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Abstract

This paper reviews the NTIRE 2023 challenge on image
denoising (σ = 50) with a focus on the proposed solutions
and results. The aim is to obtain a network design capable
to produce high-quality results with the best performance
measured by PSNR for image denoising. Independent ad-
ditive white Gaussian noise (AWGN) is assumed and the
noise level is 50. The challenge had 225 registered partic-
ipants, and 16 teams made valid submissions. They gauge
the state-of-the-art for image denoising.

1. Introduction
Image denoising is a classical image restoration problem

that tries to recover a clean image from a noisy input im-
age [10,16,52–54]. During the capturing and processing of
images, there could be various noise types including Gaus-
sian noise, Poisson noise, JPEG compression noise, and so
on, making image denoising a very challenging task.

Currently, state-of-the-art image denoising methods are
∗ Y. Li (yawei.li@vision.ee.ethz.ch, Computer Vision Lab, ETH

Zurich), Y. Zhang, R. Timofte, and L. Van Gool were the challenge or-
ganizers, while the other authors participated in the challenge. Each team
described their own method in the report. Appendix A contains the au-
thors’ teams and affiliations.
NTIRE 2023 webpage: https://cvlai.net/ntire/2023/.
Code: https://github.com/ofsoundof/NTIRE2023_Dn50.

based on deep neural networks [26, 29, 50]. Thus, the aim
of this challenge is to encourage the development of deep
neural networks for image denoising. In this case, the tradi-
tional additive white Gaussian noise model can be used as a
standard setting to fairly evaluate the performance of image
denoising networks.

In collaboration with the 2023 New Trends in Image
Restoration and Enhancement (NTIRE 2023) workshop,
we organize the challenge on image denoising. The chal-
lenge’s goal is to recover a clean image from a noisy input
image that is corrupted by additive white Gaussian noise
with noise level σ = 50. This challenge aims to dis-
cover advanced and innovative solutions for image denois-
ing, benchmark their denoising performance, and identify
general trends for the design of image denoising networks.

This challenge relates to previous challenges [1, 2, 20]
and is one of the NTIRE 2023 Workshop series of chal-
lenges on: night photography rendering [40], HR depth
from images of specular and transparent surfaces [49],
image denoising (this challenge), video colorization [21],
shadow removal [44], quality assessment of video enhance-
ment [33], stereo super-resolution [45], light field image
super-resolution [47], image super-resolution (×4) [57],
360° omnidirectional image and video super-resolution [6],
lens-to-lens bokeh effect transformation [12], real-time 4K
super-resolution [13], HR nonhomogenous dehazing [4], ef-
ficient super-resolution [28].

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. NTIRE 2023 Image Denoising Challenge
The goals of this challenge include: (1) promoting re-

search in the area of image denoising, (2) facilitating com-
parisons between various methods, and (3) providing a plat-
form for academic and industrial participants to engage, dis-
cuss, and potentially establish collaborations. This section
delves into the specifics of the challenge.

2.1. Dataset

The DIV2K [3, 42] dataset and LSDIR [27] dataset are
utilized for this challenge. DIV2K dataset consists of 1,000
diverse 2K resolution RGB images, which are split into a
training set of 800 images, a validation set of 100 images,
and a test set of 100 images. LSDIR dataset contains 86,991
high-resolution high-quality images, which are split into a
training set of 84,991 images, a validation set of 1,000 im-
ages, and a test set of 1,000 images. The training images
from DIV2K and LSDIR are provided to the participants
of the challenge. During the validation phase, the 100 im-
ages from DIV2K validation set were made available to par-
ticipants. During test phase, 100 images from DIV2K test
set and another 100 images from LSDIR test set are used.
Throughout the entire challenge, the testing noise-free im-
ages remained hidden from participants.

2.2. Tracks and Competition

The aim is to obtain a network design capable to produce
high-quality results with the best performance measured by
PSNR for image denoising.

Challenge phases (1) Development and validation phase:
Participants were given access to 800 clean training images
and 100 clean/noisy validation image pairs from the DIV2K
dataset. Additional 84,991 clean images from the LSDIR
dataset are also provided to the participants. During train-
ing, the noisy images are generated by adding Gaussian
noise with noise level σ = 50. Participants could upload
their validation results to the evaluation server to calculate
the PSNR of the images denoised by their models and re-
ceive immediate feedback. (2) Testing phase: In the final
test phase, participants were granted access to 100 noisy
testing images from DIV2K and 100 noisy testing images
from LSDIR, while the clean ground-truth images remained
hidden. Participants submitted their denoised results to the
Codalab evaluation server and emailed the code and fact-
sheet to the organizers. The organizers verified and ran the
provided code to obtain the final results, which were then
shared with participants at the end of the challenge.

