

(c) Comparison between training
patch sizes.

(d) Comparison between training
with LSDIR and ImageNet.

Figure 3. Comparison of validation accuracy on the Urban100
dataset between different settings. The experiments are done for
image SR with up-scaling factor ×4. ‘p*’ denotes the patch size.

for benchmarking purposes.

4. Experimental Results and Analysis

The experimental results are reported in this section.
We first analyze the importance of the two training hyper-
parameters patch size and number of iterations, when train-
ing with our large dataset. Then we compare the pro-
posed dataset with three commonly used datasets includ-
ing DIV2K [3], DF2K (DIV2K and Flickr2K), and Ima-
geNet 1K [15]. Experiments are carried out on 6 image

Table 5. Study on training dataset size. PSNR reported on Ur-
ban100 for ×4 SR.

Percentage 1% 5% 10% 20% 100%
PSNR 26.04 26.85 27.05 27.16 27.23

restoration tasks including image SR, grayscale and color
image denoising, image demosaicking, image deblurring
with Gaussian kernels and real-world kernels [38], color
and grayscale image JPEG compression artifact removal,
and real-world image denoising. During training, patches
are extracted from the image to make up a mini-batch.
Note that the patch size for image SR is the size of the
LR patches. The training detail for different networks is
given in the supplementary material. All results in this pa-
per are derived by training the network from scratch without
any pretraining. PSNR, SSIM, and LPIPS [97] are used as
the evaluation metrics.The PSNR values are only calculated
for the luminance channel. We conducted experiments on a
bunch of image restoration networks including IMDN [32],
EDSR [51], MSRResNet [77], SwinIR [48], SGN [25],
DnCNN [93], DRUNet [91], Uformer [79], Restormer [86],
RDN [100], RNAN [98], and BSRGAN [92].

4.1. Benefits of A Large Scale Training Set

Influence of patch size. In Fig. 3a, the results of training
with larger patch sizes are shown for EDSR and IMDN. It is
clear that the heavyweight network EDSR overfits the train-
ing set DIV2K and DF2K when the training patch size is
enlarged. On the other hand, with LSDIR, the accuracy
keeps growing as the training continues. The overfitting
phenomenon is easy to understand. When the patch size is
very large, the number of actual useful patches gets smaller.
Since both the DIV2K and DF2K datasets have 2K reso-
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Table 6. Comparison between DIV2K, DF2K, and LSDIR for image SR, image denoising and image demosaicking.

(a) Image SR results. The upscaling factor is ×4.

Method Dataset Set 5 Set 14 BSD100 Urban100 Manga109 DIV2K Val. LSDIR Val.
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR [51]
111.79 ms
43.09 M

DIV2K 32.32 / 0.889 28.68 / 0.773 27.65 / 0.730 26.48 / 0.791 30.74 / 0.904 30.58 / 0.833 26.62 / 0.750
DF2K 32.62 / 0.891 28.91 / 0.778 27.80 / 0.733 26.93 / 0.803 31.50 / 0.909 30.81 / 0.838 26.89 / 0.757
LSDIR 32.72 / 0.893 29.08 / 0.782 27.88 / 0.737 27.48 / 0.818 31.85 / 0.914 30.99 / 0.841 27.15 / 0.766

SwinIR [48]
204.66 ms

11.9 M

DIV2K 32.68 / 0.893 28.86 / 0.777 27.75 / 0.733 26.71 / 0.799 31.22 / 0.910 30.76 / 0.837 26.58 / 0.753
DF2K 32.86 / 0.895 29.07 / 0.782 27.90 / 0.738 27.40 / 0.816 32.00 / 0.916 31.03 / 0.842 27.09 / 0.765
LSDIR 32.79 / 0.895 29.16 / 0.784 27.91 / 0.739 27.83 / 0.826 32.03 / 0.917 31.10 / 0.844 27.22 / 0.769

(b) Gray image denoising results. The noise level is 15.

