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Abstract

Recently, single image super-resolution (SISR) has made
great progress, especially through the combination of con-
volutional neural network (CNN) and Transformer, but the
huge model complexity is not desirable for the efficient im-
age super-resolution (EISR), nor is it affordable for edge de-
vices. As a result, many lightweight methods have been in-
vestigated for EISR, such as distillation and pruning. How-
ever, investigating more powerful attention mechanisms is
also a promising solution to improve network efficiency.
In this paper, we propose a multi-level dispersion residual
network (MDRN) for EISR. As the basic block of MDRN,
enhanced attention distillation block (EADB) includes the
proposed multi-level dispersion spatial attention (MDSA)
and enhanced contrast-aware channel attention (ECCA),
respectively. MDSA introduces multi-scale and variance
information to obtain more accurate spatial attention dis-
tribution. ECCA effectively combines lightweight convo-
lution layers and residual connections to improve the effi-
ciency of channel attention. The experimental results show
that the proposed methods are effective and our MDRN
achieves a better balance of performance and complex-
ity than the SOTA models. In addition, we won the first
place in the model complexity track of the NTIRE 2023 Ef-
ficient SR Challenge. The code is available at https:
//github.com/bbbolt/MDRN.

1. Introduction
Single image super resolution (SR) aims to reconstruct

high resolution (HR) images from corresponding low reso-
lution (LR) images. In recent years, a lot of powerful SR
networks [5,8,18,27,45] have achieved high-quality recov-
ery of images. However, to pursue better performance, most
networks use larger models with huge computational com-

∗ indicates contribute equally. † Corresponding author

plexity, which is divorced from the fact that mobile devices
need to be deployed. Therefore, many lightweight meth-
ods [3,10,32,46] have been proposed to solve the efficiency
problem of SR. In the early stage, the recursive neural net-
work [26] and group convolution strategy [2] was used to
reduce the model parameters, but the amount of computa-
tion is still huge and the performance decreased. Recently,
more and more efficient methods have been proposed. IDN
[17] has introduced feature distillation which uses chan-
nel segmentation to reduce the cost of convolution com-
putation. IMDN [16], RFDN [29] and BSRN [25] further
improved distillation mechanisms and achieved more effi-
cient performance. In addition to distillation mechanisms,
many model compression techniques have also been pro-
posed (e.g., pruning [13], kernel decomposition [36] and re-
parameter [7, 43]). However, the improvement brought by
efficient attention mechanisms cannot be ignored in EISR.
Powerful attention mechanisms can better guide the net-
work to select key information, which enables the network
to better pursue the balance between the complexity and
performance of the model.

In this paper, we rethink the two commonly used
lightweight attention mechanisms, enhanced spatial at-
tention (ESA) [30] and contrast-aware channel attention
(CCA) [16], to further investigate the more efficient at-
tention mechanisms for achieving a good trade-off be-
tween performance and model complexity. Based on ex-
isting advanced methods, we propose an efficient SR model
multi-level dispersion residual network (MDRN) which is
equipped with both spatial and channel attention mecha-
nisms to enhance network representation capabilities. On
the spatial dimension, ESA, which uses a single large-
size compression/dispersion process (i.e., maximum pool-
ing and bilinear interpolation), over-compresses spatial in-
formation, resulting in the key regions being easily ignored.
Therefore, we extend the original single-level compression
and dispersion process to multiple levels to get the improved
spatial attention mechanism multi-level dispersion spatial
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Figure 1. The framework of Multi-level Dispersion Residual Network (MDRN)

attention (MDSA). Except for multi-scale information, the
local variance (L-var) is added into MDSA to pay more at-
tention to structural information. In addition, we propose
enhanced contrast-aware channel attention (ECCA), which
can further improve the input and output features of CCA,
as well as improve the flow of feature information through
the residual connection. The introduction of ECCA and
MDSA enables MDRN to obtain more powerful perfor-
mance with less model complexity. Compared with other
efficient SR models, MDRN obtains SOTA performance.
As a variant of MDRN, MDRN-S was used to participate in
the NTIRE2023 ESR competition [24].