Evaluation protocol Since the aim of this challenge is to
foster the development of accurate image denoising net-
works, PSNR and SSIM on the 200 testing images are
used as the quantitative evaluation metrics. A code exam-
ple for calculating these metrics is available at https://

Team PSNR [dB] SSIM Ranking

Apply AI 29.96 0.87 1
SRC-B 29.92 0.87 2
MiAlgo 29.87 0.86 3
HIT-IIL 29.86 0.87 4
MegNR 29.80 0.86 5
TeamYorku 29.79 0.86 6
IMAG Denoising 29.79 0.86 7
cvmix 29.66 0.86 8
8080 29.40 0.85 9
LVGroup HFUT 29.26 0.85 10
IMCgo 29.20 0.85 11
see you tomorrow 28.93 0.84 12
SRIB AINR 23 28.73 0.85 13
TUK-IKLAB 28.35 0.82 14
MedI 28.13 0.82 15
yiriyou 27.94 0.82 16

Hunzy 18.96 0.46

Table 1. NTIRE2023 image denoising (σ = 50) results. The
PSNR and SSIM are calculated for on the test dataset of this chal-
lenge that contains 100 test images from DIV2K [3] dataset and
100 test images from LSDIR [27] dataset. The difference in SSIM
metric between different images is very small. So the final ranking
is based on PSNR.

github.com/ofsoundof/NTIRE2023_Dn50. The
code of the submitted solutions and the pre-trained weights
are also available in this repository.

3. Challenge Results
The final results of the image denoising challenge are

shown in Tab. 1. In this table, the performance of 16 teams
is ranked. The evaluation metric of one team is far below
the others. Thus, this team is not ranked. The evaluation is
based on two performance metrics including PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity In-
dex). Since the validation set is already released to the par-
ticipants, it is only used for reference in the validation phase
of the challenge. The evaluation metrics are computed on
the test set which contains 100 test images from DIV2K
dataset [3] and 100 test images from LSDIR dataset [27].
This practice helps to keep the fairness of this challenge and
discourages overfitting on the validation set. Since the dif-
ference between the SSIM of different teams is quite small,
PSNR is used as the major ranking metric.

The top-ranked teams have higher PSNR and SSIM val-
ues, indicating better performance, while the lower-ranked
teams have lower values, reflecting poorer performance.
Comprehensively, the following is the breakdown analysis
of the results:

• Among all the 16 teams, Team Apply AI is the top-

1906

https://github.com/ofsoundof/NTIRE2023_Dn50
https://github.com/ofsoundof/NTIRE2023_Dn50


performing team with the highest PSNR of 29.96 dB
and an SSIM of 0.87.

• Team SRC-B closely follows as the second-ranked
team, with a PSNR of 29.92 dB and an SSIM of 0.87.

• Team MiAlgo comes in third place, with a PSNR of
29.87 dB and an SSIM of 0.86.

• Team HIT-IIL is ranked fourth, with a PSNR of 29.86
dB and an SSIM of 0.87.

• Team MegNR holds the fifth position, with a PSNR of
29.80 dB and an SSIM of 0.86.

• Team TeamYorku ranks sixth, with a PSNR of 29.79
dB and an SSIM of 0.86.

• Team IMAG Denoising is in the seventh spot, with a
PSNR of 29.79 dB and an SSIM of 0.86.

• Team cvmix ranks eighth, with a PSNR of 29.66 dB
and an SSIM of 0.86.

• Team 8080 comes in ninth place, with a PSNR of 29.40
dB and an SSIM of 0.85.

• Team LVGroup HFUT is ranked tenth, with a PSNR of
29.26 dB and an SSIM of 0.85.

• Team IMCgo takes the eleventh position, with a PSNR
of 29.20 dB and an SSIM of 0.85.

• Team see you tomorrow ranks twelfth, with a PSNR of
28.93 dB and an SSIM of 0.84.

• Team SRIB AINR 23 is in the thirteenth spot, with a
PSNR of 28.73 dB and an SSIM of 0.85.

