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Abstract

This paper reviews the NTIRE 2023 challenge on effi-
cient single-image super-resolution with a focus on the pro-
posed solutions and results. The aim of this challenge is to
devise a network that reduces one or several aspects such
as runtime, parameters, FLOPs, activations, memory foot-
print, and depth of RFDN while at least maintaining the
PSNR of 29.00dB on DIV2K validation datasets. The chal-
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Zurich), Y. Zhang, R. Timofte, and L. Van Gool were the challenge or-
ganizers, while the other authors participated in the challenge. Each team
described their own method in the report.
Appendix A contains the authors’ teams and affiliations.
NTIRE 2023 webpage: https://cvlai.net/ntire/2023/.
Code: https://github.com/ofsoundof/NTIRE2023_ESR.

lenge had 272 registered participants, and 35 teams made
valid submissions. They gauge the state-of-the-art for effi-
cient single-image super-resolution.

1. Introduction

Single image super-resolution (SR) focuses on recon-
structing a high-resolution (HR) image from a single low-
resolution (LR) image that has undergone a specific degra-
dation process [25, 54, 55, 65, 110]. In image SR, it is as-
sumed that the LR image results from two major degrada-
tion processes including blurring and down-sampling. For
classical image SR, bicubic down-sampling is the most
commonly used degradation model. This classical standard
degradation model allows for direct comparisons between
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different image SR methods and serves as a testbed to vali-
date the advantages of newly proposed SR methods.

State-of-the-art deep neural networks for image SR usu-
ally comes with parameter overparameterization, intensive
computation, high latency etc. And that makes it difficult
to deploy those models on mobile devices for real-time
SR. To solve the problem, there is a vast array of research
that aims to improve the efficiency of deep neural networks
through network pruning [57,71], low-rank filter decompo-
sition [56, 108], network quantization, neural architecture
search [58, 115, 116], and knowledge distillation [36, 86].
Some of these network compression techniques have been
successfully applied to image SR.

The efficiency of a deep neural network can be measured
using different metrics, including runtime, number of pa-
rameters, computational complexity (FLOPs), activations,
and memory consumption. These metrics affect the deploy-
ment of deep neural networks in various ways. Among
them, runtime is the most direct indicator of a network’s
efficiency and is used as the primary evaluation metric. In-
creased computational complexity is associated with higher
energy consumption, which could shorten the battery life
of mobile devices. Memory efficiency is also an important
metric on edge devices. Furthermore, the number of pa-
rameters is related to AI chip design, with more parameters
resulting in larger chip areas and increased costs for the de-
signed AI devices.

In collaboration with the 2023 New Trends in Image
Restoration and Enhancement (NTIRE 2023) workshop, we
organize the challenge on efficient super-resolution. The
challenge’s goal is to super-resolve an LR image with a
magnification factor of ×4 using a network that reduces
aspects such as runtime, parameters, FLOPs, activations,
and memory consumption of RFDN [66] while maintain-
ing a PSNR of at least 29.00dB on the DIV2K validation
set. This challenge aims to discover advanced and innova-
tive solutions for efficient SR, benchmark their efficiency,
and identify general trends for the design of efficient SR
networks.

This challenge is one of the NTIRE 2023 Workshop se-
ries of challenges on: night photography rendering [79],
HR depth from images of specular and transparent sur-
faces [101], image denoising [61], video colorization [45],
shadow removal [87], quality assessment of video enhance-
ment [69], stereo super-resolution [89], light field image
super-resolution [92], image super-resolution (×4) [111],
360° omnidirectional image and video super-resolution [5],
lens-to-lens bokeh effect transformation [16], real-time 4K
super-resolution [17], HR nonhomogenous dehazing [2], ef-
ficient super-resolution (this challenge).

https://cvlai.net/ntire/2023/

2. NTIRE 2023 Efficient Super-Resolution
Challenge

The goals of this challenge include: (1) promoting re-
search in the area of efficient super-resolution, (2) facili-
tating comparisons between the efficiency of various meth-
ods, and (3) providing a platform for academic and indus-
trial participants to engage, discuss, and potentially estab-
lish collaborations. This section delves into the specifics of
the challenge.

2.1. Dataset

The DIV2K [1] dataset and LSDIR [59] dataset are uti-
lized for this challenge. DIV2K dataset consists of 1,000
diverse 2K resolution RGB images, which are split into a
training set of 800 images, a validation set of 100 images,
and a test set of 100 images. LSDIR dataset contains 86,991
high-resolution high-quality images, which are split into a
training set of 84,991 images, a validation set of 1,000 im-
ages, and a test set of 1,000 images. In this challenge, the
corresponding LR DIV2K images are generated by bicubic
downsampling with a down-scaling factor of 4x. The train-
ing images from DIV2K and LSDIR are provided to the par-
ticipants of the challenge. During the validation phase, the
100 images from DIV2K validation set were made avail-
able to participants. During test phase, 100 images from
DIV2K test set and another 100 images from LSDIR test
set are used. Throughout the entire challenge, the testing
HR images remained hidden from participants.

2.2. RFDN Baseline Model

The Residual Feature Distillation Network (RFDN) [66]
serves as the baseline model in this challenge. The aim is
to improve its efficiency in terms of runtime, number of pa-
rameters, FLOPs, number of activations, and GPU mem-
ory consumption while maintaining a PSNR performance of
29.00dB on the validation set. RFDN is composed of four
components: an initial feature extraction convolution, mul-
tiple stacked Residual Feature Distillation Blocks (RFDBs),
a feature fusion layer, and a final reconstruction block.
Specifically, the initial feature extraction is carried out by
a 3 × 3 convolution that generates coarse features from the
input LR image. The second part of RFDN consists of four
RFDBs, stacked in a chain-like manner, to progressively re-
fine the extracted features. After gradual refinement by the
RFDBs, all intermediate features are combined using a 1×1
convolution layer. An additional 3 × 3 convolution layer is
then utilized to smooth the aggregated features. Finally, the
super-resolved images are generated by pixel shuffle opera-
tion.

The baseline RFDN is provided by the winner of the
AIM 2020 Challenge on Efficient Super-Resolution [104].
The quantitative performance and efficiency metrics of
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RFDN are given in Tab. 1 and summarized as follows.
(1) The number of parameters is 0.433M. (2) The average
PSNRs on validation (DIV2K 100 validation images) and
testing (DIV2K 100 test images and LSDIR 100 test im-
ages) sets of this challenge are 29.04dB and 27.11dB, re-
spectively. (3) The runtime averaged on the validation and
test set with PyTorch 1.11.0, CUDA Toolkit 10.2, cuDNN
7.6.2 and a single Titan Xp GPU is 29.67 ms. (4) The num-
ber of FLOPs for an input of size 256 × 256 is 27.10G. (5)
The number of activations (i.e. the number of elements in all
convolutional layer outputs) for an input of size 256 × 256
is 112.03M. (5) The maximum GPU memory consump-
tion during the inference on the DIV2K validation set is
780.13M. (6) The number of convolutional layers is 64.

2.3. Tracks and Competition

The aim of this challenge is to devise a network that re-
duces one or several aspects such as runtime, parameters,
FLOPs, activations and memory consumption while at least
maintaining the PSNR of 29.00dB on the validation set.

Ranking statistic Similar to the previous year [60], to de-
termine the ranking in the case of multiple metrics, the indi-
vidual rankings of each metric are added up to form a rank-
ing statistic of the metrics.

Challenge phases (1) Development and validation phase:
Participants were given access to 800 LR/HR training im-
age pairs and 100 LR/HR validation image pairs from the
DIV2K dataset. Additional 84,991 LR/HR training image
pairs from the LSDIR dataset are also provided to the par-
ticipants. The RFDN model, pre-trained parameters, and
validation demo script are available on GitHub https:
//github.com/ofsoundof/NTIRE2022_ESR, al-
lowing participants to benchmark their models’ runtime on
their systems. Participants could upload their HR validation
results to the evaluation server to calculate the PSNR of the
super-resolved image produced by their models and receive
immediate feedback. The number of parameters and run-
time were computed by the participants. (2) Testing phase:
In the final test phase, participants were granted access to
100 LR testing images from DIV2K and 100 LR testing im-
ages from LSDIR, while the HR ground-truth images re-
mained hidden. Participants submitted their super-resolved
results to the Codalab evaluation server and emailed the
code and factsheet to the organizers. The organizers ver-
ified and ran the provided code to obtain the final results,
which were then shared with participants at the end of the
challenge.

Evaluation protocol Quantitative evaluation metrics in-
cluded validation and testing PSNRs, runtime, number of
parameters, FLOPs, activations, and maximum GPU mem-
ory consumption during inference. PSNR was measured by

discarding a 4-pixel boundary around the images. The aver-
age runtime during inference on the 100 LR validation im-
ages and the 200 LR testing images was computed. The
best runtime among three consecutive trials was selected
as the final result. The average runtime on the validation
and testing sets served as the final runtime indicator. Max-
imum GPU memory consumption was recorded during in-
ference. FLOPs and activations were evaluated on an in-
put image of size 256x256. Among these metrics, runtime
was considered the most important. Participants were re-
quired to maintain a PSNR of 29.00dB on the validation
set during the challenge. The constraint on the testing set
helped prevent overfitting on the validation set. A code ex-
ample for calculating these metrics is available at https:
//github.com/ofsoundof/NTIRE2023_ESR. The
code of the submitted solutions and the pre-trained weights
are also available in this repository.

3. Challenge Results
The final test results and rankings are presented in Tab. 1.

To maintain the fairness of the competition, any solutions
with test PSNR lower than 26.95dB are not included in
the rankings. The table also includes the baseline method
RFDN [66] for comparison. In Sec.4, the methods evalu-
ated in Tab. 1 are briefly explained, while the team mem-
bers are listed in Appendix A. The performance of differ-
ent methods is compared from four different perspectives
including two running metrics (runtime and GPU mem-
ory footprint) and two combined metrics (model complex-
ity and overall performance). Additionally, to further foster
fair competition of this challenge, the image reconstruction
quality in terms of test PSNR are compared among teams
with test runtime less than 30ms (real-time inference [17]).
The observations that can be drawn from Tab. 1 are as fol-
lows.

Runtime. First, the runtime is the important evaluation
metric in this challenge. The solution proposed by MegSR
has the smallest runtime in this efficient SR challenge. The
Zapdos and DFCDN win second and third place, respec-
tively. The runtime of the first three solutions averaged on
the validation and test set is below 18 ms. The first 15 teams
proposed a solution with average runtime lower than 30 ms.
The proposed solutions continue to improve the efficiency
of image SR networks. The difference between the runtime
of the first three teams are quite small, indicating the com-
petitiveness of the challenge. In addition, DFCDN team
achieves the highest PSNR on the test set among the first
three teams.

GPU memory footprint. The memory footprint is quite
an important running metric for efficient models. Thus, the
models that optimize towards this direction are also singled
out. The two solutions proposed by NoahTerminalCV con-
sume the least GPU memory. The second runner-up goes to
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Table 1. Results of NTIRE 2023 Efficient SR Challenge. The performance of the solutions are compared thoroughly from several per-
spective including the runtime, the nubmer of parameters, FLOPs, the number of activations, and GPU memory footprint. The underscript
numbers associated with each metric denote the ranking of the solution in terms of that metric. “Val. Time” is the runtime averaged on
DIV2K [1] validation set. “Test Time” is the runtime averaged on a test set with 100 images from DIV2K [1] and LSDIR [59] test set,
respectively. “Ave. Time” is averaged on the validation and test datasets. “#Params” is the total number of parameters of a model. “FLOPs”
denotes the floating point operations. “#Acts” denotes the number of elements of all convolutional layer outputs. “GPU Mem.” represents
maximum GPU memory footprint measured according to the PyTorch function torch.cuda.max memory allocated() during the
inference on DIV2K validation set. “#Conv” represents the number of convolutional layers. “FLOPs” and “#Acts” are tested on an LR
image of size 256×256. “Model Comp.” is a combined metric based on the number of parameters and FLOPs that reflects theoretical
model complexity. “Overall” denotes the metric that combines all the five evaluation metrics including runtime, number of parameters,
FLOPs, number of activations, and GPU memory footprint. This is not a challenge for PSNR improvement. The “validation/testing
PSNR” and “#Conv” are not ranked.

Team Time [ms] PSNR [dB] #Params FLOPs #Acts GPU Mem. Model Overall #ConvAve. Val. Test Val. Test [M] [G] [M] [M] Comp.