2. Related work
2.1. Lightweight SR models

To deploy SR models on edge devices, some lightweight
networks are proposed. DRCN [19] proposed a deep re-
cursive convolutional network to increase the depth of the
network, ensuring effectiveness while reducing the burden
of too many parameters. DRRN [38] introduced residual
structure based on DRCN and proposed a deep recursive
residual network. Although the recursive layer reduces the
number of parameters to a certain extent, the amount of
computation is still unsatisfactory. MemNet [39] used a
gating mechanism to fuse the features of different layers.
IDN [17] proposed an information distillation network that
splits features in the channel dimension and then processes
them individually. IMDN [16] further improved IDN and
proposed an information multiple distillation block. RFDN
[29] introduced 1 × 1 convolution into the distillation op-
eration, and proposed the shallow residual block (SRB).
BSRN [25] used BSConv [11] to replace traditional con-
volution for reducing the number of network parameters. In
addition, re-parameterization [9, 43] is also used to reduce
the number of parameters and inference time.

2.2. Attention Mechanism in SR

Attention Mechanism has been widely used in the field
of vision recently. It can guide the network to focus on im-
portant information and suppress unnecessary information.

SENet [14] proposed channel attention (CA) and achieved
significant performance improvements in image classifica-
tion tasks. RCAN [44] introduced CA into the residual
block (RB) to model interdependencies across feature chan-
nels. Subsequently, SAN [6] proposed a novel second-order
channel attention (SOCA) module to enhance the discrimi-
native ability of the network. IMDN [16] proposed contrast-
aware channel attention (CCA) to enhance image details
(related to SSIM). RFANet [30] proposed an effective en-
hanced spatial attention (ESA) block. Since then, some ef-
ficient image super-resolution (EISR) methods [25, 29] in-
troduced ESA to model the spatial position relationships.
Recently, due to the success of Transformer [40] in the field
of vision, Transformer-based methods have also been intro-
duced into SR tasks. SwinIR [27] introduced Swin Trans-
former [31] into SR task and HAT [5] introduced CA into
SwinIR to obtain significant performance improvements.

3. Method
3.1. Rethinking the Enhanced Spatial Attention

The original enhanced spatial attention (ESA) module in
RFDN [29] and BSRN [25] has greatly improved the perfor-
mance of the networks with a few parameters. It uses one
large-size strided max-pooling to squeeze spatial informa-
tion, calculates the attention weight on the down-sampled
feature, and finally uses bilinear interpolation to disperse
the attention map to the original spatial size. Then, the
high-resolution features before spatial compression were di-
rectly mapped to the end of the block by a 1 × 1 convolu-
tion. ESA with a larger receptive field can well consider the
prior knowledge of spatial information redundancy to sim-
plify the mapping of the model. As shown in Fig. 2 (a),
ESA consists of two parts: Branch-A and Branch-B. We ac-
tivate both branches separately by the sigmoid function and
visualize the results as shown in Fig. 2 (b). Interestingly,
we found that Branch-A was mainly used to generate fine
attention map in original resolution space, whereas Branch-
B was used to generate dispersion attention map in lower
resolution space because of feature spatial compression and
attention weight dispersion (i.e., maximum pooling with bi-
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(b) Visualization results of different branches in ESA.

(a) Architecture of ehanced spatial attention (ESA).
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(b) Visualization results of different branches in ESA.(b) Visualization results of different branches in ESA.

Figure 2. Enhanced spatial attention (ESA) architecture and the
visualization results. (a) The specific architecture of ESA. (b) Vi-
sualization results of different branches in ESA.