• Team TUK-IKLAB ranks fourteenth, with a PSNR of
28.35 dB and an SSIM of 0.82.

• Team MedI takes the fifteenth position, with a PSNR
of 28.13 dB and an SSIM of 0.82.

• Team yiriyou ranks sixteenth, with a PSNR of 27.94
dB and an SSIM of 0.82.

3.1. Fairness

To guarantee fairness in the image denoising compe-
tition, multiple regulations were put in place, primarily
focusing on the dataset utilized for training the network.
Firstly, incorporating supplementary external datasets, like
Flickr2K, was deemed acceptable. Secondly, the use of
the additional DIV2K validation set was forbidden since it
served to evaluate the comprehensive performance and gen-
eralizability of the proposed network. Thirdly, employing
DIV2K test noisy images for training in any manner (super-
vised, unsupervised, image retrieval) was strictly forbidden.

Finally, the implementation of sophisticated data augmenta-
tion techniques during the training process was considered
an equitable approach.

3.2. Main ideas and architectures

To improve the performance of networks for image de-
noising, the participants investigated different techniques.
In the following, the main ideas and architectures are sum-
marized.

1. Due to the good performance of transformers for im-
age restoration, transformer architectures are adopted
by most of the teams. Team Apply AI proposes an
image processing transformer architecture, i.e. IPTV2
for image restoration. The solution of Team Samsung
Research China - Beijing (SRC-B), TeamYorku, Team
cvmix, and Team LVGroup HFUT based their solu-
tions on Restormer.

2. UNet architecture is adopted by most of the teams. For
image denoising, UNet achieves a good balance be-
tween accuracy and efficiency. So it is used by most of
the teams.

3. Progressive training helps to improve the performance
of the network. It has been well known that increas-
ing the patch size during training could lead to bet-
ter image restoration results. The core of progressive
training is to increase the patch size progressively dur-
ing the training of the network, which could improve
training efficiency compared with training with a large
patch all the time.

4. Large-scale dataset helps to improve the accuracy of
image denoising networks. In particular, LSDIR [27]
is used as an additional dataset in this challenge. The
additional dataset helps to boost the performance of the
top-ranking teams.

5. Self-ensemble [43] or model ensembling are used to
squire extra accuracy at test time.

4. Challenge Methods and Teams
4.1. Apply AI

Inspired by [48, 50], we proposed an image process-
ing transformer architecture for image restoration, namely
IPTV2. As shown in the Fig. 1, IPTV2 is a U-shape
encoder-decoder network as [36] with 3 times downsam-
pling and upsampling. The basic module used in the IPTV2
is the spatial-channel transformer block, which helps fully
capture both spatial interactions and channel interactions of
feature maps. For spatial transformer, we split the feature
map into small patches and get the self-attention map in the
fixed window size for efficient computing as [34]. For the
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channel transformer, we calculate the feature similarity of
different channels with cosine distance. The spatial trans-
former and channel transformer are serially connected in
the same stage, and feature maps of the post-downsampling
layers are concatenated with those of the post-upsampling
layers. With the input of 128 × 128 × 3, the FLOPs and
parameters number of IPTV2 is 41.16 GB and 26.03 M.

During the training phase, we use the flipping, rotat-
ing, RGB channel shuffling and mix-up strategies to en-
hance the original input image, and progressively train the
model with resolutions of [128, 192, 256, 320, 384]. The
model is jointly trained with L1, MSE, and SOBEL loss.
And we only use the DIV2K and LSDIR [27] datasets in
the training stage. Following Restormer [50], the optimizer
and the scheduler of the learning rate in the training stage
are AdamW and ‘CosineAnnealingRestartCyclicLR’. Dur-
ing the inference phase, the original high-resolution image
are split into patches of 384×384. For higher performance,
model ensemble is also used in the inference phase.

4.2. Samsung Research China - Beijing (SRC-B)

Architecture. Transformer-based architecture has
achieved great success in image restoration and related
tasks, such as image denoising, image deblurring, and
super-resolution. Our proposed denoising method is based
on Restormer [50] which is an efficient Transformer model
by making several key designs in the building blocks (multi-
head attention and feed-forward network) such that it can
capture long-range pixel interactions.

Progressive Learning. As mentioned in Restormer [50],
training a transformer model on small cropped patches may
not encode the global image statistics, thereby providing
sub-optimal performance on full-resolution images at test
time. To this end, we also perform progressive learning
where the network is trained on different image patch sizes
gradually enlarged from 256 to 320 and 448. As the patch
size increases, the performance can gradually improve.

