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Abstract

Bokeh effect transformation is a novel task in computer
vision and computational photography. It aims to convert
bokeh effects from one camera lens to another. To this end,
we introduce a new concept of blur ratio, which represents
the ratio of the blur amount of a target image to that of
a source image, and propose a novel framework SBTNet
based on this concept. For cat-eye simulation and lens type
transformation, a two-channel coordinate map and a two-
channel one-hot map are added as extra inputs. The core
of the framework is a sequence of parallel FeaNets, along
with a feature selection and integration strategy, which
aims to transform the blur amount with arbitrary blur ra-
tio. The effectiveness of the proposed framework is demon-
strated through extensive experiments, and our solution has
achieved the top LPIPS metric in NTIRE 2023 Bokeh Effect
Transformation Challenge.

1. Introduction
The objective of mobile camera technology is to enhance

the visual quality of images and approach the level of pro-
fessional full-frame cameras. Recent years have seen re-
markable advancements in creating realistic and aesthetic
bokeh effects from sharp images and deblurring blurred im-
ages to restore the missing information. Currently, how-
ever, no methods have tried to convert the bokeh effect from
one lens to that of another lens. Specifically, given a sin-
gle image, we need to generate a target image with specific
bokeh effect according to information such as lens type, fo-
cal length and aperture size in terms of the source lens and
the target lens (Fig. 1). This task combines the characteris-
tics of bokeh rendering and defocus deblurring, and is more
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Canon50mmf1.4 → Sony50mmf16.0

Canon50mmf16.0 → Sony50mmf1.4

Figure 1. Bokeh effect transformation results of our method. Im-
ages are from dataset BETD [4].

flexible and more challenging.
With regard to the bokeh rendering, it can be divided

into automatic bokeh rendering [5, 8–11, 17, 20] and con-
trollable bokeh rendering [3, 18, 19, 25, 29, 32]. The former
one requires a single image input and automatic focusing
and blurring. The latter one, on the other hand, enables ex-
tra inputs, including a disparity map and some controlling
parameters such as the blur amount and the refocused dis-
parity, and the output should be adjusted by these parame-
ters. In any case, however, the input image is required to
be all-in-focus or has a deep depth of field. Defocus de-
blurring, on the contrary, produces a sharp image from a
shallow depth-of-field image. For both tasks, the transfor-
mation of the blur amount is definitely unidirectional and
there is no intermediate state, e.g., from a blurred image
to a more blurred image or the opposite one. To process
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this novel bokeh effect transformation task, NTIRE 2023
Bokeh Effect Transformation Challenge [4] is hold, and a
large-scale corresponding dataset BETD is introduced.

In this paper, we propose a new framework termed SBT-
Net to specialize in this task. We first apply AlphaNet to
extract an alpha map of the focused object, which bene-
fits the maintaining of the sharp foreground regions in the
transformed result. To simulate the cat-eye effect of bokeh
images captured by real lens, we add a two-channel coordi-
nate map as an extra input. A two-channel one-hot map is
also added for the transformation of the lens type. To per-
form the transformation of blur amount, we introduce a new
concept of blur ratio, which indicates the ratio of the blur
amount of a target image to that of a source image. Based
on this concept, we apply several parallel FeaNets and de-
sign a feature selection and integration strategy to transform
the bokeh effect of images with arbitrary blur ratio. We fur-
ther use RefineNet to refine the transformed result and re-
store it to the full resolution. Extensive experiments show
that SBTNet can render realistic transformation effect for
different blur ratios, and our solution has obtained the top
LPIPS metric in the NTIRE 2023 Bokeh Effect Transfor-
mation Challenge [4].

Our main contributions are summarized as:

• We define a new concept of blur ratio to model the blur
amount transformation and unite the bokeh rendering
and defocus deblurring tasks.

• We propose a novel framework with a feature selec-
tion and integration strategy to tackle the bokeh effect
transformation task with arbitrary blur ratio.