MegSR 18.30(1) 21.26 15.33 29.04 26.95 0.243(12) 14.90(11) 72.97(6) 495.91(19) 23(11) 49(2) 39
Zapdos 18.59(2) 21.69 15.48 28.96 27.03 0.352(25) 21.97(25) 63.01(2) 420.50(13) 50(25) 67(10) 26
DFCDN 18.71(3) 21.91 15.51 29.00 27.08 0.245(13) 15.49(14) 82.76(13) 376.99(12) 27(14) 55(4) 39
KaiBai Group 20.49(4) 23.94 17.05 28.95 27.01 0.272(17) 16.76(17) 65.10(3) 296.45(7) 34(17) 48(1) 35
R.I.P. ShopeeVideo 20.65(5) 24.34 16.96 28.97 27.04 0.255(15) 16.16(16) 74.97(7) 439.60(14) 31(15) 57(5) 35
Antins cv 20.92(6) 24.45 17.39 29.00 26.95 0.315(24) 20.07(24) 70.82(5) 488.61(17) 48(24) 76(14) 29
Young 22.09(7) 25.86 18.33 28.97 27.00 0.543(30) 33.38(30) 61.87(1) 293.05(6) 60(30) 74(13) 23
NTU607 ESR 22.71(8) 26.73 18.68 29.00 27.07 0.281(19) 17.31(19) 76.11(9) 364.24(11) 38(19) 66(8) 39
CMVG 24.42(9) 28.51 20.33 29.01 27.08 0.307(21) 18.98(21) 81.55(11) 454.51(15) 42(21) 77(15) 41
Touch Fish 25.61(10) 30.09 21.12 29.00 27.09 0.415(27) 27.16(27) 75.50(8) 769.56(27) 54(27) 99(26) 20
CUC SR 25.97(11) 30.58 21.37 28.99 27.05 0.402(26) 25.23(26) 81.88(12) 344.51(9) 52(26) 84(20) 39
SeaOuter 26.26(12) 30.93 21.59 28.95 27.05 0.285(20) 18.63(20) 80.48(10) 218.97(3) 40(20) 65(7) 44
NoahTerminalCV B 27.83(13) 32.73 22.94 28.96 27.03 0.209(10) 13.34(10) 118.71(18) 188.21(1) 20(10) 52(3) 49
NJUST R 28.63(14) 33.59 23.66 28.99 27.07 0.237(11) 15.40(13) 86.11(14) 303.06(8) 24(12) 60(6) 58
NoahTerminalCV A 28.71(15) 33.74 23.69 28.99 27.06 0.310(23) 19.99(23) 68.38(4) 188.60(2) 46(23) 67(9) 25
Sissie Lab 30.34(16) 34.62 26.07 29.00 27.00 0.461(28) 28.85(28) 107.07(16) 628.94(25) 56(28) 113(29) 48
GarasSjtu 32.30(17) 37.99 26.62 28.91 26.99 0.275(18) 16.85(18) 97.87(15) 556.22(22) 36(18) 90(22) 43
USTC ESR 34.16(18) 40.11 28.20 29.03 27.09 0.503(29) 31.56(29) 112.57(17) 489.33(18) 58(29) 111(28) 48
SEU CNII 40.84(19) 48.35 33.33 28.99 27.08 0.616(31) 38.63(31) 133.57(19) 944.91(29) 62(31) 129(31) 64
AVC2 CMHI SR 43.46(20) 51.30 35.61 29.01 27.06 0.262(16) 15.52(15) 154.19(20) 821.45(28) 31(16) 99(25) 84
NJUST M 68.11(21) 79.54 56.68 28.96 27.05 0.104(3) 6.56(3) 199.35(23) 503.49(20) 6(3) 70(12) 66
TelunXupt 75.89(22) 88.10 63.68 29.00 27.09 0.095(1) 5.58(1) 220.88(25) 517.14(21) 2(1) 70(11) 317
Set5 Baby 99.79(23) 117.33 82.25 29.01 27.08 0.129(6) 8.29(5) 202.70(24) 652.41(26) 11(5) 84(19) 86
NJUST E 106.61(24) 125.02 88.20 28.97 27.04 0.099(2) 6.02(2) 242.96(26) 606.38(24) 4(2) 78(16) 66
LVGroup HFUT 112.68(25) 132.10 93.26 28.98 27.05 3.426(32) 224.19(32) 335.28(30) 590.58(23) 64(32) 142(32) 94
FRL Team 4 124.13(26) 145.18 103.07 28.95 27.02 0.173(7) 10.60(7) 187.32(22) 1266.92(31) 14(7) 93(23) 198
Dase-IDEALab 130.73(27) 153.30 108.17 29.00 27.07 0.118(5) 9.06(6) 332.39(29) 1114.77(30) 11(6) 97(24) 122
FRL Team 1 186.02(28) 218.82 153.23 29.01 27.03 0.200(9) 12.76(9) 243.20(27) 265.25(5) 18(9) 78(18) 100
FRL Team 0 196.64(29) 230.14 163.14 29.01 26.98 0.115(4) 7.38(4) 170.26(21) 2028.66(32) 8(4) 90(21) 58
FRL Team 3 201.34(30) 237.73 164.94 29.00 27.09 0.179(8) 11.54(8) 285.41(28) 262.67(4) 16(8) 78(17) 112
AIIA-SR 224.45(31) 264.99 183.91 29.00 27.07 0.307(22) 19.53(22) 355.47(31) 482.70(16) 44(22) 122(30) 89
FRL Team 2 282.42(32) 331.55 233.29 29.02 27.02 0.245(14) 15.37(12) 422.90(32) 355.94(10) 26(13) 100(27) 158

The following methods are not ranked since their validation/testing PSNR are not on par with the baseline.

CUIT SRLab 175.66 206.24 145.08 27.07 25.44 0.183 11.72 256.90 356.45 66
Loading2 2535.11 2977.98 2092.25 27.07 25.44 11.900 500.56 185.60 2691.86 12
Alpha 26.87 31.16 22.57 28.81 26.88 0.198 11.23 86.18 730.99 56

RFDN baseline 35.54 42.41 28.66 29.04 27.11 0.433 27.10 112.03 788.13 64

the SeaOuter team. The GPU memory footprint of all three
solutions is below 220 MB.

Model Complexity. The number of parameters and
FLOPs are among the most important metrics to indicate
the model complexity. In this combined metric, TelunXupt
proposes a method with both the smallest number of pa-
rameters and FLOPs. Thus, TelunXupt is the winner under

this combined metric. The 1st and 2nd runner-ups are the
NJUST E and NJUST M, respectively.

Overall evaluation. Finally, the performance with re-
spect to the overall metric that combines all the five eval-
uation metrics including runtime, number of parameters,
FLOPs, number of activations, and GPU memory footprint
is also reported. Under this metric, the KaiBai Group wins
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first place. The first and second runner-up teams are MegSR
and NoahTerminalCV B, respectively.

Test PSNR. Since this challenge is intended for efficient
SR, the test PSNR is only compared among teams with test
runtime less than 30ms. This is the minimum requirement
for real-time inference [17]. In total, 18 teams meet this
requirement. Among the 18 teams, Team USTC ESR and
Team Touch Fish achieve the best PSNR of 27.09 dB while
the test runtime of Touch Fish is reduced by 7.08ms. Team
DFCDN and Team CMVG achieve the second best PSNR
of 27.08 dB. Compared with CMVG, the solution proposed
by DFCDN is 4.82 ms faster.

3.1. Fairness

To ensure the fairness of the efficient SR challenge, sev-
eral rules were established, mainly concerning the dataset
used for training the network. First, training with additional
external datasets, such as Flickr2K, was allowed. Second,
training with the additional DIV2K validation set, includ-
ing either HR or LR images, was not permitted, as the val-
idation set was used to assess the overall performance and
generalizability of the proposed network. Third, training
with DIV2K test LR images was prohibited. Lastly, using
advanced data augmentation strategies during training was
considered a fair approach.

3.2. Conclusions

Several conclusions can be drawn from the analysis of
different solutions as follows. Firstly, the proposed methods
improve the state-of-the-art for efficient SR. Secondly, net-
work compression methods begin to play an important role.
Noticeably, knowledge distillation is used in the winner and
first runner-up solutions in terms of runtime. Network prun-
ing is used by the winning team MegSR to further improve
the efficiency of the network. Thirdly, the adoption of large-
scale dataset [59] for pre-training improves the accuracy of
the network. Fourthly, for most of the methods, the training
of the network proceeds in several phases with increased
patch size and reduced learning rate. And finally, by jointly
considering runtime, number of parameters, FLOPs, num-
ber of activations, and memory footprint, it is possible to
design a balanced model that optimizes more than one eval-
uation metric.

4. Challenge Methods and Teams
4.1. MegSR

General method description. The MegSR team proposed
an efficiency distillation and iterative pruning SR network
named DIPNet [98]. As shown in Fig. 1, the method con-
sists of three stages. In the first stage, this team trains a large
teacher network with Hybrid Attention Transformer [9]
backbone, denoted as T . It is worth noting that they do not

directly use the high-resolution image IHR provided in the
training dataset for ×4 super-resolution training. Inspired
by HGGT [6], this team first trains a network for ×1 super-
resolution. The HR image IHR is then utilized as input
for ×1 super-resolution, yielding an enhanced HR output
Ienh, and the low resolution image ILR and the enhanced
HR Ienh is used for ×4 super-resolution training through
minimize the following loss:

LT = ||T (ILR)− Ienh||1 (1)

After training the teacher network, this team performs
multi-level distillation on their proposed student network,
denoted as S. Their student network is modified based on
RLFN [50]. They expand the RLFB in RLFN to the struc-
ture RRFB shown in Fig. 1(b). Once the student network
training converges, it can be restored to the RLFB struc-
ture by the reparameterization technique. During distilla-
tion, this team uses the feature maps extracted from four
different depths of T to supervise the learning of each of
the four blocks in S. Specifically, they minimize the fol-
lowing losses:

Lfeat = λi

4∑
i=1

||F T
i − ψ(FS

i )||1, (2)

where FS
i represents the feature map of the output of the i-

th block of S, while F T represents the feature of the output
of some RHAGs of T , ψ represents the operation of using
a 1 × 1 convolution to expand the feature channels of S to
the number of feature channels of T , and λi is a weight
for controlling the importance of the supervision from each
depth level. This team also uses the outputs of T as pseudo-
gt and enhanced gt to further supervise the learning of S.
Specifically, they compute the following losses:

Lout = ||T (ILR)− S(ILR)||1 + ||S(ILR)− Ienh||1, (3)

After distillation, the team employs a progressive learning
strategy to finetune S. They gradually increase the size of
the input patch while using L2 loss for supervised training
until the model fully converges. Then, they reparameterize
the model to further compress its size.

In the third stage, they iteratively pruned the reparame-
terized student network S:

Si
p = φ(Φ(Si−1

p ; r)), (4)

where Φ is the pruning operation, r is the pruning rate, φ
means the finetuning operation, Si

p means the network after
the i-th pruning. Inspired by AGP [114], L2 filter pruning
is used in our iterative pruning method for model training.
We stop pruning until the network cannot make effective
predictions, and use the network obtained from the last ef-
fective pruning as the final network.
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Figure 1. Team MegSR: The pipeline of DIPNet. (a) Structure of RLFB. (b) The structure of RRFB.

Training description. All training by this team is done
on NVIDIA 2080Ti using only the training set of the
DIV2K [1] dataset. During the training phase, they use ran-
dom flip and rotation augmentation, and they chose Adam
as the optimizer. When training the teacher net and distill-
ing the student network, they set an initial learning rate of
1× 10−4, halved the learning rate every 100,000 iterations,
and then used L1 loss for supervision. When using the pro-
gressive learning strategy to finetune the distilled network,
they use an initial learning rate of 2×10−5, which is halved
every 20,000 iterations. In this process, the training patch
size is progressively increased to improve the performance,
which is selected from [64, 128, 256, 384]. In the iterative
pruning process, the ratio of each pruning is 0.05, and it is
repeated three times in total. After each pruning, ILR and
Ienh are used for finetune, and 384 × 384 patches are used
as input during finetuning.

4.2. Zapdos

General method description. The Zapdos team pro-
posed Single Residual Network (SRN) for efficient image
SR [91]. The proposed network has four Non-Residual
Blocks (NRBs), in which the number of feature channels
is set to 64 while the channel number of ESA [51] is set to
16. This network is used as a student network. The differ-
ence between the original EDSR [65] and the teacher model
can be seen in Fig. 2 which also includes the student net-
work. Considering the limited resources, the original set-
ting of channel size (256) and number of residual blocks
(32) is not adopted. Instead, the number of feature channels
is set to 128, and the number of residual blocks is set to 20.
The residual scaling factor is set to 1. More information can
be seen from Fig. 3 and Fig. 4.

Training strategy. In total, two datasets are used includ-
ing DIV2K [1] and LSDIR [59]. To train the models with
images, the training dataset is augmented with geometric
transforms: vertical/horizontal flips and 90-degree rotation
in order to enhance the comprehensive ability of the model.

For the teacher model:
1. In the first stage, the model is trained from scratch.

HR patches of size 192 × 192 are randomly cropped from
HR images, and the mini-batch size is set to 16. The teacher
model is trained by minimizing L1 loss function with Adam
optimizer. The initial learning rate is set to 2 × 10−4. The
total number of epochs is 20000. (Only use DIV2K [1]
dataset). The learning rate decay follows cosine annealing
with Tmax = total epochs, ηmin = 1× 10−7.

2. In the second stage, the model is initialized with the
pre-trained weights. The initial learning rate is set to 1 ×
10−4. In this stage, we use LDSIR [59] dataset. The total
number of epochs is 200. Other settings are the same as in
the previous step.

3. At the last stage, the model is initialized with the pre-
trained weights. HR patches of size 256×256 are randomly
cropped from HR images. The initial learning rate is set to
2.5×10−5. Now the teacher model is trained by minimizing
L2 loss function with Adam optimizer. The total number of
epochs is 50. Other settings are the same as in the previous
step. After training, we freeze the parameters of the teacher
model.

For the student model: We only use the DIV2K [1]
dataset. We use main loss and distillation loss to train our
student model. Details can be seen in Fig. 5.

1. In the first stage, the model is trained from scratch.
HR patches of size 256 × 256 are randomly cropped from
HR images, and the mini-batch size is set to 32. The
student model is trained by minimizing L1 loss function
with Adam optimizer. The initial learning rate is set to
2× 10−4. The total number of epochs is 80000. The learn-
ing rate decay is following cosine annealing with Tmax =
total epochs, ηmin = 1× 10−7.

2. In the second stage, the model is initialized with the
pre-trained weights, and trained with the same settings as in
the previous step.

3. At the last stage, the model is initialized with the pre-
trained weights. HR patches of size 640×640 are randomly
cropped from HR images, and the mini-batch size is set to
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Figure 2. Team Zapdos: Original EDSR [65] and our models

Figure 3. Team Zapdos: RB and NRB

32. The student model is trained by minimizing L2 loss
function with Adam optimizer. The initial learning rate is
set to 5× 10−5. The total number of epochs is 4000.

4.3. DFCDN

General method description. The overall architecture of
Team DFCDN is shown in Fig. 6. The proposed network
consists of four deep feature complement and distillation
blocks (DFCDB). Inspired by [34], the input feature map
is split equally along the channel dimension in each block.
Then several convolutional layers process one of the split
feature maps to generate complement features. The input
features and complementary features are concatenated to
avoid loss of input information and distilled by a conv-1

Figure 4. Team Zapdos: ESA [51] modify

layer. Besides, the output feature map of DFCDB is further
enhanced by ESA layer [51].