Feature Ensemble. As mentioned in Swinfir [51], Fea-
ture Ensemble is a novel ensemble strategy without length-
ening the training and testing periods. We select multiple
models that performed well on the validation dataset and
combine them using the weighted average method. Feature
Ensemble strategy can steadily improve the performance of
the model.

Self-ensemble. In order to maximize the potential per-
formance of our model, we adopt the self-ensemble strategy
similarly to [31, 43]. In addition, we not only generate the
outputs of flips and rotation but also generate the outputs
of different patch sizes. We average the outputs together to
make the final result. Self-ensemble can significantly im-
prove performance.

4.3. MiAlgo

Recently, the development of deep learning-based im-
age enhancement techniques has been advancing rapidly.
Many state-of-the-art methods based on CNN and Trans-
former have achieved great success in tasks such as super-
resolution reconstruction, image denoising, and image de-
blurring. In order to further explore the potential of deep
learning-based methods in image denoising tasks, we pro-
pose a denoising network with 4 concatenations (D4C). As
shown in Fig. 2, our pipeline can be divided into two stages.
We employed the idea of ensemble learning to design our
pipeline. In the first stage, we have selected four network
architectures [7,8,29,50] that have achieved outstanding re-
sults in the field of image enhancement as the backbone to
process the noisy images separately, and then fusion the re-
sults. In the second stage, we used another highly effective
structure [46] as the refine module to optimize the previ-
ous results and further improve the image quality, including
removing residual noise and enhancing image clarity. The
design of the entire pipeline aims to maximize image qual-
ity although it increases a lot of computational complexity.

During the training phase, we first train the four basic
networks of the first stage, each of which will be trained
with sufficient data and fully trained to a converged state.
After that, we fix the parameters of these networks and then
begin training the refined network of the second stage. The
training data used in these two stages are completely con-
sistent.

4.4. HIT-IIL

Recently, some research in image generation has shown
that the number of model parameters plays a critical role
in model performance. Thus, instead of designing a new
architecture, we directly scale up the existing network as
our denoising model. We adopt NAFNet [7] as our basic
network. And we find the results are better improved by in-
creasing the number of channels than depth. Finally, limited
by GPU resources, we only double the channel number of
NAFNet. Please see NAFNet [7] for the method pipeline.

We use the provided DIV2K [3] and LSDIR [27] datasets
as training images. The model is trained with PSNR loss.
We utilize AdamW optimizer (β1 = 0.9, β2 = 0.9) for
125K iterations on 8 NVIDIA A100 GPUs. The learning
rate is initially 3× 10−4 and gradually reduces to 1× 10−7

with the cosine annealing. The training batch size is set to
64 and the patch size is 256×256.

In the inference phase, we use a self-ensemble strategy
and selectively adopt the TLC method [11] based on the size
of input images.

4.5. MegNR

For the Gaussian denoising task with a sigma of 50, we
define it as an image restoration task that urgently requires
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Figure 1. Apply AI team. The architecture overview of the proposed Image Processing Transformer V2.

Figure 2. MiAlgo team. The architecture overview of the proposed D4C.

a model with a long receptive field. Inspired by the ideas
of Uformer [48] and HAT [8], we combined the strengths
of both networks to enable the network to see more pixels
and have the ability to perform frequency division noise re-
duction. As shown in Fig. 3, we construct two modules in-
cluding Hybrid Attention Local-Enhanced Block(HALEB)
and Overlapping Cross-Attention Block(OCAB). The two
modules replace the LeWin Blocks [48] and are used to cap-

ture more long-range dependencies information and useful
local context. Specifically, to further refine the results, we
incorporated a finetuned module consisting of 4 HALEB
blocks. Moreover, we utilized the method of model ensem-
bling(ME). Specifically, KBNET [56], restormer [50] and
Mean-Invariant Denoising Diffusion Models(MIDPM) [18,
41] are integrated to fully utilize the performance of differ-
ent models.