2. Related Work
Bokeh effect transformation is a brand new task, which

aims to transform the bokeh style from one lens to another.
The bokeh style includes lens type, aperture size, etc. Only
considering the blur amount variation, this task can be con-
verted to bokeh rendering or defocus deblurring. If the aper-
ture size of source lens is small while the counterpart of
target lens is large, this task is similar to bokeh rendering,
which artificially blurs an all-in-focus image. If transpos-
ing the source lens and target lens, this task then changes
into defocus deblurring, which sharpens a blurred image.
Since there are no proposed methods in terms of bokeh ef-
fect transformation, we introduce the recent work of bokeh
rendering and defocus deblurring in this section.

2.1. Bokeh Rendering

From the perspective of the input form, we can catego-
rize bokeh rendering task into automatic bokeh rendering
and controllable bokeh rendering. The former one indicates
that we can only input a single shallow depth-of-field image

to perform rendering without providing other information.
Thus, the method requires to automatically perceive the fo-
cused object of the input image and blurred background ac-
cording to potential depth relationship. With the introduce
of a large-scale bokeh dataset EBB! [8], many end-to-end
networks [5, 8–11, 17, 20] have been proposed to specialize
in the automatic bokeh rendering. Ignatov et al. [8] propose
a PyNet-based framework which has an inverted pyrami-
dal shape and processes images at seven different scales.
Qian et al. [20] propose a two-stage Glass-Net, along with
a GAN [7] loss to enhance the perceptual quality of the ren-
dered results. Luo and Peng et al. [17] divide the task into
three sub tasks: defocus hallucination, radiance virtualiza-
tion and weighted layered rendering to increase the inter-
pretability and performance in areas with large blur amount.

Controllable bokeh rendering, on the other hand, allows
extra inputs, e.g., the measured or predicted disparity map
and some controlling parameters, including blur amount pa-
rameter and refocused disparity. Nevertheless, the output is
also required to be adjusted freely according to the different
controlling parameters. The early methods typically adopt a
strategy of layered rendering [3,32], which decomposes the
scene into multiple layers and blurs each of them indepen-
dently before compositing them from back to front in order.
However, these methods are prone to cause boundary arti-
facts. To tackle these problems, deep learning based meth-
ods have been proposed in recent years. Xiao et al. [30]
introduce a new dataset synthesized by Unity and propose
a framework to render images in low resolution. Wang et
al. [26] propose a bokeh rendering system which consists of
depth prediction, lens blur, and guided upsampling modules
to process high-resolution images. Peng et al. [18] combine
the advantages of classical rendering and neural rendering
with a dual-stream framework. Peng et al. [19] further pro-
pose an MPI-based framework to specialize in rendering re-
alistic partial occlusion effects.

2.2. Defocus Deblurring

Defocus deblurring, as a reverse task of bokeh rendering,
is more challenging. Classical defocus deblurring methods
typically first estimate a defocus map [12, 24, 33], followed
by a non-blind deconvolution [6, 13, 15]. These methods
perform poorly and produce ringing artifacts especially for
complicated scenes due to the inaccurate estimated defocus
map and naı̈ve deconvolution operation.

Abuolaim and Brown [2] first propose a dual-pixel defo-
cus deblurring method based on neural networks and intro-
duce a corresponding dataset. For each scene, the dataset
contains a pair of left/right dual-pixel (DP) images with
large defocus blur and a single image with small defocus
blur. They further improve the performance by adding DP
data produced synthetically and extend the task to video ap-
plication [1]. To address single defocus deblurring, Lee et
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Figure 2. Images from the first row and the second row are captured by the lens with f-number of 16 and 1.8, respectively. Although the
blur level of the right image group is larger than the left one, the blur ratio from f16.0 to f1.8 or from f1.8 to f16.0 is the same.

al. [14] propose a novel iterative filter adaptive network co-
operated with an auxiliary reblurring module, which signif-
icantly boosts the deblurring quality. Son et al. [23] pro-
pose effective and lightweight kernel sharing parallel atrous
convolution block to simulate spatially varying inverse ker-
nels. Considering the spatial misalignment of the captured
dataset, Ruan et al. [21] first pretrain the model on a light
field dataset where the synthesized bokeh images are com-
pletely aligned with all-in-focus images, and then finetune
the model on the captured dataset. On the other hand, Li et
al. [16] adopt a deblurring module which incorporates a bi-
directional optical flow-based deformation to constrain the
spatial consistency. They also jointly train a spatially invari-
ant reblurring module to further improve the performance.