Online Convolutional Re-parameterization. Re-
parameterization [106] has improved the performance
of image restoration models without introducing any
inference cost. However, the training cost is large be-
cause of complicated training-time blocks. To reduce the
large extra training cost, we apply online convolutional
re-parameterization [40] by converting the complex blocks
into one single convolutional layer. The architecture of
RepConv is shown in Fig. 6c, which can be converted to a
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Figure 5. Team Zapdos: Loss

3× 3 convolution during training.

Training Details. The proposed DFCDN has four
DFCDBs. The number of features is set to 60 and the num-
ber of ESA channels is set to 16. DIV2K [1], Flickr2K [65]
and LSDIR [59] datasets are used. The training details are
as follows:

1. The model is first trained from scratch with 256 ×
256 patches randomly cropped from HR images from
DIV2K, Flickr2K and LSDIR datasets. The mini-
batch size is set to 64. The L1 loss is minimized
with Adam optimizer. The initial learning rate is set
to 5 × 10−4 with a cosine annealing schedule. The
total number of epochs is 1000.

2. In the second stage, the model is initialized with the
pre-trained weights of Stage 1. The HR patch size is
set to 640. The model is trained with the same settings
as in the previous step.

3. In the third stage, the model is initialized with the pre-
trained weights of Stage 2. The MSE loss is used for
fine-tuning with 640× 640 HR patches and a learning
rate of 1× 10−5 for 100 epochs.

4.4. TelunXupt

Method Details. The TelunXupt team proposed a multi-
level dispersion residual network (MDRN) [73]. The
lightweight distillation framework, as shown in Fig. 7, can
improve the performance of deep feature extraction for
SR, which has been verified in IMDN [42], RFDN [66]
and BSRN [62]. The enhanced attention distillation block
(EADB) is proposed to enhance the features with more ef-
ficient and powerful space and channel attention modules,
as the based block of MDRN in Fig. 8. As for the space
attention module, multi-level dispersion spatial attention
(MDSA) is a substitute for enhanced spatial attention (ESA)
[68]. In ESA, the dispersion branch (denoted as the branch-
A) carries out the single large-size spatial compression and

attention weight dispersion process i.e. , strided convolution
and pooling operation, interpolation operation), and the re-
finement branch (denoted as the branch-B) uses one 1 × 1
convolution to map high-resolution features to the end. As
shown in Fig. 9 (a), the dispersion branch (branch-A in
ESA) is extended in a multi-level manner in MDSA. Ex-
cept for the multi-level branches (D3, D5, and D7), MDSA
further introduces the local variance (L-var) into the disper-
sion branch to better capture the area with rich structural in-
formation. To avoid introducing too many operations, local
variance is only introduced into the dispersion branch D7.
Besides, MDSA reduces the depth of Conv Groups in ESA
to balance performance and model complexity. Inspired by
RCAN [109], ECCA combines blueprint shallow residual
block (BSRB) in BSRN with contrast-aware channel atten-
tion (CCA) [42] to form a residual structure as shown in
Fig. 9 (b). Then, ECCA removes the residual connection in
BSRB, and inserts the CCA module between the point-wise
and depth-wise convolution layers.

Training strategy. The proposed MDRN has 8 EADBs,
in which the number of feature channels is set to 28. The
details of the training steps are as follows:

1. Pretraining on DIV2K [1]. HR patches of size 384 ×
384 are randomly cropped from HR images, and the
mini-batch size is set to 64. The model is trained
by minimizing L1 loss function with Adam optimizer.
The initial learning rate is set to 2 × 10−3 and halved
at {100k, 500k, 800k, 900k, 950k}-iteration. The total
number of iterations is 1000k.

2. Finetuning on 800 images of DIV2K and the first 10k
images of LSDIR [59]. HR patch size and mini-batch
size are set to 384 × 384 and 64, respectively. The
model is fine-tuned by minimizing the Charbonnier
loss function. The initial learning rate is set to 5 ×
10−4 and halved at {100k, 500k, 800k, 900k, 950k}-
iteration. The total number of iterations is 1000k.

3. Finetuning on 800 images of DIV2K and the first 10k
images of LSDIR again. HR patch size and the mini-
batch size are set to 480×480 and 64, respectively. The
model is fine-tuned by minimizing L2 loss function.
The initial learning rate is set to 2 × 10−4 and halved
at {100k, 300k, 600k}-iteration. The total number of
iterations is 650k.

4.5. NJUST E

General method description. The NJUST E proposes a
lightweight multi-scale feature attention (MFA) for image
super-resolution. The proposed MFA shown in Fig. 10,
which consists of three stages including the shallow feature
extraction, the deep feature extraction, and reconstruction.
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(a) DFCDN (b) DFCDB (c) RepConv

Figure 6. DFCDN Team: The overall architecture of the proposed network. (a) Deep feature complement and distillation network
(DFCDN). (b) Deep feature complement and distillation block (DFCDB). (c) RepConv.
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The shallow feature extraction is achieved by a 3×3 convo-
lution. We then stack 8 feature extraction blocks (FEBs) to
gradually refine the extracted features. Finally, the SR im-

age is produced by the reconstruction module, which only
consists of a 3 × 3 convolution and a sub-pixel [77] opera-
tion. The FEB block is implemented by a multi-scale fea-
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Figure 10. Team NJUST E: An overview of the proposed MFA
model.

ture attention module (MFAM), a simple fated-Dconv feed-
forward network (S-GDFN), and two skip-connections. The
number of all intermediate features is set to 36.

Training description. We first train the proposed MFA on
the DIV2K [1] and Flickr2K [65] datasets. The cropped
LR image size is 96 × 96 and the mini-batch size is set
to 64. The MFA is trained by minimizing L1 loss and the
frequency loss [11] with Adam optimizer for total 500,000
iterations. We set the initial learning rate to 1×10−3 and the
minimum one to 1× 10−6, which is updated by the Cosine
Annealing scheme [72].

After that, L2 loss is used for fine-tuning. The initial
learning rate is set to 5 × 10−4 for 150, 000 iterations. In
each training mini-batch, we randomly crop 16 patches of
size 160×160 from LR images as the input.

4.6. NJUST M

General method description. The NJUST M introduces
a gated feature modulation network (GFMN) for efficient
SR, which is modified from the SAFMN [81]. To make
the SAFMN more lightweight, we replace the used convo-
lutional channel mixer (CCM) with the gated-dconv feed-
forward network [102] (GDFN). Fig. 11 shows that our
GFMN first uses a convolution layer to map the input im-
age to feature space and employs 8 feature mixing mod-
ules (FMMs) for learning discriminative feature representa-
tion, where each FMM block has a spatially-adaptive fea-
ture modulation (SAFM) layer and a GDFN module. To
recover the HR target image, we introduce a global resid-
ual connection to learn high-frequency details and employ a
lightweight upsampling layer for fast reconstruction, which
only contains a 3×3 convolution and a pixel-shuffle [77]
layer.

Training description. We train the proposed GFMN on the
LSDIR [59] dataset. The cropped LR image size is 96 ×
96 and the mini-batch size is set to 64. The SAFMN is
trained by minimizing L1 loss and the frequency loss [11]

with Adam optimizer for total 600,000 iterations. We set
the initial learning rate to 1 × 10−3 and the minimum one
to 1 × 10−6, which is updated by the Cosine Annealing
scheme [72].

4.7. KaiBai Group

Network Architecture: The network architecture contin-
ues the design of EFDN [90] but removes the skipped con-
nection. The plain design decreases the model’s depth and
complexity, as exhibited in Fig. 12.

Reparameterizable Convolution: The reparameterization
technique plays a significant role in improving the perfor-
mance of lightweight CNN-based methods. In PFDN, the
KaiBai Group combine the existing RRRB and a layer-wise
loss based on normalized cross-correlation to enhance the
layer-wise representation.

Partial Feature Distillation: Driven by [52], the KaiBai
Group designed a partial local feature distillation block,
dubbed PFDB. The main idea is that the intermediate fea-
tures share high similarities among different channels [34].
This allows the network to process partial features in the
middle layer, which can reduce the parameters and FLOPs
as well as memory access.

Implementation details: To obtain the LR-HR image
pairs, the KaiBai Group leverage bicubic interpolation to
downscale the 2K resolution images from DIV2K and
Flickr2K. They augment the training datasets by horizon-
tal flips and 90◦ rotations. The HR path size and mini-batch
size are determined by the training step. The training pro-
cedure can be summarized as follows.

1. Training from scratch. The LR patch size is set to
64×64, and the mini-batch size is 96. L1 loss and
Adam optimizer are utilized in optimization. The
learning rate is initialized as 5 × 10−4 and halved at
{250k, 400k, 450k, 475k}. The total number of itera-
tions is 500k.

2. Repeat training with larger patches. The LR patch size
is sequentially set to 128×128, 160×160, 180×180,
and the initial learning rate is 2 × 10−4. We reparam-
eterize the model before the 180× 180 step.

3. Fine-tuning. The LR patch size and mini-batch size are
240×240 and 128, respectively. The L2 loss is chosen
to promote PSNR value. The learning rate is 1×10−5.

The proposed method is implemented under the PyTorch
framework with 4 NVIDIA RTX 3090 GPUs.

4.8. NoahTerminalCV A

Computational complexity and memory consumption
are crucial aspects for efficient super-resolution since edge

1931



Figure 11. Team NJUST M: An overview of the proposed GFMN.
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Figure 12. Team KaiBai Group: Network architecture of the pro-
posed PFDN.
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Figure 13. Team KaiBai Group: Partial Feature Distillation Block.

devices used for deployment are resource-constrained. In
order to decrease the runtime overhead our team proposes
a NoahEfficientSR (NESR) network. Inspired by the recent
advancements in efficient super-resolution [42, 52, 60, 66],
our model follows one of the canonical SR architectures
(see Fig. 14) and consists of 4 residual edge-oriented convo-
lutional blocks (RECB). The RECB includes 3 convolutions
followed by simplified enhanced spatial attention (SESA)
block.

Attention Mechanism. We further optimized enhanced
spatial attention block [52] and propose a simplified ver-
sion, called SESA (see Fig. 15). Moreover, we empirically
found that removing the attention part in some blocks does
not lead to the performance drop, whereas it decreases run-

Figure 14. Team NoahTerminalCV A: The overall architecture of
the NoahEfficientSR network.

time and the number of parameters. Thus, for each second
RECB, we use a single SESA block: orange RECB has no
attention in Fig. 14.

Reparameterization. A reparameterization technique aims
to bring a performance gain, due to training stabiliza-
tion and doesn’t change a computational complexity during
the inference. Therefore, we have explored several repa-
rameterization blocks from traditional skip-connection [4],
ERB [26], ECB [106], to a self-implemented combina-
tion of ERB [26] and ECB [106]. We achieved the
best PSNR performance with Edge-oriented Convolutional
Block (ECB) [106] that includes 5 parallel Conv2D with
different initialization during the training phase and merges
into a single Conv2D layer during inference.

Implementation details. The proposed NESR has 4 RECB
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Figure 15. Team NoahTerminalCV A: Proposed Simplified En-
hanced Spatial Attention (SESA) Block.

blocks and each has 48 feature channels, while channels in
SESA are reduced to 16. We employ DIV2K [83] and LS-
DIR [60] datasets and 8 Nvidia V100 to train our model.
The training strategy consists of several steps:

• Firstly, NESR is trained for 106 iterations by minimiz-
ing L1 loss with Adam [47] optimizer. The input patch
size is set to 64×64, while a batch is 64. Input patches
are randomly cropped and augmented (flip, rotate) in
this and all other training stages. We utilize a Cosine
Annealing scheduler with a warm-up strategy, where
the learning rate linearly increases from 0 to 5e-4 dur-
ing 5000 iterations and then halves every 200,000 iter-
ations.

• In the second stage, we increase the batch size to 256
and patch size to 128. Then, the model is trained for
106 iterations with the initial learning rate of 2e-4 co-
sine decay rate of 0.8 (every 50,000 iterations and 104

iterations for warm-up).

• At the third stage inspired by [97] we employ a large
batch training strategy: batch size increased to 968
while LR patch size remains 128×128. Since the batch
size is large, we set the learning rate to 8e-4 with co-
sine decay. Moreover, we minimize L1 +L2 objective
to optimize model parameters. At this stage, the model
was trained for 200,000 iterations.

Finally, each ECB block in NESR is merged into a single
convolution layer. Moreover, to further decrease the run-
time by 1.5ms without performance degradation, we utilize
adaptive precision control.

4.9. NoahTerminalCV B

Inspired by recent advancements of light super-
resolution models [42, 52, 60, 66], we propose a mobile
NoahEfficientSR (MobileNoahESR) network that includes
4 residual edge-oriented convolutional blocks (RECB) and

global skip connection (see Fig. 14). RECB contains 3
Edge-oriented Convolutional Blocks [106], which is a repa-
rameterization block and eventually will be converted into
a single convolution during inference and ESA [52] based
attention block (see Fig. 15). It is important to note that
every other RECB includes an attention module in the Mo-
bileNoahESR. We observe no performance decrease in that
case.

Kernel Decomposition. Although we designed Mo-
bileNoahESR such that it has less runtime than exist-
ing state-of-the-art RLFN [52], it still contains several
times more parameters than existing light transformers [60].
Thus, the primary contribution of our method is to decom-
pose each convolutional layer in the MobileNoahESR and
thereby reduce the trainable parameters. As a kernel de-
composition algorithm, we employ the Tucker Decomposi-
tion [85], which decreased parameters by 25-30%.

Implementation details. Proposed MobileNoahESR and
NESR (proposed by Team A) models share the same num-
ber of blocks and features during the first 2 stages. Both
networks employ DIV2K [1] and LSDIR [60] datasets and
8 Nvidia V100 for training. The training strategy contains
several steps:

• The third stage starts with merging each ECB block
into a single convolution and performing kernel de-
composition of those layers. The model is trained for
100,000 iterations with cosine decay (init. learning
rate 2e-4) and batch size of 64.