1909



q

kv

Overlapping window partition

k

v

attn

Window partition

Overlapping Cross-Attention(OCA)

LayerNorm

OCA

⊕

LayerNorm

MLP

⊕

Overlapping Cross-
Attention Block(OCAB)

LayerNorm

W-MSACAB

⊕

LayerNorm

LeFF

⊕

Hybrid Attention Local-Enhanced 
Block(HALEB)

OCAB x1
HALEB x4

HALEB x2

OCAB x1

Downsampling

Downsampling

HALEB x2

OCAB x1

HALEB x4
OCAB x1

HALEB x2
OCAB x1

Upsampling

Upsampling

Output Projection

Skip connection

Skip connection

........ ........

HAUformer 

Input Projection

⊕
Sigmoid

Channel Attention Block(CAB)

Global 
pooling Conv Activation

Function

⊕Element-wise 
product ⊕Element-

wise sum

HALEB x4
OCAB x1

3����

�����

2���/2��/2

4���/4��/4

16���/16��/16 16���/16��/16

4���/4��/4

2���/2��/2

�����

3����

refine

50db Input

HAUFormer

KBNet
Restormer

voting ensemble
Final 

prediciton

Diffusion

Model Ensemble

Figure 3. MegNR team. The architecture overview of the proposed HAUformer.

During the training phase, we train the model with MSE
loss. The learning rate starts from 2×10−4 and is gradually
reduced to 1×10−6 with the cosine annealing scheme. The
entire training was conducted on the LSDIR dataset, using
random rotation, cropping, and flipping operations. We ran-
domly crop the training images into 128×128 sized patches
with the 8-sized batches. Convergence was achieved af-
ter approximately 300,000 iterations. In the final inference
stage, test-time augmentation [38] is used to get the final
result.

4.6. TeamYorku

Our work is based on the Transformer-based architec-
ture Restormer that is introduced in [50]. It is an efficient
Transformer model that can handle high-resolution images
for restoration tasks.

In Fig. 4 we present the overall pipeline of our Restormer
architecture. Given a noisy image I ∈RH×W×3, Restormer
first applies a convolution to obtain low-level feature em-
beddings F0 ∈ RH×W×C ; where H ×W denotes the spa-
tial dimension and C is the number of channels. Next,
these shallow features F0 pass through a 4-level symmet-
ric encoder-decoder and are transformed into deep features
Fd ∈ RH×W×C . Starting from the high-resolution input,
the encoder hierarchically reduces spatial size, while ex-
panding channel capacity. For feature downsampling and

upsampling, we apply pixel-unshuffle and pixel-shuffle op-
erations, respectively. To assist the recovery process, the
encoder features are concatenated with the decoder fea-
tures via skip connections. Finally, a convolution layer is
applied to the refined features to generate residual image
R ∈ RH×W×3 to which degraded image is added to obtain
the restored image: Î = I + R.

In the proposed Transformer block, the core components
are: (a) multi-Dconv head transposed attention (MDTA)
and (b) gated-Dconv feed-forward network (GDFN).

The first one aims at reducing self-attention (SA) com-
putational overhead. To alleviate this issue, we propose
MDTA, shown in Fig. 4(a), that has linear complexity. The
key ingredient is to apply SA across channels rather than
the spatial dimension. Also as part of MDTA, we introduce
depth-wise convolutions to emphasize on the local context
before computing feature covariance to produce the global
attention map.

The second component consists of two fully con-
nected layers with a non-linearity in-between. As shown
in Fig. 4(b), we reformulate the first linear transformation
layer of the regular FN [14] with a gating mechanism to
improve the information flow through the network. This
gating layer is designed as the element-wise product of two
linear projection layers, one of which is activated with the
GELU non-linearity. The gating mechanism in GDFN con-
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Figure 4. TeamYorku: Overall framework of Restormer [50].

trols which complementary features should flow forward
and allows subsequent layers in the network to specifically
focus on more refined image attributes, thus leading to high-
quality outputs.

For training the image denoising model, we keep the
sigma constant at 50 while adding the Additive White Gaus-
sian Noise to the image. The model is trained on the pro-
vided 800 training images of the DIV2K dataset and 3000
images of the LSDIR dataset with AdamW optimizer and
L1 loss for 300K iterations with the initial learning rate
3 × 10−4 gradually reduced to 1 × 10−6 with the cosine
annealing. For progressive learning, we start training with
patch size 128×128 and batch size 64. The patch size
and batch size pairs are updated to [(1282,48), (1602,32),
(1922,16), (2242,16)] at iterations [100K, 170K, 220K,
260K]. For data augmentation, we use horizontal and verti-
cal flips.