Original (a) D7 (b) D7+D5 (c) D7+D5+D3

Figure 3. Rethinking the dispersion branch. Branch DN means
the original image is processed by N × N max-pooling to squeeze
spatial information and interpolated to the original spatial size (i.e.,
N × N dispersion branch). (a) The original image is processed by
branch D7. (b) Processing the original image by different branches
D7 and D5 respectively, and adding them. (c) Processing by dif-
ferent branches D7, D5 and D3 respectively, and adding them.

linear interpolation). For convenience in description, the
two branches are referred to as the refinement branch and
the dispersion branch, respectively.

However, because ESA only uses a single large-size
pooling kernel in the dispersion branch, as shown in Fig. 3
(a), surrounding unimportant information can easily be
given high weights, and areas that contain true key infor-
mation cannot be paid attention to.

Based on the thought of coarse-to-fine, we extend the
single-level dispersion branch to multiple levels to focus the
dispersion attention scores on key areas, making such areas
gradually more prominent, as shown in Fig. 3 (b) and (c).

3.2. Multi-level Dispersion Spatial Attention
(MDSA)

By rethinking ESA, we introduce the multi-level disper-
sion spatial attention (MDSA), which extends the single-
level dispersion branch to a multiple-level fashion, as shown

in Fig. 4. Compared to ESA, MDSA can mine the areas
where key information is distributed. To better focus on
the image patches that contain more structural information,
we introduce local variance to represent structure informa-
tion. The specific process of MDSA is shown in Fig. 6 (c).
It is worth noting that local variance calculation is added
only once, and the kernel size and stride remain consistent
with the max-pooling of 7× 7. In addition, we also reduce
the depth of the original Conv Group. Therefore, MDSA
does not introduce too much model complexity compared
to ESA. Specifically, for an input Fs in, the first step is to
reduce the channel dimensions of feature by one 1× 1 con-
volution layer Hcr

conv 1(·) to ensure lightweight. This pro-
cess can be formulated as

Fcr = Hreduction
conv 1 (Fs in), (1)

and then the channel reduction feature Fcr is used to gen-
erate the spatial attention maps, including refinement atten-
tion map and dispersion attention map generated by differ-
ent branches, which can be formulated as

F i
scr = Hpool i(H

stride
conv 3(Fcr)), i = 1, 2, 3,

AmapiLR = Hi
g(F

i
scr),

AmapiHR = Hinter(AmapiLR),

AmapHR =

3∑
i=1

AmapiHR +Hconv 1(Fcr),

(2)

where i means the i-th branch of dispersion. F i
scr is the out-

put of Fcr after spatial squeeze in the i-th dispersion branch.
Hstride

conv 3(·) and Hconv 1(·) represent 3× 3 convolution with
stride of 2 and 1 × 1 convolution, Hi

g(·) denotes convolu-
tion group composed of two BSConv [11], and Hinter(·)
represents bilinear interpolation which is used to upsample
the low-resolution attention map AmapiLR into the high-
resolution space AmapiHR. Finally, we expand the channel
number of the attention map AmapHR that combines multi-
level information to be consistent with the input feature, and
then use the combined attention map Amap↑HR to process
the input feature Fs in. This process can be formulated as

Amap↑HR = Hexpansion
conv 1 (AmapHR),

Fs out = Fs in ⊗ Sigmoid(Amap↑HR) + Fs in,

(3)

where symbol ⊗ denotes element-wise multiplication oper-
ation.

3.3. Enhanced Contrast-aware Channel Attention
(ECCA)

RCAN [44] combines residual structure with channel
attention and achieves impressive performance improve-
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Figure 4. The evolutionary design from ESA to MDSA. (a) ESA with a single level dispersion branch. (b) MDSA extends a single level
dispersion branch to multiple levels and finally adds them, where ’L-var’ denotes the local variance calculation.

ment. IMDN [16] proposes contrast-aware channel atten-
tion (CCA) by taking both mean and standard deviation
into account to select channel information and won the
championship in the 2019 AIM Constrained Image Super-
Resolution Challenge [42]. Inspired by these methods, we
try to combine residual structure with CCA. As shown in
Fig. 5 (b), it is worth noting that to avoid introducing too
many parameters, we use the blueprint shallow residual
block (BSRB) [25] to replace the vanilla convolution. Sub-
sequently, inspired by the design of the switch spatial atten-
tion module in VapSR [47], we further remove the residual
connection in the BSRB and insert the CCA module be-
tween the point-wise and the depth-wise convolution.