• At the final stage, we fine-tune our model with a large
batch of 1024 and use LAMB [97] optimizer. More-
over, we set the learning rate to 4e-4 with cosine decay
and minimize L1 + L2 objective. At this stage, the
model was trained for 300,000 iterations.

4.10. SeaOuter
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Figure 16. Team SeaOuter: The architecture of low memory resid-
ual local feature distillation network (LMRLFN).

Network Architecture. The SeaOuter team proposes an
efficient method for super-resolution called Low Memory
Residual Local Feature Network (LMRLFN). LMRLFN
employs a basic SR architecture similar to RLFN [51] and
FMEN [26], as illustrated in Fig. 16. However, LMRLFN
uses LMRLFB blocks with a smaller number of parame-
ters and floating-point operations (FLOPs) than the previ-
ous works, combining the advantages of both models.
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LMRLFB is a modified version of residual local feature
block (RLFB), as shown in Fig. 17. The LMRLFB in the
proposed model not only incorporates the HFAB [26] tech-
nique within the LMRLFB structure but also employs resid-
ual learning to maintain finer details and further enhance
the network’s overall performance. Moreover, LMRLFB
reduces the number of parameters to reduce inference time
and memory while improving the performance of the model
using various techniques such as wavelet loss and a warm-
start strategy during fine-tuning, with different patch sizes.

Wavelet Loss. The wavelet transform loss is a mathemat-
ical tool that has shown impressive performance in self-
supervised learning [41] and even knowledge distillation in
image classification [105]. The discrete wavelet transform
(DWT) is a pyramidal image decomposition technique that
is useful for capturing both spatial and frequency informa-
tion in an image. With DWT, each image can be decom-
posed into four bands: LL, LH, HL, and HH, where LL
indicates the low-frequency band and the others are high-
frequency bands. It helps to minimize the difference in
high-frequency information between the ground truth and
the output from the model. The loss function used for this
transformation, denoted as LW , is formulated as follows:

LW =
1

n

n∑
i

||(ΨH ◦ fgt)(xi)− (ΨH ◦ fsr)(xi)||1. (5)

Here, N is the number of training samples, and ΨH rep-
resents the DWT operator for high frequency. After de-

composing high frequency through the DWT operator, ℓ1
norm is used to measure the difference between the high fre-
quency of the ground truth and the output from the model.

Warm Start Strategy. The previous studies [51, 67] uti-
lized warm-start training approaches to enhance the perfor-
mance of their models or to train for larger scale factors,
but they excluded the fine-tuning stage in their implemen-
tation of the warm-start strategy. We find that implement-
ing the warm-start strategy in the fine-tuning stage can fur-
ther improve the performance of the model. The training
settings, such as the patch size, batch size, and learning
rate, remain unchanged in the first three stages of the model
training. However, the fourth and final stage uses a patch
size of 640× 640, a batch size of 64, and a learning rate of
1×10−5 with L1 loss. In the final training stage with warm-
start strategy, the patch size is increased to 1024×1024, the
batch size is reduced to 32 due to GPU memory limitations,
and the learning rate remains the same as in the fourth stage.

Implementation details of LMRLFN. The model is
trained using two datasets: DIV2K [1] and LSDIR [59].
Data augmentation techniques such as random flipping and
90-degree rotations are applied to increase the amount of
data available for training. Low-resolution (LR) images are
created by reducing the size of high-resolution (HR) images
using bicubic interpolation. The training process consists of
five stages. During the training process, HR patches of size
256 × 256 are randomly cropped as the ground truth, and
a batch size of 64 is used. In the first stage, the model is
trained from scratch. Then, the warm-start strategy is em-
ployed twice, using the model weights from the previous
stage as the starting point for the current stage. The L1 loss
and Wavelet transform loss are minimized using the Adam
optimizer with specific hyperparameters. The learning rate
is set to 5 × 10−4 and is decreased by half every 1 × 105

iterations. In the fourth training stage, the model is fine-
tuned using the L2 loss with HR patches of size 640x640
for 500K iterations. Finally, the model is further fine-tuned
with the warm-start strategy using larger HR patches of size
1024× 1024 for another 500K iterations. The learning rate
during the fine-tuning stage is set to 1× 10−5.

4.11. Antins cv

ERLFN. Our method is built on Residual Local Feature
Network (RLFN) [52]. Based on this network, we prune
the architecture and introduce the Enhanced Residual Block
(ERB) RepBlock proposed by [60] the runner-up solution,
and we propose our Enhanced Residual Local Feature Net-
work (ERLFN).

Shrinked RLFN. The RLFN proposed by [52] is an effi-
cient network for lightweight super-resolution task. While
for this efficient super-resolution task, we further prune the
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Figure 18. ERB RepBlock

network for an ideal speed. We retain the four RLFB blocks
in RLFN while shrinking the model by removing ESA mod-
ule nested in the first and third RLFB. The channel of the
remained ESA modules is 16.

ERB RepBlock. We apply the RepBlock in the Enhanced
Residual Block (ERB) first proposed by [60] the runner-up
solution. We replace the 3 × 3 convolutions in RLFB with
the ERB RepBlock.

As shown in Fig. 18, during training, the ERB RepBlock
first expands the feature channels by a 1× 1 convolution. A
3×3 convolution with a short skip connection then extracts
features in a higher dimensional space. And a following
1 × 1 convolution reduces features to the original channel
numbers. A skip connect eases the feature learning proce-
dure. During inference, this RepBlock can be merged to a
single 3× 3 convolution.

Training Strategy We train our ERLFN model in two
stages.

In the first stage, we train our model from scratch on
DIV2K and full LSDIR datasets. The HR images are ran-
domly cropped to patches of size 256 × 256. We adopt
Adam optimizer with L1 loss for this stage. We set the ini-
tial learning rate to 5× 10−4, with a mini-batch size of 64,
train the model for 1000 epochs, and decay the learning rate
by 0.5 every 200 epochs. It takes about 34 hours for training
State 1, running on four NVIDIA V100 GPUs.

In the second stage, the model is initialized with the pre-
trained weights from the first stage. We finetune the model
using a cosine learning rate schedule with an initial learning
rate of 1× 10−4 for 500 epochs, on DIV2K and a subset of
LSDIR. The L2 loss is applied. It takes about 14 hours for
training at this stage.

For inference, the ERB RepBlock is reparameterized to
a 3× 3 convolution. We acquire no performance drop after
reparameterization. We obtain an online validation PSNR
of 29.00 and a test PSNR of 26.95.

4.12. Young

General method description. The overall architecture
of their network is shown in Fig. 19, which is inspired
by previous leading methods [26, 50]. They propose a
channel-aware re-parameterization network, composed of
three parts: feature expanding, feature learning, and recon-
struction part. Due to its compact and plain features, it

can reconstruct high-fidelity images with fast speed. Mean-
while, in the last part, they add an auxiliary head with an
×2 scaling factor that served as an additional supervised
signal. In the feature learning part, they carefully opti-
mize the components of RLFB and proposed CARB. The
residual connection is widely adopted in network design.
Apart from its good performance, it slows down the infer-
ence speed of the network owing to its high MAC (mem-
ory access cost). So they remove the skip connection and
apply the re-parameterization technique. Specifically, they
replace 3 × 3 convolution by RRRB [26] during the train-
ing phase as shown in Fig. 20. This is similar to the treat-
ment in FMEN [26]. Besides, Yolov7 [88] also reports that
jointly applying skip connection and re-parameterization
techniques leads to the degradation of performance. Sec-
ond, they simply remove 1× 1 convolution in RLFB. Then
they replace the ESA module with SE module [39] which is
speed-friendly.

Training description. They adopt DIV2K [1], Flickr2K
and LSDIR [59] as training datasets. And they train the net-
work on RGB channels and augment the training data with
random flipping, rotations, and channel shuffling [103]. The
channel of each 3 × 3 convolution is set to 64 and 64. The
training process contains 2 stages. In the first stage, they
randomly crop HR patches of 256× 256 from ground truth
and the batch size is set to 32. They adopt AdamW opti-
mizer by setting β1 = 0.9, β2 = 0.9 and λ = 1× 10−3 and
minimize L1 loss.The auxiliary head is used to help train.
The initial learning rate is set to 1 × 10−3 and equipped
with cosine learning rate decay. The iterations are set to
1×6 in the first stage. In the second stage, they remove the
auxiliary head and minimize L2 loss for 1×6 iterations. The
initial learning rate is set to 1×10−4. And they increase the
HR patch size to 512× 512.

4.13. NTU607 ESR

Our model is based on RLFN [50] and the number of
channels is compressed in order to reduce FLOPS and the
number of model parameters.

The training process is divided into three stages in total.
Throughout the entire training process, we use the Adam
optimizer with β = (0.9, 0.999), ϵ = 1e − 8, and train for
1200 epochs in each stage. Weight decay is not applied. For
the training images, we perform the random horizontal flips
and the random crops, except for the last stage where we
do not perform random crop. In the first stage, we use the
L1 loss for the model optimization with a batch size of 32,
Also, we adopt random cropping images and set the patch
size to 256 × 256. In the next stage, we use the PSNR loss
with a patch size 512 × 512 and the warm-up training. Fi-
nally, in the third stage, we continue to use the PSNR loss,
but the batch size is changed to 1, and no random cropping
is applied to images. Instead, we use the complete images
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Figure 19. Team Young: The overall architecture of CARN.

Figure 20. Team Young: An overview of the proposed CARB model
.

for training and also include the warm-up training. Regard-
ing the learning rate, in the first stage, the initial learning
rate is set to 5 × 10−4, and the learning rate is decayed by
half at epochs [200, 400, 600, 800, 1000]. For the second
and third stages, we set the initial learning rate to 5× 10−7

and warm it up for 100 epochs until it reaches 4 × 10−5.
Then, we apply the same decay strategy which is the same
as that in the first stage.

4.14. CMVG

General method description. We propose a knowl-
edge distillation and re-parameterization(KDRP) efficient
SR network, which is an advanced version of RLFN [51]
model that gets the best inference time in NTIRE 2022 Ef-
ficient Super-Resolution Challenge. We introduce knowl-
edge distillation, and re-parameterization, as well as re-
place the ReLU activation function with GeLU activation
and reduce network width to further compress the model,
but also maintain the performance. The framework of
our KDRP is shown in Fig. 21, which is designed based
on the knowledge distillation SR network [53]. KDRP

model is composed of the teacher SR network and the stu-
dent SR network, the student network is an end-to-end re-
parameterization residual(RPSR) network that recovers SR
images. The teacher network super-reconstructs HR images
in an Encoder-Decoder pattern. Due to the teacher network
using HR images as privileged information to reconstruct
HR images, it learns more high-frequency information. We
achieve knowledge transfer through knowledge distillation,
which provides extra rich detailed information for the stu-
dent network.

The encoder of the teacher network extracts features of
input HR images and down-samples them with a factor of
4 to get reconstructed LR images. The encoder learns the
degradation process of the HR image, and its structure is
the same as the encoder in [53]. The decoder structure
is the same as the student network, which is used to re-
cover HR images from reconstructed LR images. The stu-
dent network includes the shallow feature extraction, the
depth feature extraction, and the SR reconstruction mod-
ule. There are 4 re-parameterization residual blocks(RPRB)
in the depth feature extraction. The framework of RPRB
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Figure 21. Team CMVG: The framework of KDRP

Figure 22. Team CMVG: The framework of RPRB

is shown in Fig. 22, which is composed of 3 residual con-
nected ECB [107]+GeLU blocks and ESA [51] . We utilize
ECB blocks during the training phase, while it can be equiv-
alent to a convolution layer in the inference phase. The use
of re-parameterization can increase the model expression
ability and boost the SR performance, but not cost more

inference time. The number of feature maps of Conv3 in
RPSR model is set to 44, 44, and 48 from left to right, and
the number of feature maps in RPRB is marked in Fig. 22.

Loss function. In the teacher network, since the encoder
simulates the mapping relationship between HR-LR image
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pairs, we use the imitation loss that calculates L1 distance
to constrain encoder training. In order to ensure that the
teacher network can accurately recover HR images, it is also
necessary to constrain the teacher network using reconstruc-
tion loss. The total loss for optimizing the teacher network
is defined as follows:

lteacher = lHR
recon + limitation

=
∥∥Y SR

T − Y
∥∥+ ∥XE −X∥

(6)

where X is the ground truth LR image, Y is the HR image,
the output of encoder and decoder is XE and Y SR

T respec-
tively, ∥.∥ denotes the L1 distance.

We use the distillation loss [53] and reconstruction loss
to train the student network, the distillation loss is calcu-
lated through the features of the penultimate convolution
layer of the teacher and student network, and the total loss
is defined as:

lstudent = lSR
recon + 0.001 ∗ ldistillation

=
∥∥Y SR

S − Y
∥∥+ 0.001 ∗ ldistillation

(7)

Training details. We use the DIV2K [1], Flickr2K, and
LSDIR [59] datasets to train the proposed KDRP model,
the training details are described as follows:

Stage 1. Training teacher network. The teacher network
is trained from scratch. The 256× 256 HR patches are ran-
domly cropped from HR images, and the batch size is set to
64. The teacher model is trained by teacher loss with Adam
optimizer. The initial learning rate is set to 5 × 10−4 and
halved at every 60 epochs. The total number of epochs is
400.

Stage 2. Training student network. We use the pre-
trained weight from the teacher network to initialize the
student network, and then train the student network with
teacher loss. Other parameter settings are kept the same
with Stage 1.

Stage 3. Fine-tuning student network. The fine-tuning
steps are described as follows:

• The student model is initialized from Stage 2 and
trained with the same settings as Stage 1. In particular,
the loss function is only the L1 loss.

• The student model is fine-tuned by MSE loss further,
and trained with the same setting as Stage 3.1.

• HR patch size is set to 512×512 and the student model
is trained with MSE loss.

• The student model is fine-tuned on DIV2K and
Flickr2K dataset with 640×640 HR patches and MSE
loss. The initial learning rate is set to 2.5 × 10−4

and halved at every 100 epochs. The total number of
epochs is 500.