3. Proposed Method
To tackle the bokeh effect transformation task, we pro-

pose SBTNet. In the following, we first explain our un-
derstanding of bokeh effect transformation and introduce a
concept of “blur ratio” in Sec. 3.1. We then detail the struc-
tures of different modules in Sec. 3.2. Finally, we describe
our multi-stage training and inference process in Sec. 3.3.

3.1. Bokeh Effect Transformation

Bokeh effect transformation mainly includes the trans-
formation of lens type and blur amount. In general, the lens
type is provided directly by the training sample, e.g., from
Sony to Canon, while the blur amount of each image is hard
to say since it is spatially variant and is related to multiple
factors, including the aperture size, focal length, depth of
focus, and the distance from camera to the scene. If encod-
ing all of these factors and feeding them into the network, it
will be hard for network to learn without a large amount of
data. Fortunately, for the bokeh effect transformation task,
the focused object is typically constant, enabling us to de-
fine a concept of blur ratio to simplify and represent the

transformation of the blur amount.
Specifically, for a bokeh image, the blur amount of dif-

ferent areas can be represented by a defocus map S [25]:

S =
l2

f
|D − df | , (1)

where l is lens’s focal length. f is lens’s f-number, which is
equal to the ratio of the focal length to the diameter of the
entrance pupil. D is the disparity map or inverse depth map
of the scene, and df is the disparity of focus. For a particular
scene with an identical focused object but different captured
lens, the blur ratio η of the two lenses can be defined by

η =
St

Ss
=

l2t fs
l2sft

, (2)

where subscript t and s denote the target lens and the source
lens, respectively. Therefore, no matter what scene to shoot
and how much distance between the lens and the captured
scene, the blur ratio is determined as long as the focal length
and f-number of the source lens and target lens are provided.
Particularly, if ls = lt, as in the dataset BETD [4], η can be
further simplified into fs

ft
, as shown in Fig. 2.

3.2. Architecture of SBTNet

Alpha Extraction of Focused Object. The architecture
of SBTNet is shown in Fig. 3. We first predict an alpha
map of the focused object by AlphaNet, which facilitates
preserving the sharp boundaries of focused objects in the
transformed results. To extract more global information, we
implement AlphaNet with a U-Net architecture where the
bottom layers are replaced with consecutive CrosssFormer
blocks [27] with long short distance attention.

Cat-Eye Effect Simulation. The cat-eye effect of camera
lens represents that the bokeh balls are not circular at the
corners of a captured image as shown in Fig. 4. To simulate
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Figure 3. The architecture of SBTNet. AlphaNet first predicts an alpha map of the focused object. A coordinate map (X,Y ) is considered
to reflect the cat-eye effect of different positions. The lens type of the source image and the target image is encoded into a two-channel
one-hot map (Ls, Lt) as an extra input to perform lens type transformation. Subsequently, according to different blur ratios, specific
FeaNets are selected to extract multi-scale features, which are then integrated and fed into consecutive dynamic residual blocks to obtain a
transformed image in half resolution. RefineNet is finally applied to obtain a full-resolution result.

Figure 4. Cat-eye effect of the captured bokeh images [4]. The
shape and direction of bokeh balls are not the same in different
positions.

this effect, we add a two-channel coordinate map (X,Y ) as
an extra input, which reflects the degree of the cat-eye ef-
fect in different positions. We show in experiments that this
coordinate map can enhance the performance both quanti-
tatively and qualitatively.

Selective Bokeh Effect Transformation. To perform the

transformation of lens type, we encode the lens type of the
source image and the target image to a two-channel one-
hot map (Ls, Lt) as an additional input of the subsequent
network. Since there are only 2 lens types, i.e., Sony and
Canon in our training dataset, 2 channels are sufficient.
Specifically, we set the value to 0 for Sony lens and 1 for
Canon lens.