Finally, the enhanced contrast-aware channel attention
(ECCA) module is constructed, as shown in Fig. 5 (c). This
process can be formulated as

Fc = GELU(Hconv 1(Fc in)),

Fc = HCCA(Fc),

Fc out = Hdwconv 3(Fc) + Fc in,

(4)

where Hconv 1(·) and Hdwconv 3(·) represent the point-wise
and depth-wise convolution with a kernel size of 3. Fc in,
Fc out are the input and output features of ECCA respec-
tively.

3.4. Enhanced Attention Distillation Block (EADB)

The specific process is shown in Fig. 6. Inspired by
ESDB in BSRN [25], we design the enhanced attention dis-
tillation block (EADB), which is more efficient and power-
ful due to the introduction of two proposed attention mecha-
nisms MDSA and ECCA. Specifically, given input Fin, the
feature distillation can be formulated as

Fd 1, Fr 1 = D1(Fin), R1(Fin),

Fd 2, Fr 2 = D2(Fr 1), R2(Fr 1),

Fd 3, Fr 3 = D3(Fr 2), R3(Fr 2),

Fd 4 = D4(Fr 3),

(5)

where Di(·) and Ri(·) represent the i-th distillation and re-
finement layers, respectively. Fd i, Fr i are i-th distilled and

Conv-1

GELU

DWConv-3

CCACCA

BSRB

CCA

(a)

(b)
(c)

Figure 5. The evolutionary design from CCA to ECCA. (a) Base
module CCA. (b) Combining CCA and BSRB in the way of resid-
ual structure. (c) Switching the CCA module to the middle of
convolution layers and remove residual connection in BSRB.

refined features. Subsequently, the distilled features from
different distillation layers are concatenated and fused as

Ffused = Hconv 1(Concat(Fd 1, Fd 2, Fd 3, Fd 4)), (6)

where Ffused is the fused feature. Finally, the improved
spatial attention MDSA and channel attention ECCA are
used to further enhance the representation ability of the net-
work more effectively as

Fenhanced = HECCA(HMDSA(Ffused)) (7)

where HMDSA(·), HECCA(·) represent spatial and channel
attention modules MDSA and ECCA, and Fenhanced is the
enhanced feature.

3.5. Network Structure

The overall structure of the network is shown in Fig. 1.
Given an input ILR , we use BSConv to perform shallow
feature extraction. This process can be described as follows

F0 = HSF (ILR) (8)

where HSF (·) and F0 represent the shallow feature extrac-
tion module and its output respectively. Then we feed F0
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into a stack of multi-level dispersion attention blocks (MD-
ABs) to extract deep features. This process can be described
as follows

Fm = Hm(Fm−1), m = 1, 2, . . . n, (9)

where Hm(·) represents m-th MDAB. Fm−1 and Fm de-
note the input feature and the output feature of m-th MDAB.
To take advantage of the hierarchical features, we then use
fusion module containing 1×1 convolution and GELU [12]
to fuse the features of different layers, as:

Ffused = GELU(Hconv 1(Concat(F1, . . . Fn))) (10)

where Ffused represents the fused features. Finally, in the
reconstruction phase, the output ISR of the model is gener-
ated by the following process

ISR = Hrec(Ffused + F0) (11)

where Hrec(·) represents the reconstruction function con-
taining a 3 × 3 convolution and sub-pixel operation [37].