After finishing the training of the KDRP model, we only
use the student network to reconstruct SR images during the
inference phase, at the same time, the multiple branches of
the ECB module can be merged into a convolution layer.

4.15. Touch Fish

General method description. The Touch Fish team pro-
poses an efficient method for super-resolution called
AttLi. The rationale behind utilizing an attention map with
a considerable perception field is that it can be advantageous
for the preceding layers to concentrate their attention on
regions of interest. Thus, they generate an attention map
M(i, j) as follows,

M(i, j) = ϕ(Conv1×1(Fl(i, j))), (8)

where ϕ(·) denotes the sigmoid function. Fl(i, j) and
Ff (i, j) denote the value of the feature map in the position
(i, j) from the latter layer and former layers, respectively.
Then they use the generated attention map to reweight the
features in the former layers as,

M(i, j)
⊙

Ff (i, j), (9)

where
⊙

denotes the Hadamard product.
As depicted in Fig. 23(b), an attention map is generated

for each block, which is subsequently utilized to reweight
the feature maps originating from distinct levels. The
present method features the integration of attention maps
at three distinct levels, with the aim of directing the feature
maps of lower layers toward the effective modeling of re-
mote dependencies.

Furthermore, they have implemented the re-
parameterization technique (rep) [22] to enhance the
efficiency of the inference phase. The rep methodology has
been incorporated into each convolutional block depicted in
Fig. 23(a). This approach involves utilizing the Hadamard
product to encode the short-range correlation between the
feature maps in the input of the block and the feature maps
generated after four convolutional layers in the output of
the block.

Efficiency Improvement. In contrast to prior techniques,
they have replaced the employment of stride convolutions,
pooling, and upsampling with merely the use of a gener-
ated mask. This modification has resulted in a significant
acceleration of both inference and training times, as well as
a reduction in the memory footprint. The effectiveness and
efficiency of this mask arise from its capacity to facilitate
attention from the subsequent layers to guide the learning
process of the earlier layers.

Implementation details. The dataset utilized for training
comprises of DIV2K and LSDIR. The training procedure
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Figure 23. Team Touch Fish: (a) AttLi block. Att in pink denotes the generated attention map M. (b) Pipeline. Input is the low-resolution
image and output is the high-resolution image.

entails the deployment of four AttLi modules arranged in a
sequence, each consisting of 48 feature maps. During each
training batch, 64 HR RGB patches are cropped, measuring
256 × 256, and subjected to random flipping and rotation.
In the training phase, NGswin [13] is used as the teacher
model for boosting the restoration performance. The learn-
ing rate is initialized at 5 × 10−4 and undergoes a halving
process every 2 × 105 iterations. The network undergoes
training for a total of 106 iterations, with the L1 loss func-
tion being minimized through the utilization of the Adam
optimizer [47]. they repeated the aforementioned training
settings four times after loading the trained weights. Sub-
sequently, fine-tuning is executed using the L1 and L2 loss
functions, with an initial learning rate of 1×10−5 for 5×105

iterations, and HR patch size of 512. They conducted fine-
tuning on four models utilizing both L1 and L2 losses, and
employed batch sizes of 64 and 128. Finally, they integrated
these four models to obtain the ultimate model.

4.16. CUC SR

General method description. The CUC SR team
proposed a Reparameterized Residual Feature Network
(RepRFN) [18] as shown in the Fig. 24. This work was
inspired by RFDN [66], RLFN [52], and ECBSR [107], the

Figure 24. Team CUC SR: The structure of RepRFN.

Figure 25. Team CUC SR: The structure of RepBlock.

team found that the overall structure of RLFN and ECBSR
is similar, they both remove the operation of channel con-
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Figure 26. Team CUC SR: The structure of RFDB.

catenation. In fact, in a simple experiment, if the chan-
nel concatenation in RFDN were replaced by local residual
connections and then retrained with DIV2K [1] training set,
although the number of parameters and FLOPs increased
slightly, the overall PSNR was relatively similar, and the
inference speed could be improved by about 34% and max-
imum GPU memory consumed during inference could be
decreased by about 55%. It can be considered that channel
concatenation is a factor affecting the speed of inference.
Therefore, the team rethought RFDN and mainly improved
the following parts.

First, parallel SRB and 1 × 1 convolution in RFDB are
replaced by 3×3 convolution, and channel concatenation is
replaced by local residual connection. However, in consid-
eration of the simple receptive field of 3×3 convolution, in-
spired by the recent reparameterization works [19, 20, 107],
in order to capture features of more patterns as much as
possible, as shown in the Fig. 25, the team design a repa-
rameterized multi-branch Block called RepBlock to extract
features and use residual connections for features fusion. In
the training stage, the multi-branch structure is used, and
the model is converted into a simple plane structure through
structural reparameterization to speed up inference.

In RFDN, as shown in the Fig. 26, features are distilled
by SRB and 1×1 convolution three times in each RFDB, so
the team replaces the first three 3× 3 convolution with this
multi-branch structure. Considering that some 1× 1 convo-
lution in RFDN is to perform channel transformation after
channel concatenation, it doesn’t need to perform channel
transformation due to residual connection, so these 1 × 1

convolutions can be removed to further compress param-
eters. Inspired by RLFN [52], the convolution group in
ESA [66] is also reduced to one layer of convolution. The
final building block structure of RepRFB is shown in the
Fig. 25.

In addition, a loss function based on Fourier transform is
also used. Specifically, the loss of the SR image and HR im-
age after Fourier transform is calculated to guide the model
to learn frequency information. The loss can be formulated
as:

L(x, y) = L1(fft(x), fft(y)) (10)

where L1 defines L1 loss, fft(·) means Fast Fourier Trans-
form on the image. It should be noted that we only perform
Fourier transform on the scale dimension of the image.

Training strategy. In terms of training, DIV2K training set
and Flickr2K dataset are used, and the HR patch size is set
to 192×192. Random horizontal flip, vertical flip, and rota-
tion are introduced into the data augmentation during train-
ing. The proposed RepRFN consists of 4 RepRFBs, and
the number of channels is set to 48. The model is trained
from scratch. Adam optimizer with β1 = 0.9, β2 = 0.999
and ϵ = 10−8 is used. The batch size is set to 64, and the
initial learning rate is set to 5 × 10−4 and halved at every
100 epochs. The total number of epochs is 1001. In the
process of training, the loss function is the combination of
pixel loss and the loss based on Fourier transform. In prac-
tical application, Charbonnier loss function can avoid the
problem that the results generated by L1 loss function and
L2 loss function are too smooth [112]. In the experiment,
the team also found that the Charbonnier loss is better than
the L1 loss in terms of PSNR. So they chose Charbonnier
loss as pixel loss Lpix. Finally, the loss can be formulated
as:

L(x, y) = λ1Lpix(x, y) + λ2L1(fft(x), fft(y)) (11)

where λ1 = 0.9 and λ2 = 0.1. The hyperparameter ϵ2 in
Charbonnier loss is set to 10−6.

4.17. NJUST R

General method description. The NJUST R presents a
simple yet effective model, SAFMN [81], to solve effi-
cient SR. As shown in Fig. 27, the SAFMN consists of
the following parts: a stacking of feature mixing modules
(FMMs) and an upsampler layer. Specifically, we first ap-
ply a 3 × 3 convolution layer to transform the input LR
image to feature space and generate the shallow feature
F0. Then, the multiple stacked FMMs are used to gener-
ate finer deep features from F0 for HR image reconstruc-
tion, where an FMM layer has a spatially-adaptive feature
modulation (SAFM) sub-layer and a convolutional channel
mixer (CCM). To recover the HR target image, we intro-
duce a global residual connection to learn high-frequency
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Figure 27. Team NJUST R: An overview of the proposed SAFMN.

details and employ a lightweight upsampling layer for fast
reconstruction, which only contains a 3×3 convolution and
a pixel-shuffle layer [77].

To speed up the inference time of the original SAFMN,
we made the following modifications:

• We remove all LayerNorm layers from FMMs and
only normalize the features after the first convolution
with the Global Response Normalization [75].

• We disable the learnable bias of all employed convolu-
tion operations.

• We equip the first and last convolution with re-
parametrization technique [23].

• We change the skip-connection in feature space into
image space.

Training description. We train the proposed SAFMN on
the LSDIR [59] dataset. The cropped LR image size is 96×
96 and the mini-batch size is set to 64. The SAFMN is
trained by minimizing L1 loss and the frequency loss [11]
with Adam optimizer for total 600, 000 iterations. We set
the initial learning rate to 1 × 10−3 and the minimum one
to 1 × 10−6, which is updated by the Cosine Annealing
scheme [72].

4.18. Sissie Lab

General method description. The Sissie Lab proposes Di-
versified Local Feature Arch-Network (DLFAN) for the ef-
ficient super-resolution task. The architecture of the model
is shown in Fig. 28. The proposed DLFAN is modified
from the previous work RLFN [51]. The main improve-
ment of the approach is in two aspects. First, DLFAN uses
an archway-shaped connection to merge the shallow fea-
tures in recovering stage. Secondly, DLFAN enhances all
the convolution layers in RLFB by using the structure re-
parameterization method to extract diversified features.

Building Blocks. A variant of Diversified Local Feature
Block(DLFB) is designed based on the RLFB. Inspired

by re-parameterization works ECB [106] and DBB [21],
a re-parameterization Learnable Enhanced Diverse Branch
Block(LEDBB) is used to replace the original 3 × 3 con-
volutional layers in RLFB. Specifically, the LEDBB inside
DLFB introduces diverse branches of convolution to extract
different textures and edges during training. As shown in
Fig. 29, there are two additional branches along with the
original 3 × 3 convolution, which consists of a 1 × 1 con-
volution and two cascaded convolutions with sizes of 1 ×
1 and 3 × 3, respectively. Besides, batch normalization is
added after each convolutional layer to bring training-time
non-linearity.

Figure 28. Team Sissie Lab: The overall network framework of
Diversified Local Feature Arch-Network(DLFAN).

Training strategy. The training strategies contain two
stages: the training stage and fine-tuning stage.

1. Training stage. In each training batch, 64 HR color
patches with a patch size of 256 × 256 are randomly
cropped from HR images. The model is trained by
minimizing L1 loss function. The initial learning rate
is set to 5 × 10−4 with cosine decaying to 1 × 10−5.
The total number of epochs is 5000.

2. Fine-tuning stage. The HR patch size is progressively
increased from 512 to 840 to improve performance.
The batch size is set as 32 and 16, respectively. L2
loss is used in this stage. The learning rate decays from
5 × 10−5 to 1 × 10−6. The total number of epochs in
the fine-tuning stage is 3000.

DIV2K and Flickr2K are used as the training datasets.
Data augmentation methods including channel shuffle, ro-
tation, and flipping are applied. The model is trained by
Adam optimizer with default settings. The model is im-
plemented on Pytorch 1.13.1 and trained with 2 NVIDIA
GeForce RTX 3090 GPUs.

4.19. GarasSjtu

General method description. The proposed mixer-based
local residual network super-resolution model (MLRN)
model [29] is a modified version of the model in [52]
but with low computation and runtime. The concept of
the MLRN model is based on convolution mixer (Con-
vMix) [84], and enhanced spatial attention (ESA) [68]. The
ConvMix depends on depthwise convolution and pointwise
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Figure 29. Team Sissie Lab: Re-parameterization of Learnable
Enhanced Diverse Branch Block(LEDBB).

Figure 30. Team GarasSjtu: The structure of the proposed mixer-
based local residual network (MLRN).

Figure 31. Team GarasSjtu: The structure of the proposed mixer-
based local residual block (MLRB).

convolution to make spatial and channel mixing possible.
While the ESA is used as a spatial attention mechanism.
Additionally, we were inspired by [27, 30], using the bilin-
ear upsampling of the low resolution (LR) at the final stage
of the model.

Fig. 30 illustrates our MLRN model, which consists of
three blocks, shallow feature extraction, deep feature ex-
traction, and high-resolution image reconstruction, in addi-
tion to bilinear upsampling. Shallow feature extraction is
performed by using 3 × 3 convolution, which changes the
image domain to the feature domain.

After that, four blocks of the mixer-based local resid-
ual block (MLRB) are included in the deep feature extrac-
tion modules. We have further improved the original block
in [52] by reducing weight and Multi-adds. The MLRB
block is designed based on using two 3 × 3 convolutions
and one ConvMix block with a GELU activation function,
as shown in Fig. 31(b). Also, the ConvMix block is com-
posed of a depthwise convolution and pointwise convo-
lution using residual across the depthwise convolution as
shown in Fig. 31(b). In addition, residual learning is used
between the input and the output of this MLRB block. Af-
terward, an 1 × 1 convolution and ESA [68] are used at the
end of the MLRB block similar to [52].

The final stage is the image reconstruction made by uti-
lizing one Conv 3 × 3, also a bilinear upsampling for trans-
ferring low-frequency information. Then, our model ends
with the pixel shuffle layer, which is utilized for mapping
features to HR image space.

Our MLRN contains four MLRB blocks, in which we set
the number of feature maps to 50. also, we set the channel
number of the ESA is set to 16 similar to [68]. In our train-
ing, we used DIV2K and LSDIR [59] to train the model.

Training strategy. The training of the model is done in the
following steps.

At the starting stage, we trained the model from scratch
using the DIV2K and LSDIR [59] datasets, with a patch size
of 256 × 256 and a batch size of 64. In this training, the L1
loss function is used with the Adam optimizer. This stage is
trained for 800 epochs with an initial learning rate 5 ×10−4

reduced by half every 200 epochs
After the previous stage, the model starts its training

from the previous pre-trained weights using the DIV2K and
Flickr2K datasets with an initial learning rate 5 ×10−4that
drops by 50% at every 200 epochs for 1000 epochs using
L1 loss.