Method Dataset Set 12 BSD68 Urban100 DIV2K Val. LSDIR Val.
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DnCNN [93]
2.75 ms
0.56 M

DIV2K 32.87 / 0.890 31.70 / 0.883 32.82 / 0.922 33.81 / 0.902 31.99 / 0.907
DF2K 32.88 / 0.889 31.69 / 0.882 32.74 / 0.920 33.76 / 0.900 31.94 / 0.906
LSDIR 32.87 / 0.890 31.70 / 0.883 32.89 / 0.922 33.79 / 0.901 32.01 / 0.907

DRUNet [91]
9.02 ms
32.64 M

DIV2K 33.21 / 0.897 31.89 / 0.887 33.42 / 0.929 34.12 / 0.908 32.28 / 0.913
DF2K 33.30 / 0.899 31.92 / 0.889 33.49 / 0.931 34.13 / 0.908 32.30 / 0.913
LSDIR 33.26 / 0.898 31.91 / 0.888 33.59 / 0.932 34.15 / 0.908 32.34 / 0.914

(c) Color image denoising results. The noise level is 15.

Method Dataset Set 12 BSD68 Urban100
PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS

Uformer [79]
35.12 ms
20.63 M

DIV2K 37.04 / 0.9497 / 0.1561 36.24 / 0.9512 / 0.1378 37.25 / 0.9658 / 0.1054
DF2K 37.11 / 0.9506 / 0.1488 36.26 / 0.9514 / 0.1342 37.27 / 0.9660 / 0.0998
LSDIR X4 37.13 / 0.9507 / 0.1434 36.26 / 0.9515 / 0.1356 37.34 / 0.9664 / 0.1017

Restormer [86]
77.98 ms
26.13 M

DIV2K 37.10 / 0.9500 / 0.1636 36.11 / 0.9477 / 0.1405 37.35 / 0.9656 / 0.1112
DF2K 37.20 / 0.9511 / 0.1455 36.14 / 0.9480 / 0.1346 37.43 / 0.9661 / 0.1019
LSDIR X4 37.24 / 0.9514 / 0.1600 36.15 / 0.9482 / 0.1419 37.50 / 0.9664 / 0.1030

(d) Image demosaicking results.

Method Dataset McMaster Kodak Urban100 LSDIR Val.
PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS

RNAN [98]
DIV2K 45.23 / 0.9900 / 0.0274 47.64 / 0.9954 / 0.0181 44.40 / 0.9932 / 0.0164 43.49 / 0.9852 / 0.0219
DF2K 45.25 / 0.9900 / 0.0277 47.70 / 0.9954 / 0.0182 44.67 / 0.9937 / 0.0152 43.51 / 0.9853 / 0.0219

LSDIR X4 45.45 / 0.9905 / 0.0265 47.73 / 0.9954 / 0.0183 44.65 / 0.9939 / 0.0158 43.70 / 0.9858 / 0.0216

lution, the number of useful patches is reduced to several
thousands. Those small sets of patches are repeatedly used
during the 1 million training iterations with mini-batch size
32. Therefore, it is very easy for the large network to overfit
to the training set. Two other observations back the analysis
of the reason for overfitting. First, compared with DF2K,
the overfitting effect is severer on the smaller DIV2K which
contains only 800 training images. Second, when training
IMDN with the smaller DIV2K, there is a slight trend of
overfitting. By contrast, training IMDN with DF2K does
not show any sign of overfitting.

Based on the above analysis, we increase the patch
size to train different networks with the proposed LSDIR
dataset. As shown in Tab. 4, the performance of the network
improves consistently with increasing patch size. Mean-
while, compared with small networks, larger networks ben-
efit more from enlarged patch sizes. The validation accu-
racy during training with different patch sizes is shown in
Fig. 3c. Larger patch sizes lead to consistently better per-
formance.

Influence of training iterations. We also tried to increase
the number of iterations to 5 million. As shown in Fig. 3b,
prolonging the training on DIV2K and DF2K shows severe

and slight overfitting effects, resp. By contrast, the valida-
tion accuracy increases steadily with LSDIR as training set.

In conclusion, the benefit of a large scale dataset is that
it enables performance boosts with increasing patch sizes
and iteration numbers for training.
Influence of training dataset size. We conduct an addi-
tional ablation study on the training dataset size. The per-
centage of LSDIR X4 images used for training gradually in-
creases from 1% to 100%. As shown in Tab. 5, the more the
number of images used for training, the higher the PSNR
values. Yet, the increase of PSNR tends to saturate when
there are already plenty of images (> 20%).