To learn the transformation of blur amount, we design
a feature selection and integration strategy. Specifically,
we first apply several parallel FeaNets with the same ar-
chitecture to extract the multi-scale features corresponding
to different blur ratios. For example, FeaNet-1.8/16 indi-
cates that the lens’s f-number of the source image is 16,
while the counterpart of the target image is 1.8. In prac-
tice, during training, we select a particular FeaNet for each
training sample, and during inference, we can integrate the
features of two neighboring FeaNets, so that we can obtain
the final result corresponding to an intermediate blur ratio.
The pipeline of this integration process is shown in Fig. 3.
Assume the blur ratio is η, and the blur ratios of the corre-
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sponding neighboring FeaNets are η1 and η2, we can cal-
culate the distributed weights for the multi-scale features of
FeaNet-η1 and FeaNet-η2 by

FeaNet-η1 :
η2 − η

η2 − η1
, FeaNet-η2 :

η − η1
η2 − η1

. (3)

The actual relationship may not be linear, but this strategy
indeed supports the blur amount transformation with the
intermediate blur ratio. Subsequently, we use 4 dynamic
residual modules to obtain results progressively. Through
experiments, we verify that compared with integration in
image level, integration in feature level performs better and
is more efficient as we only need to run once the dynamic
residual blocks. The architecture of FeaNet and dynamic
residual module are borrowed from DRBNet [21], but we
modify the basic channel from 32 to 64, which increases
the capacity of the network.

Guided Upsampling and Refinement. The above pre-
dicted alpha map and the transformed image are both in half
resolution, so we further design RefineNet to upsample and
refine the transformed image. The input of RefineNet is the
concatenation of the original input image and the bilinearly
upsampled alpha map and the transformed image. The pre-
dicted residual is then added to the transformed image to
obtain the final result. The architecture of RefineNet is sim-
ilar to FeaNet, but the basic channel is set to 32.

3.3. Training and Inference Details

Multi-Stage Training. We implement our model with Py-
Torch. All of the experiments are conducted on 4 NVIDIA
GeForce GTX 1080 Ti GPUs.

Our training contains 3 stages, where Adam optimizer
is used for optimization. RefineNet is disabled during the
first 2 stages. Compared with the bokeh transformation
from small blur to large blur, the opposite process is much
more difficult for network to learn. Thus, we only use the
data where the f-number of source images is 1.8 and the f-
number of target images is 16.0 at stage 1, which indicates
that only FeaNet-1.8/16 is active. We augment the input
image with random cropping and horizontal flipping. The
learning rate is set to 10−4. The model is trained for 300
epochs with a batch size of 8.

At stage 2, we initialize the parameters of all FeaNets
with the parameters of FeaNet-1.8/16. All of the training
data are used, and with the input of different f-number pairs,
the corresponding FeaNet is active. The learning rate is set
to 10−4 for all FeaNets and 10−5 for other structures. The
model is trained for 150 epochs with a batch size of 64.

At stage 3, RefineNet is active and the parameters ex-
cept for RefineNet are fixed. Empirically, we replace the
alpha map feeding to RefineNet with an all-zero map with
probability of 0.5 to increase the generalization ability. The

Table 1. Quantitative results of NTIRE 2023 Bokeh Effect Trans-
formation Challenge [4]. We unofficially rank different teams by
LPIPS. Note that “Base Results” and “EBokehNet [22]” are both
proposed by the competition organizers. The best performance is
in boldface.

Team PSNR↑ SSIM↑ LPIPS↓
AIA-Smart (Ours) 34.572 0.9361 0.0966
Samsung Research China 35.264 0.9362 0.0985
NUS-LV-Bokeh 32.326 0.9333 0.1076
IPAL-Bokeh 32.076 0.9324 0.1076
BokehOrNot 32.288 0.9327 0.1130
BIGbaodan 30.327 0.9281 0.1249
IR-SDE 30.866 0.9297 0.1301
JiXiangNiu 27.970 0.9213 0.1542

Base Results 28.599 0.9128 0.1878
EBokehNet (Organizers) 34.543 0.9350 0.1039

learning rate is set to 10−4. The model is trained for 100
epochs with a batch size of 8.