4.20. USTC ESR

Network Architecture The USTC ESR team proposes the
enhanced fast residual network (EFRNet) for efficient im-
age super-resolution. The overall architecture is shown in
Fig. 32, which is based on the previous method [50]. The
difference is EFRNet uses five enhanced fast residual blocks
(EFRB) as the basic building block. Moreover, we adopt
the global skip connection at the image level. Specifically,
EFRB also employs GELU [35] as the activation function.
In addition, to achieve efficient feature extraction, we inte-
grate the partial convolution (PConv) [7] into EFRB. PConv
reveals the feature redundancy in the existing networks and
only executes the convolution operations on only a few fea-
ture channels while leaving the remaining other channels
untouched, thus reducing the redundant computation and
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memory cost. Besides, we also employ the ESA mod-
ule [50, 67] along with the residual block.

Figure 32. USTC ESR team: The overall illustration of EFRNet.

Losses The framework is trained in a supervised manner
with the L1 and the frequency losses between the estimated
results (Ô) and the corresponding ground truth Y, which is
defined as follows:

Ltotal = ||Ô−Y||1 + λfreq. ∗ ||FFT (Ô)− FFT (Y)||1,
(12)

where λfreq. denotes the balanced weight and FFT (·) de-
notes the Fast Fourier Transformation.

Implementation details The experiments of EFRNet are
implemented on the PyTorch platform. The model is trained
by ADAM optimizer with β1 = 0.9, β2 = 0.999. We train
the default model with the progressive training strategy. (i)
At the first stage, the model is trained with the HR patch
size of 192 × 192 from scratch. The initial learning rate
is set to 0.0008 and halved at every 200 epochs. The total
number of epochs is 600. (ii) At the second stage, the model
is trained with the HR patch size of 512 × 512. The initial
learning rate is set to 0.0004 and halved at every 200 epochs.
The total number of epochs is 600. (iii) At the third stage,
the model is trained with the HR patch size of 800 × 800.
The initial learning rate is set to 0.0001 and halved at every
200 epochs. The total number of epochs is 400. For all
three training stages, we adopt the same losses (Eq. (12)) as
default. λfreq. is empirically set to 0.2.

4.21. SEU CNII

Figure 33. Team SEU CNII: Designing and training a SOTA
model is a non-trivial work. Our work shows that expanding an
existing model and then shrinking it by pruning and finetuning is
an efficient way to improve the performance of the model.

General method description. Lots of works focus on de-
signing efficient models to achieve state-of-the-art perfor-
mance on challenges year by year. A big problem about
collecting more data and creating a new larger dataset for
training a bigger and more powerful model is that we al-
ways need to update our model to adapt to the new dataset
for learning more knowledge than before.

Efficient insights are not easy to find and some important
factors could be ignored in the advanced computing plat-
forms. Good performance in theory but bad performance
in reality can happen when running MobileNet on different
platforms.

We want to find a method that scales an existing SOTA
efficient model efficiently and effectively. In this way, we
can just absorb achievements from efficient model design
research and scale them to get a new state-of-the-art in a
new dataset.

We improve RFDN [66] model inspired by the ”Train
Big, Then Compress” theory proposed by [63] and pro-
posed the ”Expand Big, Then Shrink” idea. Big models
have more parameters than small models so they can learn
more knowledge from the dataset. If there is a new dataset
larger than a traditional dataset which is the situation of
LSDIR [59] and DIV2K [1], the old SOTA model is not
enough to learn new knowledge from the new large dataset,
so that we need to expand it. On the other hand, an ex-
panded model always has redundancy in computation, us-
ing network compression method to shrink it can make it
efficient and without knowledge loss.

Training details We first train RFDN on the LSDIR [59]
datasets. The model is trained by Adam optimizer with 300
epochs. We set the learning rate as 1e-5. After training,
heavy compression followed. We utilize a dynamic struc-
ture pruning method [28] to compress the model and fine-
tune it iteratively for 30 epochs with a 0.8 sparsity factor.
We choose the best model as the final submitted model.

4.22. AVC2 CMHI SR
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Figure 34. Team AVC2 CMHI SR: The overall architecture of the
proposed network.

General method description. The whole structure is
shown in Fig. 34. We have revamped the Residual Fea-
ture Distillation Block (RFDB) blocks of RFDN [66]
based on partial convolution [7], resulting in the key de-
sign called Residual Interactive Partial Feature Distillation
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Figure 35. Team AVC2 CMHI SR: The overall structure of
RIPFDB.

Block (RIPFDB), which is illustrated in Fig. 35. Specifi-
cally, to further reduce complexity compared to the Shallow
Residual Block (SRB) in RFDB, we introduced the Partial
Convolution Residual Block (PCRB), which performs con-
volutional operations on only a few channels while directly
concatenating the remaining channels with the feature af-
ter convolutional operation, thus significantly reducing time
cost compared with depth-wise convolution. Additionally,
to enhance information interaction between different distil-
lation features, we proposed an interactive mechanism that
concatenates distillation features from different stages and
performs a 1 × 1 convolutional layer to fuse the features.
To further improve performance, we applied ESA [68] to
enhance spatial attention. Motivated by BSRN [62], which
uses CCA [42] to improve model ability from a channel-
wise perspective, we multiplied a learnable parameter along
the channel direction to fully explore model capacity. In ad-
dition, we use GELU [35] as the activation layer, which has
been proven to have better performance.

Training strategy. In this work, we adopt DIV2K and
Flickr2K as training dataset which includes 3450 images.
We employed the Adam optimizer with an initial learning
rate of 5×10−4 to minimize the L1 loss function on patches
of size 64 × 64 pixels. Data augmentation is performed,
such as random horizontal flipping and 90◦ rotation. The
network was first optimized for 1.2× 106 iterations using a
batch size of 64. Subsequently, the batch size was increased
to 256 for an additional 5 × 105 iterations of training. The
network consists of 4 RIPFDB blocks, where the partial co-

efficient is set to 0.25 and the number of channels is set to
52.

4.23. Set5 Baby
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Figure 36. Team Set5 Baby: The overall architecture of large ker-
nel distillation network (LKDN).
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Figure 37. Team Set5 Baby: The details of each component. (a)
LKDB: Large Kernel Distillation Block; (b) BSConv: Blueprint
Separable Convolution; (c) LKA: Large Kernel Attention; (d)
RBSB: Re-parameterized Blueprint Shallow Block; (e) Upsam-
pler: Re-parameterized Upsampler.

Network Architecture. Set5 Baby team proposed Large
Kernel Distillation Network (LKDN) [94], and the network
architecture is as depicted in Fig. 36. It comprises four
components: shallow feature extraction, multiple stacked
feature distillation blocks, multi-layer feature fusion, and
image reconstruction block.

The input image is replicated n times during the pre-
processing stage, followed by a concatenation of the repli-
cated images. Then the initial feature extraction is imple-
mented by a 3 × 3 blueprint separable convolution [33]
(BSconv) to generate shallow features from the input LR
image. The structure of BSconv is shown in Fig. 37b, which
consists of a 1 × 1 convolution and a depth-wise convolu-
tion. The next part of LKDN is to extract deep features
through a stack of large kernel distillation blocks (LKDBs),
which is shown in Fig. 37a. After gradually refining by the
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LKDBs, all the intermediate features are fused and activated
by a 1 × 1 convolution layer and a GELU [35] activation.
A 3× 3 BSConv layer is used to smooth the fused features.
Finally, a skip connection is employed in the model to en-
hance the residual learning and the SR images are obtained
through image reconstruction. The reconstruction process
only includes a re-parameterized 3 × 3 convolution and
pixel-shuffle operation [78] as shown in Fig. 37e.

The convolution decomposition is performed in a dif-
ferent order, and the large kernel attention (LKA) mod-
ule is shown in Fig. 37c. The large 17 × 17 convolu-
tion is decomposing into a 1 × 1 point-wise convolution,
a depth-wise 5 × 5 convolution, and a depth-wise dilation
convolution with a kernel size of 5 and dilation of 3. To
replace the Blueprint Shallow Residual Block (BSRB) in
BSRN [62], we introduce the Re-parameterized Blueprint
Shallow Block (RBSB) structure, as shown in Fig. 37d.

Implementation details of LKDN. LKDN consists of 5
LKDBs and 42 channels and is trained with RBSB. 800 im-
ages from DIV2K [1] and 2650 images from Flickr2K [65]
are used as the training datasets. The training process of
LKDN involves two stages: an initial training stage and a
fine-tuning stage. In the initial training stage, we randomly
crop 128 mini-batch HR patches with a size of 256 × 256.
We train LKDN using the common L1 loss function with
a learning rate of 5 × 10−3 and 9.5 × 105 iterations. In
the fine-tuning stage, we set the patch size of HR images
and batch size to 480× 480 and 64, respectively. LKDN is
fine-tuned using the L2 loss function with a learning rate of
2 × 10−5, and a total of 5 × 104 iterations. The exponen-
tial moving average is set to 0.999 and Adan optimizer [95],
with β1 = 0.98, β2 = 0.92 and β3 = 0.99 is applied in both
stages.

4.24. LVGroup HFUT

Figure 38. Team LVGroup HFUT: The structure of DEB and
DRB.

General method description. Considering the require-
ments of the Efficient Super-Resolution task, we need to
improve the performance of the model as much as possi-
ble under the limited computational cost. Although FMEN
can efficiently extract features while saving time and space

memory, it still cannot meet the corresponding accuracy re-
quirements. We infer that this is because it still cannot ef-
fectively extract the correlation features between pixels of
low-resolution images and deep connections between dif-
ferent pixels of an image. At the same time, it uses relatively
few residual connections to reduce computational cost con-
sumption, which may cause losing the original feature in
the process of feature extraction, resulting in reduced accu-
racy and unable to meet the final competition requirements.
Therefore, we design an Efficient Deep Residual Network
(EDRN), as shown in Fig. 39. Specifically, our backbone
network is the same as FMEN [26]. At the same time, in
order to better extract the deep features of the image, we
modified the Repblock, designed a D-Resblock, and used a
residual connection to preserve the original features of the
image, which is shown in Fig. 38.

Training strategy. We trained a total of 300 epochs to bring
the model to convergence using NVIDIA 3090ti with 24GB
memory. The number of feature maps of DRB and DAB is
set to 64 and 16, respectively. Our initial learning rate is set
to 2× 10−4, and the learning rate decays to 4× 10−5 after
200 epochs. Meanwhile, in the first 250 epochs, we use L1
loss, and in the last 50 epochs, we use L2 loss. Our other
settings are exactly the same as FMEN.

4.25. FRL Team 4

General method description. We follow the general struc-
ture of RFDN [66], which is divided into 4 stages: shal-
low feature extraction, deep feature extraction, multi-layer
feature fusion, and reconstruction. The RFDN is effec-
tively derived from the residual feature distillation net-
work(RFDB). We believe that the RFDB module is sim-
ilar to the depth-wise separable convolution [14] in that
it operates pointwise convolution and depth-wise convo-
lution separately, using 3 × 3 convolution of residuals for
intra-channel information interaction and 1× 1 convolution
for inter-channel information interaction, respectively. We
think the part of depth-wise can be replaced by the mod-
ule of pixel mixing (PM) without parameters to make it
more efficient. In addition, BN layer [43]is added to make
it more generalizable. An efficient feature distillation net-
work (EFDN) is proposed as shown in Fig. 40. Specifi-
cally, in the first stage, shallow feature extraction consists of
linear mapping and depth-wise convolution from the input
image space to a higher dimensional feature space. Then
stacked efficient pixel mixing Blocks (EPMB)(Fig. 41) are
constructed for deep feature extraction, progressively refin-
ing the extracted features. The features generated by each
EPMB are fused at the end of the backbone along the chan-
nel dimension.

Pixel Mixing Block. Pooling preserves the main features
while reducing the number of parameters and computa-
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Figure 39. Team LVGroup HFUT: The structure of EDRN.

Figure 40. FRL Team 4: The architecture of efficient feature dis-
tillation network (EFDN)

Figure 41. FRL Team 4: The architecture of the proposed efficient
pixel mixing blocks (EPMB).

tions [31]. In the process of information filtering, Pooling
tends to retain the high-level semantic features while losing
some of them. To avoid the loss of low-level visual fea-
tures while reducing parameters and computation, and to
enhance the network generalization performance, we pro-
pose the module PM, which also has no parameters. PM
divides the input into five groups equally, and moves the
edge features to the opposite position in the order of left,
right, top, and bottom for each of the first four groups, and
keeps a copy of the features mixed with the relatively moved
features. We describe this process as pixel Mixing.

Training Details Training was performed on DIV2K [1]
and Flickr2K [65] images. HR patches of size 256 × 256
were randomly cropped from the HR images and the mini-
batch size was set to 128. The model was trained with the
ADAM optimizer, where β1 = 0.9 and β2 = 0.9999. The
initial learning rate was set to 5 × 10−4 with cosine learning
rate decay. The L2 loss was used for ab initio training and
the number of iterations The model was implemented using
Pytorch 1.10.1 and trained on 2 GeForce RTX 3090 GPUs.

4.26. Dase-IDEALab

General method description. The Dase-IDEALab team
proposed Global Visual Attention Network (LGVAN). The
overall network structure is shown in Fig. 42(a). Following
previous works, the network consists of three main parts:
shallow feature extraction, deep feature extraction, and up-
scaling reconstruction.

Inspired by VAN [32], the team proposed a Local-Global
Attention Block (LGAB) tailored for efficient SR. As
shown in Fig. 42(b), LGAB consists of Local-Global Con-
volutional Attention (LGCA), and Locally Enhanced Feed-
forward Network (LEFN). LGCA takes a multi-branch
structure to extract local and global features, which can be
expressed as:

Attention = Convp

3∑
i=0

(Branchi(Convp(F ))) (13)

Output = Attention⊗ F (14)

where F denotes the input feature, while Attention and
Output indicate attention map and the output feature re-
spectively. ⊗ is element-wise multiplication. Convp rep-
resents 1 × 1 point-wise convolution, and Branchi, i ∈
{0, 1, 2, 3} denotes i-th branch as shown in Fig. 42(c).
Branch0 consists of a 5 × 5 depth-wise convolution and
a 5× 5 depth-wise dilation convolution with dilation of 3 to
capture long-range dependencies. Branch1 and Branch2
respectively consist of paired depth-wise asymmetric con-
volutions with kernel sizes of 3 and 5, which are used to
extract local and texture information. Besides, Branch3 is
an identity mapping.
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Figure 42. Team Dase-IDEALab: The overall pipeline of Local-Global Visual Attention Network (LGVAN).