L1 loss function is used to optimize our model, which is
expressed as follows

L1 = ∥ ISR − IHR∥1 (12)

4. Experiments
4.1. Experimental Setup

Datasets and Metrics. The training dataset consists
of 800 images from DIV2K [1] and the first 10k images
from LSDIR [22]. Standard benchmark datasets used for
evaluation include Set5 [4], Set14 [41], BSD100 [34], Ur-
ban100 [15], and Manga109 [35], PSNR and SSIM on the Y
channel (i.e., luminance) are used as the evaluation metrics.

Implementation details. MDRN consists of 8 EADBs
and the number of channels is set to 56. As a small vari-
ant of MDRN, MDRN-S is used for the challenge and the
channel number is set to 28. During training, 64 × 64
patches are randomly cropped from LR images as input.
Training dataset was further employed data augmentation
by horizontal flipping and 90-degree rotations. The model
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Table 1. The performance of MDRN with the different attention modules.

Method Params[K] DIV2K val (RGB) Set5 Set14 Urban100 BSDS100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

ESA+CCA 287 29.07/0.8210 32.26/0.8957 28.70/0.7841 26.31/0.7926 27.62/0.7377 30.71/0.9113
MDSA+ECCA 322 29.15/0.8230 32.33/0.8964 28.75/0.7848 26.43/0.7958 27.66/0.7391 30.88/0.9129

Table 2. Ablation study on the proposed MDSA. ’Base-D7’ means the base model with ESA reduces the depth of ConvGroup and
introduces a residual connection. ’DN’ represents the dispersion branch that uses the max-pooling of N × N size. ’L-var’ denotes the local
variance calculation.

Method Params[K] DIV2K val (RGB) Set5 Set14 Urban100 BSDS100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

wo ESA 280 28.97/0.8186 32.14/0.8950 28.60/0.7822 26.08/0.7848 27.59/0.7364 30.51/0.9086
Base (w/ ESA) 317 29.09/0.8214 32.30/0.8962 28.70/0.7839 26.37/0.7934 27.63/0.7380 30.77/0.9115

Base-D7 303 29.08/0.8212 32.23/0.8958 28.72/0.7845 26.33/0.7921 27.64/0.7382 30.78/0.9118
+D5 311 29.12/0.8221 32.32/0.8962 28.73/0.7842 26.39/0.7942 27.64/0.7385 30.84/0.9126

++D3 319 29.13/0.8226 32.33/0.8966 28.73/0.7847 26.42/0.7953 27.65/0.7390 30.89/0.9128
+++L-var (MDSA) 322 29.15/0.8230 32.33/0.8964 28.75/0.7848 26.43/0.7958 27.66/0.7391 30.88/0.9129

is trained by using the Adam optimizer [20] with β1=0.9,
β2=0.999. The total training iterations are set 1000k with
mini-batch size 64. The initial learning rate is initialized as
2e-3 and halved at [100k, 500k, 800k, 900k, 950k]-step.
The model training is implemented by Pytorch framework
on two NVIDIA RTX 3090 GPUs.

4.2. Ablation Study

In this section, we first verify the effect of different at-
tention modules for MDRN. Subsequently, we implement
comprehensive experiments to study the impact of different
designs of MDSA and ECCA respectively.

Effectiveness of Attention Components. We take the
model equipped with ESA and CCA as the baseline to
verify the effectiveness of the proposed attention module.
The results are shown in Tab. 1. Compared with ESA and
CCA, the performance of MDRN equipped with MDSA
and ECCA has been greatly improved with only 12.19%
increase of parameters. Specifically, it has been improved
by 0.08dB on the DIV2K validation set (100 images) and
0.45dB on other common benchmarks.