4.7. IMAG Denoising

As shown in Fig. 5, our model consists of a stacking
of Channle-aware Gated Feed-forward Blocks (CGFBs),
while each CGFB contains two LayerNorm layers, a sim-
plified channel attention module, and a frequency-based
feed-forward network. Specifically, following [23], we em-
ploy the patch unfolding, Fast Fourier Transform (FFT) and
folding operation to the feature, and introduce a learnable
quantization matrix in the frequency-based feed-forward
network, which determines which frequency information
should be preserved.

We use DIV2K and LSDIR training dataset to train the
model with Charbonnier and FFT loss for the first 200,000
iterations with the initial learning rate 1 × 10−3 gradually
reduced to 1× 10−6 for the rest 200,000 iterations with the

cosine annealing scheme. After that, we finetune our model
with L2 loss for 300,000 iterations with the initial learning
rate 3×10−4 gradually reduced to 1×10−7 with the cosine
annealing scheme.

4.8. cvmix

For this denoising task, we found that the noise level is
fixed at 50. Then we decide to use the deep learning method
to learn how to recover clean images from noisy images. We
compare the existing methods. For the common, they are
divided into two kinds of methods: CNN and Transformer.
We compared the advantage and disadvantages of the meth-
ods above.
We decided to use NAFNet [7] as our baseline to do the task
of denoising. NAFNet is based on the network of Restormer
and turning the Transformer block to NAFNet block has
the state-of-the-art performance in many image restoration
tasks. The block assimilates CNN’s feature, which is to use
convolution to get global information. At the same time, the
NAFNet block also uses the Channel Attention mechanism.
Channel Attention is kind attention used to know which fea-
ture map channel is important to focus on.
Based on NAFNet, we divided the denoising task into 2
stages. The first stage is the main phase to recover images to
clean one, then the images will be sent to the second stage.
The second stage is focused to recover the detail. We use
the default settings in NAFNet with 64 as the first-stage set-
tings. Then we add residual in the bottleneck of the U-net
framework to enhance the recovery detail ability. We refer-
ence the NAFNet in our project.

1911



Figure 5. Team IMAG Denoising: Network architectures. Our model consists of a stacking of Channle-aware Gated Feed-forward Blocks
(CGFBs), while each CGFB contains a simplified channel attention and a frequency-based feed-forward network.

4.9. LVGroup HFUT

To recover the clean images from the noisy images to,
we employ a simple UNet architecture with self-attention
(CATransformer), which can capture long-range pixel in-
teractions by a multi-head self-attention layer and a multi-
scale hierarchical module. Specifically, inspired by the
Restormer [50], we add a skip connection between the
multi-head self-attention and feed-forward network, and the
skip connection is implemented by efficient channel atten-
tion. The framework of our CATransformer is shown in
Fig. 6. The proposed has two following advantages: 1) the
multi-scale hierarchical module can learn sufficient spatial
structure information; 2) the multi-head self-attention and
channel attention can exchange channel information to ob-
tain sufficient global information. Experiments show that
our model can implement the noisy image restoration task
well and remain applicable to large images.

The proposed solution is implemented based on PyTorch
version 1.10 and Nvidia RTX 3090 with 24G memory. Dur-
ing training, we perform a series of data augment operations
sequentially as follows: 1)random crop to 256x256; 2)ver-
tical flip with probability 0.5; 3)horizontal flip with proba-
bility 0.5. We train the model for 1000 epochs on provided
training dataset with an initial learning rate 1×10−4. Adam
optimizer and multi-step learning rate scheduler are used.
The learning rate is reduced by half every 500 epochs. L1
loss between the denoised image and the ground-truth im-
ages is used as the loss function.

4.10. IMCgo

The proposed method by team IMCgo comes from
DDT [32]. The overall architecture is shown in Fig. 7. We
use a 4-stage Unet-like encoder-decoder architecture. In-
spired by [50], we introduce a refinement stage after the
decoder, which aims to enhance feature representation for
more details of images, and each stage consists of multi-
ple Dual-branch Deformable Transformer Blocks (DDTB).
Dual-Branch Deformable Attention (DDA), as the core
module in DDTB, uses a dual-branch structure to do the lo-
cal and global modeling in parallel. Specifically, in the local
branch, we divide the feature into non-overlapping patches
with pre-defined patch sizes and apply the spatial attention
mechanism inside the patches. In the global brunch, we use
a pre-defined number of patches to do the patch partition-
ing and perform calculations among the corresponding po-
sitions of each patch. To focus on more important regions,
the deformable attention mechanism (Fig. 8) is applied in
both branches for efficient spatial operation, which reduces
the number of keys and values to reduce redundant calcula-
tions.