As shown in Fig. 42(d), a 3 × 3 depth-wise convolution
is incorporated to strengthen LEFN, whilst the self-residual
strategy [80] is introduced to overcome the drawbacks as-
sociated with depth-wise convolution. Mathematically, the
LEFN can be formulated as:

Fe = Conve(F ) (15)
Output = Convc(ϕ((Convd(Fe)) + Fe)) (16)

where F denotes the input feature. Conve and Convc are
two 1× 1 convolutions carrying out channel expansion and
contraction respectively. ϕ indicates GELU activation [35].

Loss Function During training, the model is trained with
two types of loss functions L = L1 + λLf . Pixel-wise L1

loss is used to ensure that the generated content is close to
ground truth:

L1 = ||R− T ||1 (17)

whereR and T denote the resulting SR image and the target
image respectively. In addition, Lf is the frequency recon-
struction loss [12] that enforces high-frequency details:

Lf = ||F(R)−F(T )||1 (18)

where F(·) represents the 2D Fast Fourier Transform. The
weighting factor λ = 0.5 is used in the experiments.

Training details The proposed network consists of 9
LGABs, and the number of channels was set to 32.

DIV2K [1] and Filckr2K [83] datasets were used for train-
ing. Data augmentation strategies involved in experiments
included horizontal and vertical flips, and random rotations
of 90, 180, and 270 degrees. In terms of the model opti-
mization, the Adam [47] optimizer was used with β1 = 0.9
and β2 = 0.99. The initial learning rate of LGVAN was set
to 5 × 10−4 and reduced by half after 2 × 105 iterations.
During the training process, the mini-batch and the input
patch size of LGVAN were set to 128 and 64 × 64. The
model was trained using a total of 1× 106 iterations.

4.27. FRL Team 0

General method description. There is already a lot of
work trying to reduce the complexity of self-attention (SA),
including [10, 15, 49]. Our goal is to reduce the complex-
ity of transformers for SR and maintain its performance,
so we propose Local-Global Term Transformer (LGTT)
for SR, not every group needs self-attention. The over-
all architecture is shown in Fig. 43. In order to estab-
lish long-term dependencies efficiently, a pair of SAs is
reserved in each group as a Global-term Modeler and us-
ing the striped window mechanism [76], avoiding redun-
dant operations. we improve BWSA by adding multi-
window and head mechanisms to improve computational
efficiency,i.e., multi-window and head SA (M-WHSA), as
shown in Fig. 44. In the rest of the blocks, we propose effi-
cient pixel mixer (PM) modules without computational cost
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Figure 43. FRL Team 0: The architecture of efficient feature distillation network

Figure 44. FRL Team 0: Illustration of our multi-window and heads SA mechanism based on [76]. n represents the number of headers
and m represents the number of windows. The left figure shows the multi-window mechanism, which divides the groups according to the
number of different windows of the input, as a way to increase the speed. The middle figure shows the multi-heads mechanism, where each
group can have n heads in it while computing self-attention. The right figure shows the calculation of SA on a head.

and can efficiently model short-distance dependencies as a
Local-term Modeler. which will be mentioned later about
the PM module.

Pixel Mixer. We propose the pixel mixer module without
parameters and computational complexity to create short-
distance dependencies in each input Token. The PM mod-
ule first divides the feature channels into five groups equally
and moves the edge feature points to the opposite side in the
order of left, right, top, and bottom for the first four groups.
By inputting an intermediate feature of H × W × C, the PM
module enables each input window in SA to obtain differ-
ent local information according to other channels by link-
ing the edge feature points with the opposite edge feature
points respectively, so that each feature point can be fully
utilized and the perceptual field of the latter module can be
increased.

Training strategy. We use DF2K (DIV2K [1],
Flickr2K [65])and LSDIR [59] for datasets. and propose
that the channel input is set to 30, the data augmentation
method with 90◦, 180◦, 270◦ random rotation and horizon-
tal flip is used for training, the batch size is set to 128, and
the input patch size of LR is 64 × 64.Trained using Adam
optimizer [48] with β1 = 0.9, β2 = 0.999. The initialized

learning rate is 5 × 10−4 and decays to 1 × 10−6 with
the cosine learning rate. The model is optimized using the
loss function of L1 for a total of 1 × 106 iterations. Model
training was performed using Pytorch [74] on two NVIDIA
V100 32G GPUs.

4.28. FRL Team 3

Network Architecture. As shown in Fig. 45, HCAN con-
tains three modules: (1) feature extraction, (2) nonlinear
mapping, and (3) HR-image reconstruction. In the first
stage, we use a 3× 3 convolution layer to extract the coarse
features from low-resolution images. Then we implement
the nonlinear mapping by cascading multiple NTBs. Next,
we use one 3 × 3 convolution layer and one nonparametric
sub-pixel operation to reconstruct high-resolution images.
Global shortcut connections are used. Our overall structure
is neat, as complex topologies can lead to a serious reduc-
tion in inference speed [107].

Normalization-free Transformer Block. NTB uses a
Transformer architecture and replaces self-attention (SA)
with hierarchical context aggregation attention (HCAA) de-
signed to capture short-range and long-range contexts at
multiple levels. To further improve effectiveness and ef-
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Figure 45. FRL Team 3: (a) is the overall pipeline of HCAN,
which consists of cascading multiple NTBs (b). NTB uses a Trans-
former architecture without any normalization. Its core compo-
nent is hierarchical context aggregation attention (HCAA), which
can capture short-range and long-range contexts at multiple levels.
Each DWconv is followed by a GELU [35].

ficiency, NTB removes Layer Normalization (LN) [3] from
Transformer architecture and does not introduce other types
of normalization. To the best of our knowledge, we are the
first to use the Transformer architecture without any nor-
malization in the super-resolution (SR) field. Normalization
can speed up and stabilize training, but Layer Normaliza-
tion (LN) increases inference time and memory usage, and
Batch Normalization (BN) [44] damages the performance
of SR [65]. We find that Sigmoid can replace the normaliza-
tion effect to some extent without causing the above losses.

Hierarchical Context Aggregation Attention. Inspired
by FocalNet [96], we replace SA with HCAA in Trans-
former architecture. The point-wise convolution (PWconv)
is placed at the head and tail of the HCAA to exchange in-
formation between channels, The body part mainly acquires
spatial contextual information through hierarchical depth-
wise convolution (DWconv) with increasing kernel sizes
in a cascading manner. The extracted features from each
level of DWconv are added together to generate features
with short-range and long-range contexts. The generated
features are channel blended by PWconv and then attention
maps are generated using Sigmoid. Finally, it is multiplied
by elements with the unprocessed feature map. Compared
to FocalNet, we remove the global aggregation and gated
aggregation. The former impairs performance [46], while
the latter impairs efficiency and leads to unstable training.

Training strategy. The proposed HCAN consists of
12 NTBs and the number of channels is set to 32. We
train our models on DIV2K [1], Flickr2K [65] and LSDIR
dataset [59]. Data augmentation methods of random rota-

tion by 90◦, 180◦, 270◦ and flipping horizontally are uti-
lized. The minibatch size is set to 128 and the patch size of
each LR input is set to 64×64. The model is trained by L1
loss [93] with Adam optimizer [47] (β1 = 0.9, β2 = 0.999)
for 1 × 106 total iterations. The learning rate is initialized
as 5× 10−4 and scheduled by cosine annealing learning.

4.29. AIIA-SR

Figure 46. Team AIIA-SR: Illustration of the token mixer in Con-
vFormer Layer.

General method description. The AIIA-SR team presents
an efficient image super-resolution network called CFSR,
as illustrated in Fig. 47. CFSR is composed of three stages:
shallow feature extraction, deep feature extraction, and im-
age reconstruction. The shallow feature extraction module
employs a 3 × 3 convolution to map the input RGB image
into a latent feature space. The deep feature extraction mod-
ule consists of two Residual ConvFormer Blocks (RCFB)
and a 3 × 3 convolution layer. As depicted in Fig. 47(c)
demonstrates that the CFL extends the MetaFormer [99] ar-
chitecture, using the ConvFormer as the token mixer. Ad-
ditionally, the team introduces a Mixed-Feed Forward Net-
work, which enhances the feed-forward network by incor-
porating more positional prior information. Lastly, the re-
construction module adjusts the channel count using a 3×3
convolution and upsamples the latent feature to the target
size via pixel-shuffle operation.

Building upon the work in [37], the AIIA-SR team in-
troduces the ConvFormer Layer, which is an innovative
attention-free transformer layer that utilizes large kernel
depth-wise convolution. As depicted in Fig. 46, the team
simplifies the traditional self-attention module by perform-
ing an element-wise product of the value and the con-
volutional feature generated by the large kernel depth-
wise convolution. Furthermore, the team employs the re-
parameterization strategy to enhance the stability of train-
ing and improve the overall performance of the model.
Specifically, given the input feature X , this team computes
the output feature Z using the following equations: A =
DConv9×9(W1X) + DConvk′×k′(W1X), V = W2X ,
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Figure 47. Team AIIA-SR: Detailed implementation and different components in the proposed CFSR.

Z = W3(A ⊙ V ). Here, DConvk×k(·) represents a depth-
wise convolution with kernel size k × k, W1, W2 and W3

are weight matrices of three linear layers, and ⊙ is the
Hadamard product. Assuming that k′ < 9, the calcula-
tion process of the convolutional feature A can be simpli-
fied as A = DConv9×9(W1X), where DConv9×9 is ob-
tained via re-parameterization [24] of trained DConv9×9

and DConvk′×k′ .
Mixed-FFN in CFL mixes a 3 × 3 depth-wise convo-

lution and a MLP into each FFN, providing the positional
information for transformer layers. It can be formulated as:

X ′′ =W ′′(GELU(DConv3×3(W
′X ′)) +X ′), (19)

where X ′′ is the output feature of Mixed-FFN, W ′ and W ′′

are weight matrices of two linear layers, and GELU(·) is
the activation function.

Training details. Based on the framework of BasicSR, this
team uses DIV2K and Flickr2K as training sets to train in
the upscaling factors of ×4. During training, this team crops
the image patches with the fixed size of 64 × 64 and sets the
batch size to 16 for training. This team employs randomly
rotating 90◦, 180◦, 270◦ and horizontal flip for data aug-
mentation and uses ADAM with β1 = 0.9 and β2 = 0.99
to optimize L1 loss. The initial learning rate is 2 × 10−4.
The CFSR is implemented by PyTorch and trained on two
Nvidia RTX A4000 GPUs.

4.30. FRL Team 2

General method description. The structure is inspired by
classical SR structures including CNNs and transformers

Figure 48. FRL Team 2: The structure SRneXt.

which are commonly used in SR. Nowadays, transformers
have been widely used in lightweight SR tasks. In Con-
vneXt [70], it is demonstrated that CNNs are not inferior to
transformers in performance in many cases. Thus, the ad-
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vantages of Transformer (like Swin transformer [64]) and
CNN are analyzed.

Block layer. Block layers (BL) are the main layer in this
structure. This layer consists of a residual block (RB) and a
dimensional separable block (DSB).

Residual block. Residual blocks are used as the classical
convolutional module in EDSR [65], where the BatchNorm
is considered harmful and is removed. In the proposed net-
work, LayerNorm is a residual block module to improve
performance.

Dimensional separable block. Poolformer [100] con-
firmed that the advantage of transformers is their backbone
structure and their self-attention can be replaced by convo-
lution. Inspired by depthwise separable convolution [38],
the dimensional separable block is proposed to divide the
information features into height (H), width (W), and chan-
nel (C) dimensions. In Mobilenets [38], the feature infor-
mation is divided point-wise (PW) and depth-wise (DW).
In the proposed method, the H and W dimensions are pro-
cessed together for intra-channel feature information and
then the C dimension is processed for inter-channel fea-
ture information. Inspired by simple baselines for image
restoration [8], the information of H and W is first multi-
plied to achieve non-linearity. After that, the output features
are finally derived. Inspired by Inception-ResNet [82], the
convolution kernel can be decomposed to balance network
performance and the number of parameters. So group con-
volution is used for feature extraction in H and W dimen-
sions.

Training strategy. Training was performed on DIV2K [1]
and Flickr2K [65] images. HR patches of size 256 × 256
were randomly cropped from the HR images and the mini-
batch size was set to 128. The model was trained with the
ADAM optimizer [48], where β1 = 0.9 and β2 = 0.9999.
The initial learning rate was set to 5 × 10−4 with cosine
learning rate decay. The L2 loss was used for training. The
model was implemented using Pytorch 1.10.1 and trained
on 2 GeForce RTX 3090 GPUs.

4.31. CUIT SRLab

General method description. Inspired by the Visual At-
tention Network [32] and VapSR [113], we propose a
lightweight Symmetrical Visual Attention Network (SVAN)
model, in which the large kernel convolution is decomposed
by depth-wise convolution operation. SVAN ensures a large
receptive field and achieves an efficient and lightweight at-
tention structure. It generates better × 4 results with very
few parameters.

As shown in Fig. 49, SVAN is divided into three parts:
shallow feature extraction module, deep feature extraction
module, and pixel-shuffle reconstruction module. The shal-
low feature map of input LR is generated by 3×3 convo-

lution. Deep feature extraction consists of seven Symmet-
ric Large Kernel Attention blocks (SLKAB), each of which
is extended from 32 channels to 64 channels by 1×1 con-
volution and GELU activation to obtain more information.
The deep features are obtained by two symmetric attention
blocks, each composed of a 5 × 5 depth-wise convolution
and a depth-wise dilation convolution with a kernel size of
5 and dilation of 3 and a 1 × 1 convolution. The convo-
lution acceptance domain with kernel 17 can be obtained
through the convolution combination, greatly reducing the
number of computational parameters. Featured generated
by the attention branch are fused with the original features
using element-wise implementation. Another 1 × 1 convo-
lution layer will reduce the number of channels to 32. Fi-
nally, pixel normalization is used to increase the stability in
training. A 3 × 3 depth-wise dilation convolution layer with
dilation of 3 follow SLKABs to further fuse the features.
After the fusion of deep and shallow features, the upsam-
pling of ×4 is realized through the reconstruction module
of convolution and pixel-shuffle layers.