Loss Functions. During the first 2 training stages, we use
the loss function as follow:

L1,2 = Lℓ1(O↓2, O
∗
↓2) + Lℓ1(∇O↓2,∇O∗

↓2)

+ LSSIM (O↓2, O
∗
↓2) + LBCE (A↓2, A

∗
↓2) , (4)

where ground-truth maps are marked with a superscript ∗.
∇ denotes the gradient domain. O↓2 and A↓2 are the trans-
formed result and the predicted alpha map in half resolution.
Lℓ1 is the ℓ1 loss. LSSIM is the structural similarity (SSIM)
loss [28]. LBCE is the binary cross entropy (BCE) loss.

At stage 3, only RefineNet is supervised in full resolu-
tion, so the loss function is set to

L3 = Lℓ1(O,O∗) + Lℓ1(∇O,∇O∗)

+ LSSIM (O,O∗) . (5)

Inference. We observe that for real-world images, the pre-
dicted alpha map degrades significantly. Most blurred back-
ground areas are perceived as the focused foreground, and
the bokeh style of these areas does not transform. The rea-
son may be that the focused objects of the training dataset
are pasted on the captured background manually, which has
a large gap from real-world images. To increase the gener-
alization ability, we disable AlphaNet and set the alpha map
to an all-zero map for real-world images during inference.

Notably, we can even perform bokeh transformation with
arbitrary blur ratio which does not exist in the training
dataset via interpolating the features of two neighbouring
FeaNets.
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Canon50mmf1.4 → Sony50mmf16.0 Canon50mmf1.8 → Sony50mmf16.0 Canon50mmf1.4 → Sony50mmf1.8

Sony50mmf16.0 → Canon50mmf1.4 Sony50mmf16.0 → Canon50mmf1.8 Sony50mmf1.8 → Canon50mmf1.4

Figure 5. Qualitative results of synthesized images in test subset.

Canon50mmf1.4 → Sony50mmf1.8 Canon50mmf1.4 → Sony50mmf1.8 Canon50mmf1.4 → Sony50mmf1.8

Sony50mmf1.8 → Canon50mmf1.4 Sony50mmf1.8 → Canon50mmf1.4 Sony50mmf1.8 → Canon50mmf1.4

Figure 6. Qualitative results of real-world images in test subset.

4. Experiments

4.1. Dataset and Metrics

NTIRE 2023 Bokeh Effect Transformation Challenge [4]
introduces a novel dataset BETD. The training subset con-
tains 20k samples and each sample consists of a source im-
age, a target image, an alpha map and related metadata.
The source and target images are synthesized by a fore-
ground RGBA image which serves as a focused object and a
background image, artificially blurred with different lenses.
The metadata lists the lens type, focal length, f-number of
the source and target lenses, and an blur strength indica-
tor for the scene. The focal length is always 50mm, and
there exist 2 lens types, i.e., Sony and Canon, and 7 types

of f-number pairs, i.e., (1.4, 16.0), (1.8, 16.0), (1.4, 1.8),
(1.8, 1.8), (1.8, 1.4), (16, 1.8) and (16, 1.4). The validation
and test subsets respectively contain 500 and 180 samples
without target images and alpha maps. Note that the test
subset contains 95 synthesized images and 85 real-world
images, where the latter ones are captured by the same
lenses as for the former ones and have the same structure
of sharp foregrounds in front of blurred backgrounds.

To select the best model during training and to facilitate
subsequent experiments, we split an extra validation subset
which contains 200 samples with ground truths from the
original training subset. This validation subset is termed as
Val200.

During evaluation, aside from the commonly used met-
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Table 2. Ablation study on Val200 w/ and w/o the input of coordi-
nate maps.

Coordinate Map PSNR↑ SSIM↑ LPIPS↓
w/o 43.567 0.9892 0.0352
w/ 45.627 0.9946 0.0331

Source w/o Coord. w/ Coord.

Figure 7. Visualized results w/ and w/o the input of coordinate
maps. In this example, the blur ratio is larger than 1.

rics PSNR and SSIM, LPIPS [31] is also added to reflect
the perceptual quality of the transformed results.