Study of Design in MDSA. We further conduct more
detailed experiments to analyze the impacts of different de-
signs step by step. First, we verify the impact of the spatial
attention (SA) mechanism on the performance of MDRN.
Comparing the first two rows in Tab. 2, we can see that
the base model has a significant improvement at the cost
of only 37K (11.67%) more parameters compared to the
model without ESA. In particular, the DIV2K validation set
is improved by 0.12dB. So, the improvement brought by the
spatial attention mechanism to the SR model cannot be ig-
nored. After that, we reduce the depth of the convolution
group (ConvGroup) in MDSA. The performance decreased
by only 0.01dB on the DIV2K validation set, and the other
benchmark datasets have an average drop of 0.01dB, which
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Figure 7. Visulization results of the dispersion attention map from
dispersion branch. (a) The attention map of dispersion branch in
ESA. (b) The attention map of dispersion branch in MDSA.

is consistent with the conclusion of RLFN that the origi-
nal ConvGroup was redundant for ESA. Then, based on
the model with shallow ConvGroup, we gradually introduce
multi-scale spatial compression and dispersion processes
(i.e., D5 and D3 in Tab. 2.) and clearly observe the gradual
improvement of performance. Subsequently, we introduce
local variance calculation to improve the ability of the net-
work to capture texture information, which further improves
the performance as shown in the last row of Tab. 2. Finally,
the proposed MDSA was successfully constructed. Com-
pared to the model without ESA, MDRN brought a 0.18dB
improvement on the DIV2K validation set with an increase
of 42K (15%) parameters, as well as a 1.13dB improvement
on the other datasets. Compared to the model with ESA,
MDRN brings a 0.06dB improvement on the DIV2K vali-
dation set and a 0.28dB improvement on the other bench-
mark datasets with only a 5K (1.58%) increase in the num-
ber of parameters. We found MDSA can better distribute
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Table 3. Ablation study on the proposed ECCA. ’LR’ means the base model with CCA introduces lightweight convolution layers and a
residual connection. ’Switch’ denotes CCA is switched to the middle of the lightweight convolution layers.

Method Params[K] DIV2K val (RGB) Set5 Set14 Urban100 BSDS100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

wo CCA 289 29.10/0.8217 32.28/0.8960 28.72/0.7843 26.34/0.7934 27.64/0.7383 30.79/0.9121
Base (w/ CCA) 292 29.09/0.8216 32.28/0.8963 28.70/0.7841 26.36/0.7935 27.63/0.7384 30.80/0.9121

+LR 322 29.13/0.8226 32.30/0.8963 28.74/0.7848 26.40/0.7948 27.66/0.7392 30.85/0.9128
++Switch (ECCA) 322 29.15/0.8230 32.33/0.8964 28.75/0.7848 26.43/0.7958 27.66/0.7391 30.88/0.9129

Table 4. Ablation study on different branches of MDSA. ’Refine’ represents refinement branch, and ’Dispersion’ dispersion branch.

DIV2K val (RGB) Set5 Set14 Urban100 BSDS100 Manga109Method #Params PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
wo Dispersion 295K 29.01/0.8192 32.24/0.8957 28.66/0.7832 26.24/0.7892 27.60/0.7371 30.65/0.9103

wo Refine 320K 29.11/0.8221 32.33/0.8965 28.75/0.7848 26.38/0.7941 27.65/0.7389 30.84/0.9126
Dispersion+Refine 322K 29.15/0.8230 32.33/0.8964 28.75/0.7848 26.43/0.7958 27.66/0.7391 30.88/0.9129

Table 5. Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods, and multiply-accumulate operations is evaluated
on a 1280× 720 HQ image. The best and second-best performance are in red and blue colors, respectively.