We set the number of DDTBs from the 1st stage to Bot-
tleneck as (4, 6, 6, 8) with the number of attention heads
(1, 2, 4, 8) and 4 extra blocks for the Refinement stage. We
use AdamW and L1 loss with 300K iterations for optimiza-
tion. The learning rate is initialized as 3×10−4 and reduced
to 1 × 10−6 with the cosine annealing scheduler. Progres-
sive learning strategy [50] from 128 × 128 to 256 × 256 is
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Figure 6. Team LVGroup HFUT: The framework of CATransformer.

Figure 7. Team IMCgo: The overall architecture of Dual-branch Deformable Transformer (DDT).

also used, and rotation and flips are used for data augmen-
tations.

4.11. SRIB AINR 23

Deep learning-based solutions for image enhancement
have been popular for quite some time now. However,
not much attention has been given to efficient denoising
for compute-limited and power-sensitive devices, such as
smartphones. To this end, we propose a technique to opti-
mize existing image enhancement networks that take RGB

frames as input. Our solution builds on multiscale Del-
Net [17] network as the backbone network which uses chan-
nel and spatial attention blocks and Enhanced Attention
Module (EAM) [5]. We optimize this network by introduc-
ing a novel, hand-crafted feature re-arrangement block de-
signed for RGB input frames. As shown in Fig. 9, given an
RGB image of dimension h x w x 3, we convert this to fea-
ture representation using a re-arrangement block like Pix-
elShuffle and pass it through Del-Net. We recover a 3 chan-
nel RGB frame by inverting the re-arrangement performed
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Figure 8. Team IMCgo: The structure of deformable attention (DA) in DDT.

Figure 9. Team SRIB AINR 23: The architecture overview of the proposed Updated DelNet for Image Denoising.

earlier from the output of Del-Net. The proposed network is
trained on DIV2K dataset over random patches of size 256
and batch size 8 for over 2000 epochs. In addition to L1
and SSIM losses for training, we use Total Variational Loss
to maintain and retain image quality. Total Variational Loss
helps to guide the reconstruction of RGB frames from Del-
Net output. Inference is performed over patches of size 256
with mirror padding. When compared against the baseline
Del-Net, we observe that the inference time is reduced by a
factor of 8.

4.12. IKLAB-TUK

Team IKLAB-TUK proposes Dense Residual Swin
Transformers (DRSTNet) for Image Denoising. The pro-
posed method is composed of four modules including
Hierarchical Feature Extraction, Dense Residual Feature
Enhancement, Fusion, and Residual Block, as shown in
Fig. 10. Existing studies have revealed that using the hi-
erarchical feature extraction module allows the network to
extract meaningful representations from images at different

scales in a divide-and-conquer manner [9,35]. Furthermore,
it helps the network deal with complex and severe degrada-
tion in an efficient manner. The term hierarchical is used
for this module as it extracts the representation from low-
resolution (LR) images with three-step architecture that ap-
plies convolution operation with varying strides and kernels
using three different scales. The implementation of hierar-
chical feature extraction modules is detailed in [35]. The
first step comprises of padding, stride, number of channels,
and kernel size, which are set to be 3, 1, 60, and 7, respec-
tively. For the second step in this hierarchy, we follow the
same convention for feature extraction but with the values,
2, 2, 60, and 5, followed by the third step that takes the
values 1, 2, 60, and 3, respectively.

Existing works for image restoration and super-
resolution consider convolutional neural networks as fea-
ture enhancers [25, 35, 55]. Recently, some of the studies
considered Swin transformer block to enhance the features
as well as model long-range dependencies [24,30,52]. Swin
transformers have proven to be effective for such degrada-
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Figure 10. Team TUK-IKLAB: Architecture for the proposed dense residual Swin transformer network (DRSTNet) for Image Denoising.

tion tasks, including image restoration while yielding less
number of parameters. We propose a dense residual fea-
ture enhancement (DRFE) block. As shown in Fig. 10, the
DRFE block combines the Swin transformer layers with
dense residual convolutional blocks. We use 4 layers for
DRFE. The residual convolutional and Swin transformer
blocks are then connected in a dense scheme. This dense
connection scheme was inspired by DenseNet, which helps
to deal with such a complex degradation task of image de-
noising. The Swin transformer blocks are further divided
into Swin transformer layers, multi-head self-attention, and
layer normalization, accordingly.