Training Details. During the training, HR patches of size
256 × 256 are randomly cropped from HR images. The
mini-batch size is set to 196 and the number of feature chan-
nels is set to 64. The learning rate is set to 1× 10−4 for 500
epochs during pre-training. The LSDIR [59] dataset, the
Adam optimizer, and L1 loss function are used. After that,
DIV2K [1] and Flickr2K [83] datasets are used for model
fine-tuning. The optimizer and loss are unchanged. The ini-
tial learning rate is set to 5× 10−5 and halved at every 200
epochs. After 3000 epochs, L2 loss is used for fine-tuning.
And The initial learning rate is set to 1 × 10−4 and halved
at every 200 epochs. The total number of epochs is 10000.
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Figure 49. Team CUIT SRLab: Symmetrical Visual Attention Network (SVAN) and Symmetrical Large Kernel Attention Block (SLKAB)

MegSR

Title: Efficiency Distillation and Iterative Pruning for
Single Image Super-Resolution
Members:
Lei Yu1 (yulei02@megvii.com), Xinpeng Li1, Youwei
Li3, Qi Wu1, Ting Jiang1, Mingyan Han1, Wenjie Lin1,
Chengzhi Jiang1, Jinting Luo1, Tong Peng1, Haoqiang
Fan1 and Shuaicheng Liu2,1∗

Affiliations:
1 Megvii Technology
2 University of Electronic Science and Technology of
China (UESTC)
3 MicroBT

Zapdos

Title: A Single Residual Network with ESA Modules and
Distillation
Members:
Yucong Wang1 (1401121556@qq.com), Minjie Cai1

Affiliations:
1 College of Computer Science and Electronic Engineering,
Hunan University

DFCDN

Title: Efficient Image Super-Resolution with Deep Feature
Complement and Distillation Network
Members:
Mingxi Li1 (li mx 0318@163.com), Yuhang Zhang, Xian-
jun Fan1, Yankai Sheng1

Affiliations:
1 Attrsense

TelunXupt

Title: Multi-level Dispersion Residual Network for Effi-
cient Image Super-Resolution
Members:
Yanyu Mao1 (bolt35982@gmail.com), Nihao Zhang1, Qian
Wang1,2

Affiliations:
1 Xian University of Posts and Telecommunications, Xi’an,
China
2 National Engineering Laboratory for Cyber Event Warn-
ing and Control Technologies

NJUST E

Title: A Lightweight Multi-scale Feature Attention for
Image Super-Resolution
Members:
Mingjun Zheng(1353613718@qq.com), Long Sun, Jinshan
Pan, Jiangxin Dong, Jinhui Tang
Affiliations:
Nanjing University of Science and technology

NJUST M

Title: Gated Feature Modulation for Efficient Super-
Resolution
Members:
Zhongbao Yang(yangzhongbao40@gmail.com), Long Sun,
Jinshan Pan, Jiangxin Dong, Jinhui Tang
Affiliations:
Nanjing University of Science and technology

1952

yulei02@megvii.com
mailto:1401121556@qq.com
mailto:member1@member1.com
mailto:bolt35982@gmail.com
mailto:member1@member1.com
mailto:member1@member1.com


KaiBai Group

Title: Partial Feature Distillation Network for Efficient
Super-Resolution
Members:
Yan Wang1 (wyrmy@foxmail.com),
Erlin Pan2,
Qixuan Cai3,
Xinan Dai3

Affiliations:
1 Nankai University
2 University of Electronic Science and Technology of
China
3 Tianjin University

NoahTerminalCV TeamA

Title: NoahESRNet: All You Need is to Optimize Atten-
tion
Members:
Magauiya Zhussip1 (magauiya.zhussip1@huawei.com),
Nikolay Kalyazin1, Dmitry Vyal1, Xueyi Zou1, Youliang
Yan1

Affiliations:
1 Noah’s Ark Lab, Huawei Technologies

NoahTerminalCV TeamB

Title: MobileNoahESRNet: More Kernel Decomposition,
Less Parameters
Members:
Dmitry Vyal1 (vyal.dmitry@huawei.com), Magauiya
Zhussip1, Nikolay Kalyazin1, Xueyi Zou1, Youliang Yan1

Affiliations:
1 Noah’s Ark Lab, Huawei Technologies

SeaOuter

Title: Low Memory Residual Local Feature Network for
Efficient Super-Resolution
Members:
Heaseo Chung1,2 (heaseochung@gmail.com)
Affiliations:
1 McMaster University, Canada
2 Espresomedia, South Korea

Antins cv

Title: Solution for NTIRE 2023 Efficient SR Challenge
Members:
Jin Zhang1 (zj346862@antgroup.com), Gaocheng Yu2,
Feng Zhang3, Hongbin Wang4

Affiliations:

1 AntGroup

Young

Title: Channel-Aware Re-parameterization Network
Members:
Bohao Liao1 (liaobh@mail.ustc.edu.cn), Zhibo Du1, Yu-
liang Wu1, Gege Shi1, Long Peng1, Yang Wang1, Yang
Cao1, Zhengjun Zha1

Affiliations:
1 University of Science and Technology of China

NTU607 ESR

Title: Finetuning and pruning for efficient super-resolution
Members:
Zhi-Kai Huang2 (brent5481@gmail.com), Yi-Chung
Chen3, Yuan-Chun Chiang2, Hao-Hsiang Yang2,
Wei-Ting Chen1, Hua-En Chang2, I-Hsiang Chen2, Chia-
Hsuan Hsieh4, Sy-Yen Kuo2

Affiliations:
1 Graduate Institute of Electronics Engineering, National
Taiwan University, Taiwan
2 Department of Electrical Engineering, National Taiwan
University, Taiwan
3 Graduate Institute of Communication Engineering,
National Taiwan University, Taiwan
4 ServiceNow, USA

CMVG

Title: Knowledge Distillation and Re-parameterization for
Efficient Image Super-Resolution
Members:
Xin Liu1 (liuxin9976@163.com), Qian Wang1, Jiahao
Pan2

Affiliations:
1 China Mobile Research Institute
2 Chongqing University of Technology

Touch Fish

Title: Lightening Attention: Rethinking the Attention
Mechanism in Efficient Image Enhancement
Members:
Hongyuan Yu1 (yuhongyuan@xiaomi.com), Weichen Yu2,
Lin Ge1, Jiahua Dong3, Yajun Zou1, Zhuoyuan Wu1,
Binnan Han1, Xiaolin Zhang1, Heng Zhang1, Xuanwu
Yin1, Kunlong Zuo1

Affiliations:
1 Multimedia Department, Xiaomi Inc.
2 Institute of Automation, Chinese Academy of Sciences
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3 Shenyang Institute of Automation, Chinese Academy of
Sciences

CUC SR

Title: Reparameterized Residual Feature Network For
Lightweight Image Super-Resolution
Members:
Weijian Deng1 (348957269@qq.com), Hongjie Yuan1,
Zengtong Lu2

Affiliations:
1 School of Information and Communication Engineering,
Communication University of China.
2 Smart Classroom Division, Ruijie Networks Co., Ltd.

NJUST R

Title: Spatially-Adaptive Feature Modulation for Efficient
Image Super-Resolution
Members:
Long Sun(cs.longsun@gmail.com), Zhongbao Yang,
Jinshan Pan, Jiangxin Dong, Jinhui Tang
Affiliations:
Nanjing University of Science and technology

Sissie Lab

Title: Diversified Local Feature Arch-Network for Efficient
Super-Resolution
Members:
Mingyu Ouyang1 (yyyang404@whu.edu.cn), Wenzhuo
Ma1, Nian Liu1, Hanyou Zheng1, Yuantong Zhang1, Junxi
Zhang1, Zhenzhong Chen1

Affiliations:
1 School of Remote Sensing and Information Engineering,
Wuhan University
2 School of Computer Science, Wuhan University

GarasSjtu

Title: Mixer-based Local Residual Network for
Lightweight Image Super-resolution
Members:
Garas Gendy1 (garasgaras@yahoo.com),
Nabil Sabor2 ,
Jingchao Hou1 ,
Guanghui He1

Affiliations:
1 Micro-Nano Electronics Department, Shanghai Jiao Tong
University, Shanghai 200240, China.
2 Electrical Engineering Department, Faculty of Engineer-
ing, Assiut University, Assiut 71516, Egypt

USTC ESR

Title: Enhanced Fast Residual Network for Efficient
Image Super Resolution
Members:
Yurui Zhu 1 (zyr@mail.ustc.edu.cn), Xi Wang1, Xueyang
Fu1, Zheng-Jun Zha 1

Affiliations:
1 University of Science and Technology of China

SEU CNII

Title: Expand Big, Then Shrink: An Automatic Way to
Generating Efficient Super Resolution Model
Members:
Daheng Yin1 (yindaheng98@seu.edu.cn), Mengyang Liu1,
Baijun Chen1

Affiliations:
1 Southeast University

AVC2 CMHI SR

Title: Residual Interactive Partial Feature Distillation
Network for Lightweight Image Super-resolution
Members:
Ao Li1 (aoli@std.uestc.edu.cn), Lei Luo2, Kangjun Jin3,
Ce Zhu1

Affiliations:
1 University of Electronic Science and Technology of
China, Chengdu, China.
2 Chongqing University of Posts and Telecommunications,
Chongqing, China.
3 China Mobile (Hangzhou) Information Technology Co.,
Ltd, Hangzhou, China.

Set5 Baby

Title: Large Kernel Distillation Network for Efficient
Single Image Super-Resolution
Members:
Xiaoming Zhang1 (xiaoming.zhang@my.swjtu.edu.cn),
Chengxing Xie1, Linze Li1, Haiteng Meng1, Tianlin
Zhang2, Tianrui Li1, Xiaole Zhao1

Affiliations:
1 Southwest Jiaotong University, China
2 National Space Science Center, Chinese Academy of
Science, China

LVGroup HFUT

Title: Efficient Deep Residual Network for Efficient
Super-Resolution
Members:
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Zhao Zhang1 (cszzhang@gmail.com),
Baiang Li1,
Huan Zheng1

Suiyi Zhao1

Yangcheng Gao1

Jiahuan Ren1

Affiliations:
1 Hefei University of Technology, Hefei, China

FRL Team 4

Title: Efficient feature distillation network for Image
Super-Resolution
Members:
Kang Hu1 (hukangyy@gmail.com)
Jingpeng Shi2,
Affiliations:
1 Anhui University,China
2 Fried Rice Lab

Dase-IDEALab

Title: Local-Global Visual Attention Network
Members:
Zhijian Wu1 (zjwu 97@stu.ecnu.edu.cn),
Dingjiang Huang1

Affiliations:
1 School of Data Science and Engineering, East China
Normal University

FRL Team 0

Title: LGTT: Local-Global Term Transformer for SR
Members:
Jinchen Zhu1 (jinchen.Z@outlook.com), Jinpeng Shi1, Hui
Li2, Qianru Xv2

Affiliations:
1 School of Electronic Information Engineering,Anhui
University,China
2 Fried Rice Lab

FRL Team 3

Title: Hierarchical Context Aggregation Network
Members:
Tianle Liu 1,2 (tianle.l@outlook.com),
Jinpeng Shi 1,2 ,
Shizhuang Weng 1

Affiliations:
1 School of Electronic Information Engineering, Anhui
University
2 Fried Rice Lab

AIIA-SR

Title: CFSR: A Simple Hierarchical Baseline for
Lightweight Image Super-Resolution
Members:
Gang Wu1 (gwu@hit.edu.cn), Junpeng Jiang1, Xianming
Liu1, Junjun Jiang1

Affiliations:
1 Harbin Institute of Technology

FRL Team 2

Title: SRneXt:Improvement on ConvneXt
Members:
Mingjian Zhang1 (zhang9317112@gmail.com), Shizhuang
Weng1, Jinpeng Shi2

Affiliations:
1 School of Electronic Information Engineering, Anhui
Universit
2 Fried Rice Lab

CUIT SRLab

Title: Symmetrical Visual Attention Network for Efficient
Image Super-Resolution
Members:
Jing Hu1 (jing hu09@163.com), Chengxu Wu1, Qinrui
Fan1, Chengming Feng1, Ziwei Luo2, Shu Hu3, Siwei
Lyu4, Xi Wu1, Xin Wang4

Affiliations:
1 Department of Computer Science, Chengdu University of
Information Technology, Chengdu, China
2 Uppsala University, Sweden
3 Heinz College of Information Systems and Public Policy,
Carnegie Mellon University, USA
4 Department of Computer Science and Engineering at the
University at Buffalo, State University of New York, USA

R.I.P ShopeeVideo

Title: R.I.P ShopeeVideo
Members:
Chengpeng Chen1 (chencp@live.com),

USTC ESR

Title: Enhanced Fast Residual Network for Efficient
Image Super Resolution
Members:
Yurui Zhu 1 (zyr@mail.ustc.edu.cn), Xi Wang1, Xueyang
Fu1, Zheng-Jun Zha 1

Affiliations:
1 University of Science and Technology of China
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FRL Team 1

Title: FRL Team 1
Members:
Yulong Liu1 (yl.liu88@outlook.com), Jinpeng Shi1

Affiliations:
1 Anhui University, Hefei, China

Loading2

Title: Loading2
Members:
Min Gao1 (1157632500@qq.com), Jingwen Zhang1,
Ruonan Wang1

Affiliations:
1 Xidian University

Alpha

Title: Alpha
Members:
Jianbin Zheng1 (2327396173@qq.com)
Affiliations:
1 South China University of Technology, Guangzhou,
Guangdong, China
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