Method Scale Params Multi-Adds Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR-Baseline [28]

×2

1370K 316.3G 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
IMDN [16] 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
RFDN [29] 534K 123.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

LatticeNet [33] 756K 169.5G 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 —
RLFN [21] 527K 115.4G 38.07/0.9607 33.72/0.9187 32.22/0.9000 32.33/0.9299 —
FMEN [9] 748K 172.0G 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778
BSRN [25] 332K 73.0G 38.10/0.9610 33.74/0.9193 32.24/0.9006 32.34/0.9303 39.14/0.9782

MDRN (ours) 304K 65.0G 38.11/0.9610 33.84/0.9205 32.32/0.9016 32.84/0.9350 39.14/0.9782
EDSR-Baseline [28]

×3

1,555K 160.2G 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
IMDN [16] 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
RFDN [29] 541K 55.4G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449

LatticeNet [33] 765K 76.3G 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 —
FMEN [9] 757K 77.2G 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.9462
BSRN [25] 340K 33.3G 34.46/0.9277 30.47/0.8449 29.18/0.8068 28.39/0.8567 34.05/0.9471

MDRN (ours) 311K 29.6G 34.58/0.9286 30.51/0.8453 29.21/0.8081 28.70/0.8627 34.07/0.9476
EDSR-Baseline [28]

×4

1518K 114.0G 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7894 30.35/0.9067
IMDN [16] 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN [29] 550K 31.6G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

LatticeNet [33] 777K 43.6G 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 —
RLFN [21] 543K 29.8G 32.24/0.8952 28.62/0.7813 27.60/0.7364 26.17/0.7877 —
FMEN [9] 769K 44.2G 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107
BSRN [25] 352K 19.4G 32.35/0.8966 28.73/0.7847 27.65/0.7387 26.27/0.7908 30.84/0.9123

MDRN (ours) 322K 17.3G 32.35/0.8970 28.80/0.7861 27.69/0.7404 26.60/0.8005 31.02/0.9146

the attention weight to surrounding important regions than
ESA, which is consistent with the analysis in the method
part. In addition, to better reflect the influence of multi-level
dispersion, we visualize the attention map of the dispersion
branch, as shown in Fig. 7, we can see that the way of multi-
level dispersion can better locate the important area.

Study of Design in ECCA. We conduct detailed exper-
iments to verify the effectiveness of our proposed ECCA.
First, we verified the impact of CCA on MDRN. As shown
in Tab. 3, from the first two rows of the table, we can ob-
serve that CCA only brings about a weak performance im-
provement compared with the model without CCA. Subse-
quently, we combine BSRB [25] with CCA in the way of
residual structure, and then further remove the residual con-
nection in BSRB and insert the CCA module between point-

wise convolution and depth-wise convolution, as shown in
Fig. 5 (b) and (c). From the last two rows of Tab. 3, we
can observe that ECCA brings significant performance im-
provement, compared with the base model with CCA.

Study of Different Branches. In this section, we ver-
ify the effect of different branches on the performance
of MDRN. As shown in Tab. 4, we can observe that the
performance of MDRN with both dispersion and refine-
ment branches is higher than the two models using only
one single branch. Specifically, MDRN achieves a 0.19dB
and 0.05dB improvement on Urban100 with parameter in-
creases of 9.2% and 0.6% respectively. This demonstrates
that both dispersion and refinement branches are beneficial
for reconstruction.
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GT
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EDSR-baseline
18.43/0.2387

LatticeNet
18.11/0.2052

IMDN
18.45/0.3467

RFDN
17.86/0.1496

RLFN
19.38/0.4278

BSRN
19.07/0.3830

MDRN
21.74/0.7459

GT
PSNR/SSIM

Urban100(×4):img033

EDSR-baseline
20.16/0.3111

LatticeNet
20.78/0.4186

IMDN
20.14/0.3439

RFDN
19.23/0.2126

RLFN
19.38/0.4278

BSRN
20.23/0.3273

MDRN
24.15/0.7883 

GT
PSNR/SSIM

Urban100(×4):img093

EDSR-baseline
15.43/0.4462

LatticeNet
18.42/0.7272

IMDN
14.51/0.3523

RFDN
17.05/0.6366

RLFN
17.97/0.7149

BSRN
17.71/0.6883

MDRN
21.91/0.8904 

GT
PSNR/SSIM

Manga109(×4):YumeiroCooking

EDSR-baseline
19.58/0.4535

LatticeNet
20.50/0.5245

IMDN
18.38/0.2699

RFDN
21.47/0.6435

RLFN
23.86/0.8495

BSRN
18.18/0.2917

MDRN
27.83/0.9470 

Figure 8. Visual comparison for ×4 SR. The patches for comparison are marked with red boxes in the original images. PSNR/SSIM is
calculated based on the patches to better reflect the performance difference.