4.2. Quantitative and Qualitative Results

Our model is proposed to participate in the NTIRE 2023
Bokeh Effect Transformation Challenge [4]. Table 1 lists
the quantitative metrics of the approaches proposed by dif-
ferent teams. One can observe that we rank first in LPIPS
and rank second in PSNR and SSIM, demonstrating that our
method can render more perceptually realistic transformed
results compared with other methods. Since no codes of re-
lated approaches have been published so far, we only visual-
ize some results of our method in Fig. 5 and Fig. 6. One can
observe that the bokeh transformation effect is prominent,
especially for the settings from a relatively sharp image to a
blurred image as well as the opposite one.

4.3. Analyses of SBTNet

To demonstrate the necessity of individual modules and
the generalization ability of SBTNet, we conduct compre-
hensive analyses on Val200.

Coordinate Map. Due to the cat-eye effect of captured
bokeh images, the blurring patterns differ in different areas.
As we randomly crop images during training, the network
cannot perceive the position of the cropped patch without
inputting a coordinate map. From Table 2, adding the coor-
dinate map significantly enhances the performance of bokeh
transformation. As shown in Fig. 7, if we render a blurred
image from a sharp image, we can produce prominent cat-
eye effect when adding the coordinate map.

AlphaNet. AlphaNet is designed to predict the focused ob-
ject of the source image, so that it will not be changed in
the transformed result. However, from Fig. 8, despite of

Source (synthesized) Alpha Map

Source (real-world) Alpha Map

w/o AlphaNet w/ AlphaNet

Figure 8. Visualized results of the synthesized image and the real-
world image w/ and w/o using AlphaNet. In this example, the blur
ratio is smaller than 1.

good performance on synthesized training data, the quality
of the predicted alpha map is poor when dealing with real-
world images. The reason may be the bokeh style gap on
background between synthesized images and real-world im-
ages, so AlphaNet recognizes the blurred background into
focused areas, leading to incorrectly unchanged bokeh ef-
fect in transformed results. Although replacing the pre-
dicted alpha map with all-zero map can alleviate this prob-
lem, it causes artifacts within the focused area. Therefore,
our method still has room for improvement.

Feature Selection and Integration. During inference, we
can obtain the transformed result of arbitrary blur ratio by
the integration of two neighboring FeaNets. To verify that
the integration in feature level is superior to the integration
in image level, we compare the two integration strategies
in Table 3. The transformed results from f1.8 to f16.0 can
be computed by integrating the results from f1.4 to f16.0
and the results from f1.4 to f1.8. The transformed results
from f16.0 to f1.8 can be computed in a similar way. The
statistics are consistent with our expectations. Meanwhile,
integration in feature level is more time-saving than in im-
age level due to running once the dynamic residual blocks.

Model Complexity. In Table 4, we list the parameters of
different modules in SBTNet. Since there are 7 types of
f-number pairs in the dataset BETD [4], we set 7 FeaNets
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Table 3. Comparison of integration in image level and feature
level.

Integration Mode PSNR↑ SSIM↑ LPIPS↓

Canon50mmf1.8 → Sony50mmf16.0

Direct Image Level 35.755 0.9850 0.0684
Feature Level 35.768 0.9851 0.0675

Sony50mmf16.0 → Canon50mmf1.8

Image Level 37.282 0.9894 0.0752
Feature Level 38.005 0.9921 0.0555

Table 4. Parameters of different modules in SBTNet.

Modules AlphaNet FeaNets DRB RefineNet Total

Params (M) 44.4 27.8×7 18.9 7.2 265

for each of them. In practice, according to the calculated
blur ratio, we use one or two FeaNets at a time. During
evaluation, it takes about 1.3s to process a 1920 × 1440
image on a NVIDIA GeForce GTX 1080 Ti GPU.

5. Conclusion

In this paper, we present SBTNet for the bokeh effect
transformation task. To simulate the cat-eye effect of real
lens, we add a coordinate map as an extra input. Besides,
since bokeh effect transformation includes the transforma-
tion of lens type and blur amount, we additionally input a
two-channel lens type map and design a feature selection
and integration strategy to handle different blur ratios. Our
solution gets the best LPIPS metric in NTIRE 2023 Bokeh
Effect Transformation Challenge, demonstrating the effec-
tiveness and high perceptual quality of our method. Despite
of this, further study is still required to better perceive the
spatially variant blur amount of real-world images and to
produce more accurate and smooth transformed results with
arbitrary blur ratios.
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