4.2. Performance on Different IR Tasks

The different training datasets are directly compared in
this subsection and the result for image SR, gray image de-
noising, color image denoising, image demosaicking, im-
age deblurring, color image JPEG compression artifacts re-
moval are shown in Tab. 6 and Tab. 7. By comparing the
experimental results between different datasets, we can con-
clude that the proposed dataset LSDIR could generally lead
to improved performances for image restoration tasks. Sec-
ondly, to encourage research on lightweight and efficient
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Table 7. Comparison between DIV2K, DF2K, and LSDIR for image deblurring and JPEG compression artifacts removal.

(a) Image deblurring results. Note that noise is also added.

Method Kernel type
Noise level Dataset McMaster Kodak Urban100

PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS

RDN [100]

Gaussian
2

DIV2K 35.20 / 0.9377 / 0.1822 32.25 / 0.8896 / 0.2490 30.59 / 0.9020 / 0.1896
DF2K 35.16 / 0.9378 / 0.1830 32.23 / 0.8895 / 0.2503 30.58 / 0.9021 / 0.1893

LSDIR X4 35.33 / 0.9382 / 0.1832 32.35 / 0.8904 / 0.2487 30.82 / 0.9042 / 0.1880

Kernel 4 [38]
2.55

DIV2K 35.07 / 0.9359 / 0.1930 33.99 / 0.9145 / 0.2261 32.81 / 0.9355 / 0.1590
DF2K 35.19 / 0.9367 / 0.1936 34.12 / 0.9154 / 0.2268 32.96 / 0.9364 / 0.1594

LSDIR X4 35.39 / 0.9386 / 0.1906 34.34 / 0.9179 / 0.2239 33.35 / 0.9401 / 0.1565

(b) Color image JPEG compression artifacts removal. The quality factor is 40.

Method Dataset LIVE1 Classic5 Urban100
PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS

SwinIR [48]
DIV2K 35.04 / 0.9386 / 0.1897 35.63 / 0.9211 / 0.2386 35.61 / 0.9536 / 0.1425
DF2K 35.07 / 0.9387 / 0.1886 35.68 / 0.9215 / 0.2378 35.67 / 0.9538 / 0.1409

LSDIR X4 35.11 / 0.9392 / 0.1871 35.70 / 0.9218 / 0.2376 35.83 / 0.9546 / 0.1397

Figure 4. Real image SR results with BSRGAN [92]. The upscaling factor is 4. First row: low-quality images; second row: training with
DF2K; third row: training with LSDIR X4.

models, the runtime and number of parameters are also re-
ported for SR and denoising networks in Tab. 6a, Tab. 6b,
and Tab. 6c. Although recent methods achieves higher eval-
uation values, the model size and runtime are also increased.
Thirdly, to compare the perceptual quality of the restored
images fairly and objectively, LPIPS score is also reported.
The change of LPIPS score is generally consistent with
PSNR and SSIM despite a few mismatches. Finally, we
also conduct experiments on real-world image SR [75, 92].

Since there is no ground-truth images for images in the test
set, the visual results are shown in Fig. 4. As shown in this
figure, increasing the size of the training dataset helps to
improve the visual quality of the SR images.

From Tab. 6 and Tab. 7, we have a few other important
conclusions. First, compared with the other tasks, image
SR and image deblurring benefit more from the enlarged
dataset. Second, larger networks gain more from the large
scale dataset. Third, by comparing the EDSR entries in
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Tab. 4 and Tab. 6a, the diverse content of the large-scale
dataset contributes more to PSNR gain than the enlarged
patch size. Fourthly, with the large scale dataset and in-
creased patch size, EDSR can lead to comparable or even
better performance than SwinIR values reported in [48].
Fifth, in Fig. 3d, with larger patch size, training with LSDIR
leads to better performance than training with ImageNet.

5. Conclusion

In this paper, we proposed a large scale dataset for image
restoration (LSDIR). The proposed dataset contains 84,991
training images, 1,000 validation images, and 1,000 test im-
ages. Human annotators visually inspected the quality of
the images. Additionally, we investigated the characteris-
tics of the proposed dataset. Most importantly, experiments
show that the large scale dataset enables training with much
larger patch sizes and more training iterations, leading to
superior performance. Compared with previous datasets for
image restoration, the new dataset leads to better perfor-
mance on the representative test set.
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