Table 6. Results of NTIRE 2023 Efficient Super-Resolution Sub-
Track 1: Model Complexity. ‡ denotes the results in NTIRE 2022
Efficient Super-Resolution [23] challenge.

Team Val PSNR Test PSNR Params[M] FLOPs[G] Acts[M] Mem[M] Runtime[ms]
TelunXupt (ours) 29.00 27.09 0.095 5.58 220.88 517.14 75.89

FRL Team0 29.01 26.98 0.115 7.38 170.26 2028.66 196.64
Dase-DEALab 29.00 27.07 0.118 9.06 332.39 1114.77 130.73

Set5 Baby 29.01 27.08 0.129 8.29 202.70 652.41 99.79
FRL Team4 28.95 27.02 0.173 10.60 187.32 1266.92 124.13

XPixel‡ 29.01 — 0.156 9.50 65.76 729.94 —
NJUST ESR‡ 28.96 — 0.176 8.73 160.43 1346.74 —

4.3. Comparison with State-of-the-art Methods

We compare the proposed MDRN with other EISR
works, including EDSR-Baseline [28], IMDN [16], RFDN
[29], LatticeNet [33], RLFN [21], FMEN [9], BSRN [25],
as shown in Tab. 5. Our MDRN achieves the best per-
formance on all datasets with fewer parameters and Multi-
Adds compared with other methods. Specifically, on the Ur-
ban100 dataset, the PSNR is 0.43dB and 0.33dB higher than
RLFN and BSRN on ×4 SR, respectively. To demonstrate
the restoration performance, visualization comparisons are
shown in Fig. 8.

4.4. MDRN-S for NTIRE2023 Challenge

As a variant of MDRN, our MDRN-S won the 1st place
in the NTIRE2023 Efficient Super-Resolution Challenge
[24] Sub-Track 1: Model Complexity. The results are
shown in Tab. 6. Specifically, ‘Val PSNR’ is the PSNR re-
sult tested on the validation set of 100 images from DIV2K
and ’Test PSNR’ is performed on a test set consisting of
100 LR test images from DIV2K and 100 LR test images
from LSDIR. Compared to other competing solutions, our
method has the fewest number of parameters and FLOPs
and the best performance on the test set.

5. Conclusion
In this paper, we propose a multi-level dispersion resid-

ual network (MDRN) for efficient image super-resolution
(EISR). The design of MDRN is inspired by blueprint sepa-
rable residual network (BSRN). We adopt the similar archi-
tecture of BSRN but introduce a more efficient enhanced at-
tention distillation block (EADB) by replacing original spa-
tial and channel attention mechanisms with the proposed
multi-level dispersion spatial attention (MDSA) and en-
hanced contrast-aware channel attention (ECCA). Specifi-
cally, MDSA divides the original attention map calculation
into two branches: the refinement branch and the disper-
sion branch. For the dispersion branch, MDSA introduces
multi-scale information to improve the original dispersion
branch (i.e., the branch using a single large-size pooling
and interpolation operations) in the enhanced spatial atten-
tion (ESA) in BSRN, based on the thought of coarse-to-fine,
which allows attention weight to better focus on the areas
where important information is distributed. ECCA effec-
tively combines CCA and lightweight convolution layers to
optimize the input and output feature information of CCA.
Extensive experiments show the effectiveness of the pro-
posed methods. Our method achieves the best performance
with lower model complexity compared to the state-of-the-
art efficient SR methods. Besides, as a variant of MDRN,
MDRN-S won the first place in the model complexity track
of the NTIRE 2023 efficient super-resolution challenge.
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