The feature fusion module undertakes the enhanced fea-
tures from DRFE and performs the feature level fusion with
the ascending hierarchical step module. Such a fusion strat-
egy leverages contextual information while performing the
fusion on features extracted and enhanced from the mid-
dle and lower branches. Within the fusion module, the fea-
tures are upscaled and concatenated with the middle branch
features. Similarly, the features from the middle branch
are extracted and enhanced using DRFE, followed by the
upscaling and concatenation with the feature maps from
the first branch, respectively. The upsampling operation
is performed using convolutional layers and PixelShuffle
layer [39].
Finally, the last module is the ResBlock module which un-
dertakes the enhanced features and outputs high-quality de-
noised RGB images. As shown in Fig. 10, the said module
has strided convolution, and transposed convolutional lay-
ers, respectively. Lastly, a Swin-Conv block [52] and a con-

volutional layer are used to generate the denoised image.

4.13. MedI

This Fig. 11 shows the main parts of the proposed
method. Inspired by the GRDB [22] and squeeze-excitation
networks (SE) [19], this work proposes a channel attention-
enhanced denoising network(CADN) as the generator. The
detailed discriminator architecture shown in Fig. 1 is based
on convolutional blocks. Here the position attention mod-
ule (PAM) [15], also a space attention module is introduced
to this discriminator to catch and merge deep features from
max pooling and average pooling.

The important contribution of this work is to introduce
grad-CAM loss lcam of the generator. Considering the
key to classifying an object is part of meaningful features
in maps, this work introduces the classification activation
map (CAM) loss function leading the generator to gener-
ate indistinguishable images. This work utilizes the Grad-
CAM [37] method to calculate the Icamnormal and Icamdenoising of
Inormal and Idenoising by the discriminator. lcam can pro-
pel the generator networks to express more features of the
target category and decrease attention to the background. A
hybrid loss function of the generator for overcoming smooth
and saving meaningful features is composed of image loss
limg , perceptual loss lper, Sobel loss lsobel, grad-CAM loss
lcam and adversarial loss ladv . And the discriminator loss
lD is represented by binary cross-entropy (BCE) loss.
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Figure 11. Team MedI: Channel attention-enhanced denoising network (CADN).

Figure 12. Team yiriyou: The architecture of the proposed framework.

4.14. yiriyou

We propose a dual-view U-Net based Transformer for
high-resolution image restoration. As shown in Figure 12,
our model consists of two sub-modules. Each of them
models information from channel and pixel dimensions at
different scales, respectively. Each up-sampling or down-
sampling operation is followed by a Locally-enhanced

Window (LeWin) Transformer block [48]. Benefiting from
the hierarchical architecture of U-Net and the window
mechanism, the LeWin Transformer block is capable of
capturing long-range dependencies at low-resolution fea-
ture maps while reducing the computational cost. Specif-
ically, we use 4 × 4 convolution block with a stride of 2
and a padding of 1 for down-sampling, and 2 × 2 trans-
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posed convolution with stride of 2 for up-sampling. The
top sub-module has three sub-layers, we triple the channels
at each sub-layer along the down-sampling path and do the
opposite along the up-sampling path. However, the bottom
sub-module has only two sub-layers, we expand the chan-
nels hierarchically by a factor of 2 along the down-sampling
path and reduce the channel capacity by half along the up-
sampling path. After that, the output feature maps of the
two sub-modules are concatenated and fed into the fusion
block, which consists of a convolution and a sigmoid activa-
tion. Finally, an optimal combination between two feature
maps can be attained and used to recover the clean image,

f = sigmoid(W [x, y] + b), (1)

z = f ⊙ x+ (1− f)⊙ y (2)

where [ , ] denotes tensor concatenation, ⊙ denotes
element-wise multiplication, W , b are trainable parameters,
f denotes the learned weights, x and y denote the input fea-
ture maps and z denotes the weighted sum of feature maps.

In our implementation, the objective function is the L1-
Loss, the batch size is 1, the window size is 8, the optimizer
is Adam with β1 = 0.9 and β2 = 0.99, the learning rate is
2e-3 with a decay factor of 0.5 for every 20 epochs, the total
training epochs is 200.
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